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Abstract
We examine a class of nonlinear fractional Mathieu equations with a damping term.
The equation is an important equation of mathematical physics as it has many
applications in various fields of the physical sciences. By utilizing Schauder’s
fixed-point theorem, the existence arises of solutions for the proposed equation with
the Hilfer–Katugampola fractional derivative, and an application is additionally
examined. Two examples guarantee the obtained results.
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1 Introduction
During recent years, fractional Calculus draws increasing attention due to its applications
in various applicable fields such as physics, mechanics, chemistry, engineering, etc. The
reader interested in the subject should refer to the papers [1–10]. In the literature, one can
find that there are many definitions of fractional derivatives [11–15].

In [16], the authors introduced a new generalized derivative involving exponential func-
tions in their kernels that, upon considering limiting cases, converges to classical deriva-
tives. They solved Cauchy linear fractional-type problems within this derivative. One of
the generalizations of the well-known Riemann–Liouville and the Hadamard fractional
integrals was introduced by Katugampola ([17–19]) in a new fractional integral operator
given by

ρIα
a+[y](t) =

ρ1–α

�(α)

∫ t

a

τρ–1y(τ )
(tρ – τρ)1–α

dτ .

Matar et al. investigated the existence and uniqueness of solutions for a p-Laplacian
boundary value problem defined by a semilinear fractional system that involves Caputo–
Katugampola fractional derivatives (C-KFD) [20]. The Mathieu equation (ME) is an im-
portant equation of mathematical physics as it has many applications in several fields of
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the physical sciences [21–31]. In 1868, Émile Léonard Mathieu introduced for the fist time
the second-order differential equation and had encountered them while studying vibrating
elliptical drumheads, of the form

D2y(t) +
[
a – 2b cos(2t)

]
y(t) = 0, (1)

where

D2y :=
dy2

dt2 ,

a and b are real or complex constants [32]. The solution of Equation (1) is built in the form

y(t) = exp(iσ t)p(t), (2)

where p is a periodical function with period π and σ is the so-called characteristic index
depending on the values of a and b. The function y(t) = exp(–iσ t)p(–t), represents the sec-
ond solution. In 2010, Rand et al. studied for the first time ME in fractional settings and
used the method of harmonic balance to obtain both a lower- and a higher-order approx-
imation for the transition curves [33]. Ebaid et al. established the approximate analytical
solution of the fractional Mathieu equation (FME) by using Adomian decomposition and
a series methods [34]. Recently, Harikrishnan et al. considered the problems of differential
equations with the Hilfer–Katugampola fractional derivative (H-KFD),

⎧⎨
⎩

ρDα,β [y](t) + p(t)y(t) = w(t, y(t)),
ρI1–γ [y](t)|t=a =

∑m
i=1 qiy(ei),

for t, ei ∈ (a, b], where ρDα,β is H-KFD of order 0 < α < 1 and type 0 ≤ β ≤ 1, and ρI1–γ

is a generalized fractional derivative of order (1 – γ ) with γ = α + β – αβ and ρ > 0 [35].
Here, w : (a, b] × R → R is a given continuous function, ei, (i = 0, 1, . . . , m) are prefixed
points satisfying a < e1 ≤ e2 ≤ · · · ≤ em < b, and qi are real numbers. They also established
the existence of solutions by using Krasnoselskii’s fixed-point theorem.

Our objective in this work is to study the existence and uniqueness of solutions of the
Mathieu fractional differential equation (MFDE) with H-KFD,

ρDα,β [y](t) + p(t)y(t) = w
(
t, y(t), ρDα,β [y](t)

)
, (3)

for t ∈ I0 = [0, T], with the initial condition

ρI1–γ [y](0) =
m∑

i=1

qiy(ei), (4)

for ei ∈ (0, T], where p(t) = a – 2b cos(2t), a, b are real constants, ρDα,β is H-KFD of order
α, type 0 ≤ β ≤ 1, and ρI1–γ is a generalized fractional derivative of order (1 – γ ), here
γ = α + β – αβ , ρ > 0. The map w : I0 × R

2 → R is a given continuous function, ei for i =
0, 1, . . . , m are prefixed points satisfying 0 < e1 ≤ e2 ≤ · · · ≤ em < T , and qi are real numbers.
Also, we consider the existence and uniqueness of Problem (3) and (4).
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The plan of the work is as follows. In Sect. 2 we begin with some definitions and lemmas
that will be used to prove our main result. In Sect. 3, we prove the existence and uniqueness
of the solution. In Sect. 4, we provide two examples to illustrate our main results. We show
an application to examine the validity of our theoretical results on the fractional-order
representation of the motion of a particle along a straight line in Sect. 5.

