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1 Introduction

Solving ordinary differential equations (ODEs) has been paid lots of attention by many
scientists and mathematicians due to its importance in various fields of sciences and engi-
neering. For this reason, several numerical techniques for solving ODEs have been devel-
oped during last few decades. Also, the numerical methods can be broadly classified into
the following categories: the first class consists of one-step multistage techniques such
as Runge—Kutta-type methods [5, 13, 17], the second includes BDF-type multistep meth-
ods [6], and the last is a group of deferred or error correction methods [4, 7, 18, 19] such
as spectral deferred correction (SDC) methods [8, 11], etc.

In particular, in [15], Krylov deferred correction method (KDC), one of deferred correc-
tion methods, has been introduced for getting more accurate and higher-order solutions
of various differential equations, in which the numerical solution and the corresponding
error at each integration step are calculated at the same time, so that the final algorithm
can control the error and have good properties such as higher convergence order, better
stability, and higher accuracy, etc., compared with the existing numerical techniques.

Apart from this way, with the development of artificial intelligence and computer tech-
nology, many researchers have recently paid tremendous attention to develop neural net-
work techniques. Neural networks have been broadly used in many research fields such
as pattern recognition [23, 24], speech recognition [10, 16], image processing [12, 27, 30],
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forecasting [2, 3], classification [20, 26], etc. For this reason, lots of neural network meth-
ods are currently developed and widely used. Based on the advantages of such neural net-
work techniques, there are some attempts to use the neural network techniques for solving
various mathematical problems such as differential equations. Researchers use multilayer
perceptron neural network [21, 31], radial basis function neural network [21, 25], finite
element neural network [28], wavelet neural network [33], etc.

Based on these developments of numerical techniques to resolve mathematical prob-
lems, in this study, we especially focus on deferred correction schemes to solve ODEs. Usu-
ally, the existing numerical schemes are searching for the solutions of given differential sys-
tems. Unlike the traditional numerical schemes, the deferred or error correction schemes
are investigated for the numerical errors with a provisional solution which is preferen-
tially calculated by any numerical scheme. It is already shown that these schemes can have
higher convergence order and higher accuracy without any loss of stability [4, 7, 18, 19, 29].

In addition to the deferred correction schemes, we consider the neural network tech-
niques to solve the ODEs. Recently, several researchers have attempted to solve various
differential equations by using the neural network techniques. For example, in [22], a trial
solution of differential equations with initial and boundary values is written as a sum of
two parts, one is represented as a function which can manage a given initial or boundary
conditions and the other consists of a feedforward neural network which is independent of
the initial and boundary conditions. In [32], a Legendre neural network method for ODEs
is presented by representing a trial solution by Legendre network, in which a Legendre
polynomial is chosen as a basis function of hidden neurons and a single hidden layer Leg-
endre neural network is used to eliminate the hidden layer by expanding the input pattern
using Legendre polynomials. Here, an improved extreme learning machine algorithm was
used for training network weights.

The main objective of this paper is to develop a new algorithm to solve ODEs by using
neural network techniques to estimate the numerical error with a calculated provisional
solution. First of all, we begin by using a lower-order numerical scheme such as the first-
order Euler method or the second-order midpoint method for the provisional solution.
Note that for getting much higher accuracy, we may employ any elaborate higher-order
numerical scheme but it may cause enormous computational costs for estimating the pro-
visional solutions. Since neural network techniques also require a certain amount of com-
putational costs, the usage of higher-order methods is meaningless in the proposed al-
gorithm. Once the provisional solution is obtained, the corresponding error is estimated
by a full connected neural network. In particular, we set up the corresponding error ac-
cording to the convergence order of the numerical schemes for the provisional solutions
to obtain sufficient magnitudes of the corresponding error. For an assessment of the ef-
fectiveness of the proposed algorithm, several experiments are simulated, and, especially,
a harmonic oscillator problem is solved to examine the effectiveness of the Hamiltonian
property. Throughout these numerical tests, we show that the proposed method works
very well and has good properties.

This paper is organized as follows. It starts with some explanations of the basic knowl-
edge that lead to the proposed scheme in Sect. 2.1. In Sect. 2.2, we present our scheme
by using neural network systems, in which a provisional solution of the given system is
roughly calculated by a lower-order numerical scheme, after that the corresponding error
is estimated by traditional fully neural network techniques. In Sect. 3, several numerical
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results are presented to examine the effectiveness and efficiency of the proposed scheme.
Finally, in Sect. 4, we summarize our results and discuss several possibilities to increase
the efficiency of the proposed scheme.