2 Essential preliminaries
For the convenience of the reader, we present here some basic definitions and lemmas,
which are used throughout this paper.

Definition 1 ([19]) Let J = [a, b] be a finite interval on the half-axis R+, C(J) be the Banach
space of all continuous functions from J into R

+ with the norm ‖y‖C = maxt∈J |y(t)| and
the parameters ρ > 0, 0 ≤ γ < 1.

(1) The weighted space Cγ ,ρ(J) of continuous functions y on (a, b] is defined by

Cγ ,ρ(J) =
{

y : (a, b] →R :
(

tρ – aρ

ρ

)γ

y(t) ∈ C(J)
}

,

with the norm

‖y‖Cγ ,ρ =
∥∥∥∥
(

tρ – aρ

ρ

)γ

y(t)
∥∥∥∥

C
= max

t∈J

∣∣∣∣
(

tρ – aρ

ρ

)γ

y(t)
∣∣∣∣,

where C0,ρ(J) = C(J).
(2) Let δρ = (tρ d

dt ). For n ∈N, we denote by Cn
δρ ,γ (J) the Banach space of functions y that

are continuously differentiable on J , with operator δρ , up to order (n – 1) and that
have the derivative δn

ρy of order n on (a, b] such that δn
ρy ∈ Cγ ,ρ(J), that is,

Cn
δρ ,γ (J) =

{
y : (a, b] →R : δk

ρ ∈ C(J), k = 0, 1 . . . , n – 1, δn
ρy ∈ Cγ ,ρ(J)

}
,

where n ∈N, with the norms

‖y‖Cn
δρ

=
n∑

k=0

max
t∈J

∣∣δk
ρg(x)

∣∣,

‖y‖Cn
δρ ,γ

=
n–1∑
k=0

∥∥δk
ρg

∥∥
C +

∥∥δn
ρy

∥∥
Cγ ,ρ

.

For n = 0, we have C0
δρ ,γ (J) = Cγ ,ρ(J).

Definition 2 ([17, 18]) The generalized left-sided fractional integral ρIα
a+ [y](·) of order

α ∈ C, (Re(α) > 0) is defined for y ∈ C1
γ (J) by

ρIα
a+ [y](t) =

ρ1–α

�(α)

∫ t

a

(
tρ – ξρ

)α–1
ξρ–1y(ξ ) dξ , (5)
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for t > a and ρ > 0, provided the integral exists. Similarly, the right-sided fractional integral
ρIα

b– [y](·) is defined by

ρIα
b– [y](t) =

ρ1–α

�(α)

∫ b

t

(
tρ – ξρ

)α–1
ξρ–1y(ξ ) dξ , ∀t < b. (6)

Definition 3 ([17, 18]) Let α ∈ C, with Re(α) ≥ 0, n = [Re(α)] + 1 and ρ > 0. The gener-
alized fractional derivatives, corresponding to the generalized fractional integrals (5) and
(6), are defined for 0 ≤ a < t < b ≤ ∞ and y ∈ C1

γ (J) by

ρDα
a+ [y](t) =

ρα–n–1

�(n – α)

(
t1–ρ d

dt

)n ∫ t

a

(
tρ – ξρ

)n–α+1
ξρ–1y(ξ ) dξ , (7)

and

ρDα
b– [y](t) =

ρα–n–1

�(n – α)

(
–t1–ρ d

dt

)n ∫ b

t

(
tρ – ξρ

)n–α+1
ξρ–1y(ξ ) dξ , (8)

if the integrals exist.

Definition 4 ([36]) Let order α and type β satisfy 0 < α ≤ 1 and 0 ≤ β ≤ 1. The H-KFD
(left sided / right sided), with respect to t, with ρ > 0 of a function y ∈ C1–γ ,ρ(J) is defined
by

ρDα,β
a± [y](t) =

(
±ρIβ(1–α)

a±

(
tρ–1 d

dt

)
ρI (1–β)(1–α)

a± [y]
)

(t)

=
(±ρIβ(1–α)

a± δρ
ρI (1–β)(1–α)

a± [y]
)
(t), (9)

where ρIη

a± is the generalized fractional integral given in Definition 2.