2 Methods

2.1 Preliminaries

In this subsection, we briefly explain the basics needed for the proposed scheme to solve
a general ODE system described by

¥ (&) = F(£,x(2)), (1)

with the initial condition y(0) = y, in a given time interval [#y, tr]. Here, £, is the initial time
and fr is the final time. Also, we assume that the solutions of the given problem in Eq. (1)
are continuous.

Usually, in traditional numerical methods, for getting numerical solutions of the prob-
lem in Eq. (1), the given time interval is discretized into several subintervals. With the
initial conditions, the solution in the first subinterval is numerically calculated and that
solution will be an initial condition of the next subinterval. This process is sequentially
continued, and the final solution can eventually be obtained at the final time #.

On the other hand, unlike the traditional numerical schemes to solve ODEs, the neural
network schemes for solving ODEs have different structure. Most traditional numerical
schemes usually have a sequential process to march from an initial time to a final time
point, whereas neural network schemes simultaneously seek solutions at all time points.
The solution used in neural network techniques can be represented as

y(t) =A@®) + G(t,N(t,w)), te€ [to, ], ()

where £, is an initial time point, # is the final time point, and N (¢, w) is a feedforward neural
network with parameters w and an input vector ¢. The first term A(¢) usually represents
given initial or boundary conditions. The second term G(¢, N (¢, w)) is constructed so as
not to contribute to the initial or boundary conditions, since it must satisfy them in the
first part. This term employs a neural network whose weights w are to be adjusted in order
to deal with the minimization problem. Note that the problem has been reduced from the
original constrained optimization problem to an unconstrained one due to the form of
the trial solution that satisfies by construction of the initial or boundary conditions. Once
the numerical solution y is set up, a cost function G(w) with the weights w of the neural
network is defined as

G(w) = |y - F(t,y)|, 3)

where y is defined in Eq. (2) and F is defined in Eq. (1).

Based on the cost function defined above, the weights w should be found by one of vari-
ous optimization techniques. The most basic technique is the gradient descent algorithm
which is an iterative minimization technique for finding a local minimum of the given cost
function. The algorithm has the following two steps and processes repeatedly:

+ The gradient is calculated by the first-order derivative of the cost function G(w) at a

point.
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« The algorithm moves in the opposite direction of the gradient

Wir1 = Wi — )/dj—](;/)o (4)
Note that to find a local minimum of a function based on the gradient descent, we must
take steps proportional to the negative of the gradient (move away from the previous point)
of the cost function at the current point. Also, y is a learning rate which is a tuning param-
eter in the minimization process and decides the length of the steps. It means that if the
learning rate is too high, we might overshoot a local minimum and keep bouncing, with-
out reaching the desired minimum, whereas if the learning rate is too small, the training
takes too much time, so the computational cost gets too large.

However, most cost functions usually contain several local minima. The gradient may
reach any such minimum, which depends on both the initial point and learning rate. Due to
this reason, the gradient descent optimization technique may converge to different points
whenever executing with different initial points and learning rate, which is a weakness of

the gradient descent technique.

2.2 Method description
The main objective of this subsection is to introduce the propose scheme using the neural
network based on deferred correction framework. Note that the neural network used in
this work is a simple fully connected neural network in order to exclude the efficiency or
reliability of neural networks and focus only on the effectiveness of the proposed method.
Basically, we focus on the calculation of the numerical error unlike the traditional nu-
merical methods which directly estimate solutions of given equations. That is, instead of
solving for y(¢) in Eq. (1), a provisional solution ¥(¢) is first obtained by using any lower-
order method or initial conditions and then the corresponding error E(t) is defined by
y(t) — y(¢). In a similar way to deferred or error correction techniques, E(¢) can be esti-
mated by any neural network algorithm.
Here, we simply try to use the first-order numerical scheme as a provisional solution,

such as Euler method. Recall that at the ith time point, Euler method can be described as
§(t) = §(ti1) + hif (£i-1, 5(tim1)), (5)

where h; = t; — t;_; and J(¢p) = yo. Based on the provisional solution ¥ calculated above,
we cast a neural network technique to estimate the error function E(¢) = y(¢) — y(¢). As

explained in Eq. (2), the estimated solution y(¢) can be represented as
y(t) :&(t) + G(t:N(tx W)): (6)

where G(-, ) is an appropriate function of ¢ and N(¢, w) for estimating the corresponding
error term and N (¢, w) is a single-output feedforward neural network with parameters w
and #-input units fed with the input time vector ¢. The first term y(¢) is a provisional solu-
tion calculated in Eq. (5). Since j(¢) is the first-order solution, the error term G(¢, N (¢, w))

should have second-order magnitude.
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Algorithm 1: Proposed algorithm