Properties 1 ([17]) We recall some properties of ρDα,β
a+ as follows:

P1) The operator ρDα,β
a+ can be written as

ρDα,β
a+ = ρIβ(1–α)

a+ δρ
ρI1–γ

a+ = ρIβ(1–α)
a+

ρDγ

a+ ,

where γ = α + β(1 – α).
P2) The fractional derivative ρDα,β

a+ is an interpolator of the following fractional
derivatives:

• Hilfer (ρ → 1),
• Hilfer–Hadamard (ρ → 0),
• generalized (β = 0),
• generalized Caputo-type (β = 1),
• Riemann–Liouville (β = 0, ρ → 1),
• Hadamard (β = 0, ρ → 0),
• Caputo (β = 1, ρ → 1),
• Caputo–Hadamard (β = 1, ρ → 0),
• Liouville (β = 0, ρ → 1, a = 0),
• Weyl (β = 0, ρ → 1, a = –∞).
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First, we state the following key lemma.

Lemma 5 ([37]) Let ρIα
a+ and ρDα

a+ , as defined in Eqs. (5) and (7), respectively, for t > a.
Then, for α ≥ 0 and ζ > 0, we have

ρIα
a+

[(
tρ – aρ

ρ

)ζ–1]
(t) =

�(ζ )
�(α + ζ )

(
tρ – aρ

ρ

)α+ζ–1

,

and

ρDα
a+

[(
tρ – aρ

ρ

)ζ–1]
(t) = 0,

for almost all α ∈ (0, 1).

Theorem 6 ([6, 17]) Let α > 0, β > 0, 1 ≤ p ≤ ∞, 0 < a < b < ∞, and ρ, c ∈R, ρ ≥ c, Then,
for y ∈ Cp

c (J),

ρIα
a+

ρIβ

a+ [y] = ρIα+β

a+ [y], ρDα
a+

ρDβ

a+ [y] = ρDα+β

a+ [y].

Lemma 7 ([36]) Let 0 < α < 1, 0 ≤ γ < 1. If y ∈ Cγ (J) and y ∈ C1
γ (J), then

ρIα
a+

ρDα
a+ [y](t) = y(t) –

ρI1–α
a+ [y](a)
�(α)

(
tρ – aρ

ρ

)α–1

, ∀x ∈ J = (a, b).

Lemma 8 ([17]) Let α > 0, 0 ≤ γ < 1, and y ∈ Cγ (J). Then,

ρDα
a+

ρIα
a+ [y](t) = y(t),

for each t ∈ J .

Lemma 9 ([36]) Let 0 < a < b < ∞, α > 0, 0 ≤ γ < 1, and y ∈ Cγ ,ρ(J). If α > γ , then ρIα
a+ [y]

is continuous on J and

ρIα
a+ [y](a) = lim

t→a+
ρIα

a+ [y](t) = 0.

Throughout the remainder of this paper, we consider the following function spaces de-
fined in [36]. We consider the parameters α, β , γ , and μ satisfying γ = α + β – αβ , for
0 ≤ μ < 1,

Cα,β
1–γ ,ρ(J) =

{
y ∈ C1–γ ,ρ(J), ρDα,β

a+ [y] ∈ Cμ,ρ(J)
}

, (10)

Cγ
1–γ ,ρ(J) =

{
y ∈ C1–γ ,ρ(J), ρDγ

a+ [y] ∈ C1–γ ,ρ(J)
}

, (11)

and Cγ
1–γ ,ρ(J) ⊂ Cα,β

1–γ ,ρ(J).

Lemma 10 ([36]) Let 0 < α < 1, 0 ≤ β ≤ 1, and γ = α + β(1 – α). If y ∈ Cγ
1–γ (J), then

ρIγ

a+
ρDγ

a+ [y] = ρIα
a+

ρDα,β
a+ [y], (12)
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and

ρDγ

a+
ρIα

a+ [y] = ρDβ(1–α)
a+ [y]. (13)

Lemma 11 ([36]) Let g ∈ L1(J). If ρDβ(1–α)
a+ [y] exists on L1(J), then

ρDα,β
a+

ρIα
a+ [y] = ρIβ(1–α)

a+
ρDβ(1–α)

a+ [y].

Lemma 12 ([36]) Let 0 < α < 1, 0 ≤ β ≤ 1, and γ = α + β(1 – α). If y ∈ C1–γ (J) and
ρI1–β(1–α)

a+ ∈ C1
1–γ (J), then ρDα,β

a+
ρIα

a+ exists on J and

ρDα,β
a+

ρIα
a+ [y](t) = y(t), ∀t ∈ J . (14)

The following key theorems are used in the remainder of the paper.

Theorem 13 ([36]) Let γ = α+β(1–α), where 0 < α < 1 and 0 ≤ β ≤ 1. If g : (a, b]×R→R

is a function such that g(·, y(·)) ∈ C1–γ ,ρ(J) for any y ∈ C1–γ ,ρ . A function y ∈ Cγ
1–γ ,ρ(J) is the

solution of the fractional initial-value problem

⎧⎨
⎩

ρDα,β
a+ [y](t) = g(t, y(t)),

ρI1–γ

a+ [y](a) = c,

if and only if y satisfies the following equation

y(t) =
c

�(γ )

(
tρ – aρ

ρ

)γ –1

+
1

�(α)

∫ t

a

(
tρ – ξρ

ρ

)α–1

ξρ–1g
(
ξ , y(ξ )

)
dξ .

Theorem 14 (Banach’s fixed-point theorem [38]) Let Y be a nonempty closed subset of a
Banach space X and F : Y → Y be a contraction operator. Then, there is a unique y ∈ Y
with F (y) = y.

Theorem 15 (Schauder’s fixed-point theorem [38]) Let Y be a nonempty closed subset of a
Banach space X and F : Y → Y be a continuous mapping such that F (Y) ⊂X is relatively
compact. Then, F has at least one fixed point in Y .

Theorem 16 (Arzelà–Ascoli theorem [38]) A subset Y of C(X) is relatively compact iff it
is closed, bounded and equicontinuous.

3 Main result
In the following, we present a significant lemma to show the principal theorems.

Lemma 17 Let w : I0 ×R
2 →R be a function such that

w
(·, y(·), ρDα,β [y](·)) ∈ C1–γ ,ρ(I0), I0 = [0, T],
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for all y ∈ C1–γ ,ρ(I0). We give y ∈ Cγ
1–γ ,ρ(I0), then Problem (3) and (4) is equivalent to the

fractional integral equation

y(t) =
�

�(α)

(
tρ

ρ

)γ –1
[ m∑

i=1

ωi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ

]

+
1

�(α)

∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,βy(ξ )

)
– p(ξ )y(ξ )

]
dξ , (15)

where

� =
ργ –1

�(γ )ργ –1 –
∑m

i=1 qi(eρ
i )γ –1 . (16)

Proof
(⇒) We may apply Theorem 13 to reduce theFME (3) to an equivalent fractional integral

equation. Then, we obtain

y(t) =
ρI1–γ [y](0)

�(γ )

(
tρ

ρ

)γ –1

– ρIα[py](t)

+
1

�(α)

∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1w
(
ξ , y(ξ ), ρDα,β [y](ξ )

)
dξ . (17)

Now, we replace t by ei in equation (17) and multiply by qi, and obtain

qiy(ei) =
ρI1–γ [y](0)

�(γ )
qi

(
eρ

i
ρ

)γ –1

– qi
ρIα[py](ei)

+
1

�(α)
ωi

∫ ξi

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1w
(
ξ , y(ξ ), ρDα,βy(ξ )

)
dξ .