Data: Discrete time points in a given time interval [0, 1]

Input: The desired number of layers, the desired order of convergence (p)

Result: Solutions of the given ODE (Eq. (1)) over desired time points or time intervals
Initialize basic parameters for the neural network (learning rate y, weights w,
tolerance tol)

Perform a lower-order scheme to calculate a provisional solution y(¢) with the

(p — 1)th order method or an initial condition

Define the error E(t) = y(¢) — ()

Go to neural network N(t, w) to estimate E(¢) such that E(t) = t? N(t, w) setting

cost = |If(£,5) =y @)l

while cost > tol do
Utilize neural network N (¢, w) with an appropriate sigmoidal function o (£) and

basic gradient descent scheme
Get new ws giving a local minimum of cost

Reset cost with the new ws
end

Get the final solution y(¢) = y(¢) + t*N (¢, w)

On the other hand, near the initial point ¢ = 0, the Taylor expansion of the y(¢) can be
represented as follows:

2
50 =5(0) +1/(0) + =5/ 0) + -

2
=50+ 050+ 550) + -, @

where ¢ € [0, 1). By the first-order Euler scheme, the first two terms in Eq. (7) can be esti-
mated, so the error should contain terms from the > term. Therefore, the error function
G(t,N(t,w)) in Eq. (6) comprises the > term and beyond. As ¢ € [0, 1), the t* term is dom-
inant, so we can define G(¢, N(¢, w)) as 2N (¢, w). Eventually, the final form of the desired
solution in Eq. (6) can be summarized as

y(t) =5@) + N(t,w), tel0,1), 8)

where y(¢) is the first-order estimate.
Based on the whole discussion above and background, we get neural network algorithm
to solve ODEs (see Algorithm 1).

3 Experiments

In this section, we test several examples to examine the effectiveness of the proposed
scheme and compare the results with own exact solutions. Note that there are several
minimization algorithms used in the neural network techniques. As mentioned above,
we concentrate only on the efficiency of the proposed algorithm for solving ODE sys-
tems, without any aid of effects caused by other techniques such as the choice of neu-
ral networks, or minimization schemes, etc. Therefore, for these experiments, we simply
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use the basic gradient descent method as a minimization tool with the fixed learning rate
y = 0.001. The details of each problem will be explained in each subsection.

All numerical results are obtained using Python 2.1.5, on a computer with 11th Gen
INTEL Core 17-1165G7 CPU, 16 GB memory, and WIN10 operating system. All compu-
tational codes including neural networks and minimization schemes are implemented in
Python by ourselves without any usage of libraries or packages. Also, since a simple neural

network is used for this work, only 3 layers are used.

3.1 Example 1
For the first example, we test the simplest form of the ODE described by

¥y =1y, A<0, 9)

with the initial condition y(0) = 1. The time interval is [0, 1], which is uniformly discretized
into 10 subintervals. That is, 11 node points are used in the input and middle layers of the
neural network. The analytic solution is y(£) = exp(At). Note that to sustain the numerical
stability, A in (9) should be negative [1, 9, 14]. For this test, we simply set A = —1.

Since a provisional solution ¥ is estimated by the first-order explicit Euler method, the
corresponding error has the second-order O(h?) magnitude, so the neural network term
can be set up to be 2N (¢, w). The network was trained on the 10 subinterval points in
[0,1]. All numerical results are plotted in Fig. 1(a) and compared with the analytic and
provisional solutions. It can be seen that the proposed scheme is closer to the analytic
solution, so we can conclude that the proposed scheme produces quite reasonable results.

For further examination of the accuracy, we check the difference between the analytic
and proposed solutions and plot it in Fig. 1(b). To precisely compare the difference with
the provisional solution, the Ly-norm is measured. The residual between the analytic so-
lution and proposed scheme and between the analytic one and the provisional solution
are 0.05277 and 0.15504, respectively. Summing up these results, we can easily see that
the proposed scheme works well and has a good accuracy for this problem.