From ρI1–γ [y](0) =
∑m

i=1 qiy(ei), we write easily

m∑
i=1

qiy(ei) =
ρI1–γ [y](0)

�(γ )

m∑
i=1

qi

(
eρ

i
ρ

)γ –1

–
m∑

i=1

qi
ρIα[py](ei)

+
1

�(α)

m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× w
(
ξ , y(ξ ), ρDα,βy(ξ )

)
dξ ,
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and

[
1 –

1
�(γ )

m∑
i=1

qi

(
eρ

i
ρ

)γ –1
]

ρI1–γ [y](0)

=
1

�(α)

m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1w
(
ξ , y(ξ ), ρDα,β [y](ξ )

)
dξ

–
m∑

i=1

qi

∫ ei

0

ρIα[py](ei),

which implies

ρI1–γ [y](0) =
�(γ )ργ –1

�(γ )ργ –1 –
∑m

i=1 qi(eρ
i )γ –1

×
[

1
�(α)

m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× w
(
ξ , y(ξ ), ρDα,β [y](ξ )

)
dξ

–
m∑

i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1p(ξ )y(ξ ) dξ

]
.

Hence,

ρI1–γ [y](0) =
��(γ )
�(α)

m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ . (18)

Replacing Eq. (18) in Eq. (17), we obtain Eq. (15).
(⇐) Let y ∈ Cγ

1–γ (I0) satisfy Eq. (15). We prove that y also satisfies the problem (3) and
(4). Therefore, we apply the operator ρDγ

0+ on both sides of (15), and from Lemmas 5
and 10, we obtain

ρDγ
0+ [y](t) = ρDβ(1–α)

0+

[
w

(
t, y(t), ρDα,β [y](t)

)
– p(t)y(t)

]
. (19)

From the hypothesis y ∈ Cγ
1–γ ,ρ(I0) and (11), we have ρDγ

0+ y ∈ C1–γ ,ρ(I0) and

ρDβ(1–α)
0+

[
w

(
t, y(t), ρDα,β [y](t)

)
– p(t)y(t)

]

= δρ
ρI1–β(1–α)

0+

[
w

(
t, y(t), ρDα,β [y](t)

)
– p(t)y(t)

]

∈ C1–γ ,ρ(I0). (20)

From [36, Lemma 5] and

[
w

(·, y(·), ρDα,β [y](·)) – p(·)y(·)] ∈ C1–γ ,ρ(I0),
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it follows that

ρI1–β(1–α)
0+

(
f
(·, u(·),ρ Dα,βu(·)) – p(·)u(·)) ∈ C1–γ ,ρ(I0). (21)

By Eq. (20), Eq. (21), and Definition 1, we have

ρI1–β(1–α)
0+

[
w

(·, y(·), ρDα,β [y](·)) – p(·)y(·)] ∈ C1
1–γ ,ρ(I0).

Applying ρIβ(1–α)
0+ on both sides of Eq. (20) and Lemma 7, we have

ρIβ(1–α)
0+

[
ρDγ

0+ [y]
]
(t)

=
[
w

(
t, y(t), ρDα,β [u](t)

)
– p(t)y(t)

]

–
ρI1–β(1–α)

0+ [w(0, y(0), ρDα,β [y](0)) – p(0)y(0)]
�(β(1 – α))

×
(

tρ

ρ

)β(1–α)–1

.

By Lemma 9 and property (P1) of operator ρDα,β
a+ , we obtain

ρDα,β [y](t) = w
(
t, y(t), ρDα,β [y](t)

)
– p(t)y(t),

that is, equation (3) holds. To this end, applying ρI1–γ
0+ of both sides of Eq. (15):

ρI1–γ
0+ [y](0) =

�

�(α)
ρI1–γ

0+

(
tρ

ρ

)γ –1
[ m∑

i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

× ξρ–1[w
(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ

]

+ ρI1–γ
0+

(
ρIα

0+

[
w

(
t, y(t), ρDα,β [y](t)

)
– p(t)y(t)

])
,

then, applying Lemma 5 and Theorem 6, we obtain

ρI1–γ
0+ [y](0) =

��(γ )
�(α)

m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ

+ ρI1–γ +α
0+

[
w

(
t, y(t), ρDα,β [y](t)

)
– p(t)y(t)

]
,

and we can write

ρI1–γ
0+ [y](0) =

��(γ )
�(α)

m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ

+ ρI1–β(1–α)
0+

[
w

(
t, y(t), ρDα,β [y](t)

)
– p(t)y(t)

]
.
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By Lemma 9 and since 1 – γ < 1 – β(1 – α), we have

ρI1–γ
0+ [y](0) =

��(γ )
�(α)

m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ . (22)

Substituting t = ei and multiplying by qi in Eq. (15), we obtain

qiy(ei) =
qi�

�(α)

(
eρ

i
ρ

)γ –1
[ m∑

i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ

]

+
qi

�(α)

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ , (23)

then,

m∑
i=1

qiy(ei) =
�

�(α)

m∑
i=1

qi

(
eρ

i
ρ

)γ –1
[ m∑

i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ

]

+
1

�(α)

m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ ,

and

m∑
i=1

qiy(ei) =
1

�(α)

m∑
i=1

qi

[∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ

]

×
[

1 + �

(
eρ

i
ρ

)γ –1]
,

which implies

m∑
i=1

qiy(ei) =
��(γ )
�(α)

m∑
i=1

qi

∫ ei

0
ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ . (24)
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From Eqs. (22) and (24), we obtain

ρI1–γ
0+ [y](0) =

m∑
i=1

qi[y](ei).

The proof is completed. �

Now, we will prove our first existence result for the problem (3) and (4) that is based on
Shauder’s fixed-point theorem.

Theorem 18 Assume the following hypotheses hold.
(A1) w : I0 ×R

2 →R is a continuous function such that w ∈ C1–γ ,ρ for all y ∈ C1–γ ,ρ(I0).
(A2) For all y, z ∈R there exists a constant K > 0 such that

∣∣w(t, y, z)
∣∣ < K , ∀t ∈ I0. (25)

Then, the problem (3) and (4) has at least one solution.

Proof To prove the existence result, we will transform the problem (3) and (4) into a fixed-
point problem. We define the operator F : C1–γ ,ρ(I0) → C1–γ ,ρ(I0) by

(Fu)(t) =
�

�(α)

(
tρ

ρ

)γ –1
[ m∑

i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ

]

+
1

�(α)

∫ t

0

(
tρ – sρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ . (26)

Note that Fu ∈ C1–γ ,ρ(I0), ∀u ∈ C1–γ ,ρ(I0). Since the problem (3) and (4) is equivalent to
the fractional integral equation (26), the fixed points of F are solutions of the problem
(3) and (4). We establish that F satisfies the assumption of Schauder’s fixed-point Theo-
rem 15. This could be proved through several steps.

Step 1. We prove that F is a continuous operator. For any bounded set Y ⊂ C1–γ ,ρ(I0)
there exists ζ > 0 such that

Y =
{

y ∈ C1–γ ,ρ(I0) : ‖y‖C1–γ ,ρ ≤ ζ
}

.

Let (yn)n∈N ∈ Y be a real sequence such that

lim
n→∞‖yn – y‖C1–γ ,ρ = 0.
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Then, for each t ∈ I0:

∣∣∣∣(Fyn)(t) – (Fy)(t)
(

tρ

ρ

)1–γ ∣∣∣∣

≤ �

�(α)

m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [∣∣w(
ξ , yn(ξ ), ρDα,β [y]n(ξ )

)∣∣
+

∣∣w(
ξ , y(ξ ), ρDα,β [y](ξ )

)∣∣ +
∣∣p(ξ )

∣∣(∣∣yn(ξ )
∣∣ +

∣∣y(ξ )
∣∣)]dξ

+
1

�(α)

(
tρ

ρ

)1–γ ∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1

× [∣∣w(
ξ , yn(ξ ), ρDα,βyn(ξ )

)∣∣
+

∣∣w(
ξ , y(ξ ), ρDα,β [y](ξ )

)∣∣ +
∣∣p(ξ )

∣∣(∣∣yn(ξ )
∣∣ +

∣∣y(ξ )
∣∣)]dξ

≤ �

�(α)

m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
2K + |a + 2b|(∣∣yn(ξ )

∣∣ +
∣∣y(ξ )

∣∣)]dξ

+
1

�(α)

(
tρ

ρ

)1–γ ∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1

× [
2K + |a + 2b|(∣∣yn(ξ )

∣∣ +
∣∣y(ξ )

∣∣)]dξ

≤ �

�(α)

m∑
i=1

qi

[
2K
αρ

(
eρ

i
ρ

)α

+ |a + 2b|�(α)�(γ )
�(α + γ )

(
eρ

i
ρ

)α+γ –1(‖yn‖C1–γ ,ρ + ‖y‖C1–γ ,ρ

)]

+
1

�(α)

(
tρ

ρ

)1–γ [
2K
αρ

(
tρ

ρ

)α

+ |a + 2b|�(α)�(γ )
�(α + γ )