(a) (b)

10 0.0200
8 — analytic sol. — analytic-provisional sol.
----- provisional sol. 0.01754 —— analytic-Proposed

0.9 —-- Proposed

0.0150 1
0.01254

0.0100 1

Solutions (y)
error

0.0075 4

0.0050 1

0.0025 1

0.0000 1

0.0 02 04 06 08 1.0 0.0 0.2 04 06 08 1.0
Time (t) Time (t)

Figure 1 Comparison of (a) solution behaviors of the proposed scheme with analytic solution and Euler
method and (b) residuals between current results and analytic solution
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Figure 2 Comparison of (a) solution behaviors of the proposed scheme with analytic solution and Euler
method and (b) residuals between current results and analytic solution for a stiff case (A =-10)

Additionally, to investigate the effect of the stiffness in neural network techniques, we
apply the propose scheme to a problem with a stiff component, so A is set to —10 in prob-
lem (9) and is required to be mildly stiff. Since it becomes stiff, the corresponding provi-
sional solution should be obtained from an implicit method as long as the same step size
is persistently used in the nonstiff case. Hence, the provisional solution at the ith time

integration point can be obtained by the first-order implicit Euler method described by

() = §(tia) + bf (6, 5(8), (10)

where / is a step size and ¥(¢p) = 100. The analytic solution is represented as y(t) =
exp(—10¢). With the provisional solution having second-order magnitude, the solution is
taken as y(¢) = 5(t) + t2N(¢, w). Other conditions for the neural network are the same as
above. Figure 2(a) displays the solution behaviors of proposed schemes and comparisons
with the analytic solution. Note that due to the stiff component, the solution improved
rapidly. Here, the figure is plotted in the log-scale to observe the magnitude of the so-
lution. It can show that the results from the proposed scheme are closer to the analytic
solution. To precisely check the residual, we plot the error between the results from the
proposed scheme and the analytic solution in Fig. 2(b). It shows that the proposed scheme
works well even for the stiff problem. However, the results are not perfectly satisfactory
and we need to consider other possibilities to improve the results for stiff problems. Ac-
tually, there are lots of components to control in the neural network techniques, such as
several choices of the minimization technique, free parameters in each minimization, the

number of the free parameters, etc.

3.2 Example 2
Next, we consider the following ODE:

, 1+ 3¢ 3 £2(1 + 3t%)
ry t+1+t+t3 y=raats 1+t+13’ a
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Figure 3 Comparison of (a) solution behaviors of the proposed scheme with analytic solution and Euler
method and (b) residuals between current results and analytic solution

with the initial condition y(0) = 1 and the time interval [0, 1], with a uniform step size /& =
0.1. Similarly to the previous example, 11 nodes are used in each layer. The exact solution
is y(¢) = 7“{3)5;22) +£2.

Similarly as above, a provisional solution ¥ is estimated by the first-order explicit mid-
point method, so the corresponding error has second-order O(/%) magnitude and the er-
ror is set to t2N (¢, w). We plot the results in Fig. 3(a) and compare them with the analytic
and provisional solutions. We easily check that the proposed scheme is quite close to the
analytic solution. To examine the residual between the analytic solution and the results
above, we plot each residual in Fig. 3(b). It can be concluded that the proposed scheme
works well and has a good accuracy for this problem. Also, we check the computational
time for the proposed scheme. Notice that for increasing the reliability of computational
time, we take the average by executing this code 100 times. It needs 6.2 seconds CPU time
and 617 iterations for minimization of the parameters w.

Next, to investigate the effect of the convergence magnitude in the proposed neural net-
work technique, we try to use higher-order provisional solutions. First, a provisional so-

lution ¥ is estimated by the second-order explicit midpoint method as described by

h h
V(&) = y(tio1) + hf (tig + 5,5’(’51‘-1) + Ef(ti—l:j/(ti—l))’ (12)

where / is a step size and J(fo) = yo. Therefore, the corresponding error is O(k3), so the
neural solution can be defined as t2N(¢, w). The results concerning the accuracy at grid
points are presented in Fig. 4(a) with comparisons of the analytic and provisional solu-
tions. It can be seen that the proposed scheme is closer to the analytic solution.

Since a higher-order solution is much closer to the analytic solution, we plot the residual
between the analytic solution and the proposed one in Fig. 4(b) to inspect in details the
accuracy of the proposed scheme. One can see that the proposed higher-order scheme
overall has a quite smaller error compared with the second-order convergence method,

although there are a few parts which have a larger error.



Nam et al. Advances in Continuous and Discrete Models (2022) 2022:45

1.29 — analytic sol. A 0.0175 4 4
----- provisional sol 4 !
-—- Proposed ; 0.0150

=
-

0.01254

E}
2 + 0.0100 1
§ 10 :
=]
3 * 00075 {
w0
0.99 0.0050 4
S~J
0.0025 4
— analytic-provisional sol.
0.84 0.0000 ——- analytic-Proposed
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
Time (t) Time (t)

Figure 4 Comparison of (a) solution behaviors of the proposed scheme with analytic solution and Euler
method and (b) residuals between current results and analytic solution
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Figure 5 Comparison of (a) solution behaviors of the proposed scheme with analytic solution and Euler
method and (b) residuals between current results and analytic solution

3.3 Example 3

In this subsection, the following differential equation is considered:

1 1
¥+ gy =exp (—y‘) cos(t), (13)

with the initial condition y(0) = 0. The exact solutions is y(t) = exp(~£/5) sin(¢). For the
experiments, we uniformly use 10 node points from [0, 2] in the input and middle layers.