(
tρ

ρ

)α+γ –1(‖yn‖C1–γ ,ρ + ‖y‖C1–γ ,ρ

)]

≤ 2�

�(α)

m∑
i=1

qi

(
eρ

i
ρ

)α[
K
αρ

+ β(γ ,α)ζ |a + 2b|
(

eρ
i
ρ

)γ –1]

+
2

�(α)

(
Tρ

ρ

)α[
K
αρ

(
Tρ

ρ

)1–γ

+ β(γ ,α)ζ |a + 2b|
]

,

≤ 2
�(α)

[
�

m∑
i=1

qi

(
eρ

i
ρ

)α(
a◦ + b◦

(
ξ

ρ
i
ρ

)γ –1)

+
(

Tρ

ρ

)α(
a◦

(
Tρ

ρ

)1–γ

+ b◦
)]

,

where a◦ = K
αρ

and

b◦ = β(γ ,α)ζ |a + 2b|.
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Then, Lebesgue’s dominated convergence theorem asserts that

∥∥(Fyn)(t) – (Fy)(t)
∥∥

n→+∞ → 0.

Consequently, F is continuous.
Step 2. Let ζ ≥ M0

1–M1
, we will show that F (Y) ⊂ Y . From (A2) and for each t ∈ I0, we

have

∣∣∣∣(Fy)(t)
(

tρ

ρ

)1–γ ∣∣∣∣

≤ �

�(α)

[ m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× ∣∣w(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

∣∣dξ

]

+
1

�(α)

(
tρ

ρ

)1–γ ∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1

× ∣∣w(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

∣∣dξ

≤ �

�(α)

[ m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [∣∣w(
ξ , y(ξ ), ρDα,β [y](ξ )

)∣∣ +
∣∣p(ξ )y(ξ )

∣∣]dξ

]

+
1

�(α)

(
tρ

ρ

)1–γ ∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1

× [∣∣w(
ξ , y(ξ ), ρDα,β [y](ξ )

)∣∣ +
∣∣p(ξ )y(ξ )

∣∣]dξ

≤ �

�(α)

[ m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
K + |a + 2b|∣∣y(s)

∣∣]dξ

]

+
1

�(α)

(
tρ

ρ

)1–γ ∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1

× [
K + |a + 2b|∣∣y(s)

∣∣]dξ

≤ �

�(α)

[ m∑
i=1

qi
K
αρ

(
eρ

i
ρ

)α

+ |a + 2b|�(α)�(γ )
�(α + γ )

m∑
i=1

qi

(
eρ

i
ρ

)α+γ –1

‖y‖C1–γ ,ρ

]

+
1

�(α)

(
tρ

ρ

)1–γ [
K
αρ

(
tρ

ρ

)α

+ |a + 2b|�(α)
�(γ )

�(α + γ )

(
tρ

ρ

)α+γ –1

‖y‖C1–γ ,ρ

]
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≤ �

�(α)

m∑
i=1

qi

(
eρ

i
ρ

)α

×
[

K
αρ

+ β(γ ,α)ζ |a + 2b|
(

eρ
i
ρ

)γ –1]

+
1

�(α)

(
Tρ

ρ

)α

×
[

K
αρ

(
Tρ

ρ

)1–γ

+ β(γ ,α)ζ |a + 2b|
]

≤ |a + 2b|β(γ ,α)
�(α)

[
�

m∑
i=1

qi

(
ξ

ρ
i
ρ

)α+γ –1

+
(

Tρ

ρ

)α
]
ζ

+
K

αρ�(α)

[
�

m∑
i=1

qi

(
eρ

i
ρ

)α

+
(

Tρ

ρ

)α+1–γ
]

.