As done above, we estimate a provisional solution y by the first-order explicit Euler
method, so the corresponding error can be O(h2). The trial solution is formed to be
y(¢) = 7 + t2N(t,w). With the same setting for the neural network scheme, we generate
all numerical results and plot them in Fig. 5(a). Also the results are compared with the
analytic and provisional solutions. It can be seen that the proposed scheme is closer to
the analytic solution. To take a closer look at the accuracy, we calculate the difference
between the analytic solution and the proposed one and plot it in Fig. 5(b). The L,-norm
of the difference between the results from the proposed scheme and the analytic solution

Page 9 of 13
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Figure 6 Error behavior according to the number of 07
iterations in the minimization scheme

T T T T T T T
0 20 1D &0 - i1H] 1000 1200
Iteration Times

is 0.09291, whereas the Ly-norm of the comparison result is 0.24264. Therefore, as seen
in the previous examples, we can easily conclude that the proposed scheme has a good
accuracy for this problem.

Also, we check the error accuracy versus computational time of the proposed scheme.
Since the computational time depends on the iteration times in the minimization scheme,
we measure computational times and error accuracy by varying the iteration times. For
the 100 iteration times, the accuracy is 0.17968 and it needs 1.1 seconds, and for the 2000
iterations, the accuracy is 0.02997 and the computational time is 10.5 seconds. Therefore,
one can easily conclude that the more iterations we use, the more accurate results are
generated. To support this argument, we plot error behavior according to the iterations in

Fig. 6.
3.4 Example 4
As the last example, we consider a simple Hamiltonian system known as a harmonic os-
cillator:
N =Y (14)
Yy =Y (15)

with the initial condition y(0) = [0, 1]. The exact solutions is [y (£), y2(£)] = [sin ¢, cos £]. For
the experiments, we uniformly use 10 node points from [0,2] in the input and middle
layers.

Since the given system is Hamiltonian, a provisional solution y is estimated by the first-
order implicit Euler method described in Eq. (10), due to its stability. The trial solutions are
set to y1(¢) = 3 + t2N1 (¢, w) and y(£) = 3% + 2Ny (£, w). We simulate this vector system and
generate the numerical result as seen in Fig. 7. The results are compared with the analytic
and provisional solutions. It can be seen that both numerical solutions of the system have
a quite good accuracy.

Additionally, a Hamiltonian system is a dynamical system described by the scalar func-
tion H, called the Hamiltonian. In this problem, the Hamiltonian H can be defined as

H =y% +y%, (16)

and the value of H should be conserved. To examine the conservation property, we plot
an orbit of solutions in Fig. 8(a) and the Hamiltonian H in Fig. 8(b). Figure 8(a) shows that
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Figure 7 Comparison of solution behaviors of the proposed scheme with analytic solution and Euler method
for (a) first component y; and (b) second component y,
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Figure 8 Comparison of (a) orbits of solutions and (b) behaviors of Hamiltonian values

the proposed scheme is closer to the analytic solution. Also, one can verify in Fig. 8(b) that
the implicit Euler method reduces the total energy of H, whereas results obtained from

the proposed scheme try to conserve the energy after a certain moment.

4 Discussion
In this paper, we introduce a new variation of the neural network techniques to solve or-
dinary differential equations. Unlike the traditional techniques which directly estimate
solutions, the proposed neural network scheme estimates the corresponding error based
on the calculated provisional solution by lower-order numerical schemes. Also, the pro-
posed scheme is designed with consideration to estimate sufficient magnitudes of the
corresponding error according to the convergence order of the lower-order numerical
scheme used for the provisional solutions. Several numerical results show that the pro-
posed scheme can get better accuracy, compared with existing techniques.

In order to improve the efficiency of the proposed scheme, we should consider several
issues. The first is to optimize the several parameters and choices of optimization which
can be controlled in neural networks. The second is to investigate the strategies for stiff

Page 11 0f 13
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problems as seen in Example 1 or to design a new neural network algorithm for Hamilto-
nian systems, such as symplectic neural networks to keep the energy of the Hamiltonian.
Lastly, for more accurate results, we need to employ higher-order provisional solutions.
Results along these directions will be reported soon.
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