We obtain that

∥∥F (y)
∥∥

C1–γ ,ρ
≤ M0 + M1ζ ≤ 1 – M1

1 – M1
M0 + M1ζ ≤ ζ ,

where

M0 =
K

αρ�(α)

[
�

m∑
i=1

qi

(
eρ

i
ρ

)α

+
(

Tρ

ρ

)α+1–γ
]

,

M1 =
|a + 2b|β(γ ,α)

�(α)

[
�

m∑
i=1

qi

(
eρ

i
ρ

)α+γ –1

+
(

Tρ

ρ

)α
]

. (27)

Then, F (Y) ⊂ Y .
Step 3. We show that F is uniformly bounded. For any y ∈ Y , it follows that

∣∣∣∣(Fy)(t)
(

tρ

ρ

)1–γ ∣∣∣∣

≤ �

�(α)

[ m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× ∣∣w(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

∣∣dξ

]

+
1

�(α)

(
tρ

ρ

)1–γ ∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1

× ∣∣w(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

∣∣dξ

≤ �

�(α)

[ m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [∣∣w(
ξ , y(ξ ), ρDα,β [y](ξ )

)∣∣ +
∣∣p(ξ )y(ξ )

∣∣]dξ

]
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+
1

�(α)

(
tρ

ρ

)1–γ ∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1

× [∣∣w(
ξ , y(ξ ), ρDα,β [y](ξ )

)∣∣ +
∣∣p(ξ )y(ξ )

∣∣]dξ

≤ �

�(α)

[ m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
K + |a + 2b|∣∣y(s)

∣∣]dξ

]

+
1

�(α)

(
tρ

ρ

)1–γ ∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1

× [
K + |a + 2b|∣∣y(s)

∣∣]dξ

≤ �

�(α)

[ m∑
i=1

qi
K
αρ

(
eρ

i
ρ

)α

+ |a + 2b|�(α)�(γ )
�(α + γ )

m∑
i=1

qi

(
eρ

i
ρ

)α+γ –1

‖y‖C1–γ ,ρ

]

+
1

�(α)

(
tρ

ρ

)1–γ [
K
αρ

(
tρ

ρ

)α

+ |a + 2b|�(α)�(γ )
�(α + γ )

(
tρ

ρ

)α+γ –1

‖y‖C1–γ ,ρ

]

≤ �

�(α)

m∑
i=1

qi

(
eρ

i
ρ

)α

×
[

K
αρ

+ β(γ ,α)ζ |a + 2b|
(

eρ
i
ρ

)γ –1]

+
1

�(α)

(
Tρ

ρ

)α

×
[

K
αρ

(
Tρ

ρ

)1–γ

+ β(γ ,α)ζ |a + 2b|
]

.

≤ 1
�(α)

{
�

m∑
i=1

qi

(
eρ

i
ρ

)α[
a◦ + b◦

(
eρ

i
ρ

)γ –1]

+
(

Tρ

ρ

)α[
a◦

(
Tρ

ρ

)1–γ

+ b◦
]}

,

which implies that F (Y) is uniformly bounded.
Step 4. We prove the equicontinuity of F . Let y ∈ Y and t1, t2 ∈ I0 with t1 < t2. Therefore,

∣∣(Fy)(t2) – (Fy)(t1)
∣∣

≤
∣∣∣∣ �

�(α)

(
tρ
2
ρ

)γ –1
[ m∑

i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,βy(ξ )

)
– p(ξ )y(ξ )

]
dξ

]
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+
1

�(α)

∫ t2

0

(
tρ
2 – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ

–
�

�(α)

(
tρ
1
ρ

)γ –1
[ m∑

i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ

]

–
1

�(α)

∫ t1

0

(
tρ
1 – ξρ

ρ

)α–1

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

]
dξ

∣∣∣∣

≤ �

�(α)

∣∣∣∣
(

tρ
2
ρ

)γ –1

–
(

tρ
1
ρ

)γ –1∣∣∣∣

×
[ m∑

i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× ∣∣w(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

∣∣dξ

]

+
1

�(α)

∫ t1

0

[(
tρ
2 – ξρ

ρ

)α–1

–
(

tρ
1 – ξρ

ρ

)α–1]
ξρ–1

× ∣∣w(
ξ , y(ξ ), ρDα,βy(ξ )

)
– p(ξ )y(ξ )

∣∣dξ

+
1

�(α)

∫ t2

t1

(
tρ
2 – ξρ

ρ

)α–1

ξρ–1

× ∣∣w(
ξ , y(ξ ), ρDα,βy(ξ )

)
– p(ξ )y(ξ )

∣∣dξ

≤ �

�(α)

∣∣∣∣
(

tρ
2
ρ

)γ –1

–
(

tρ
1
ρ

)γ –1∣∣∣∣

×
[ m∑

i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× [
K + |a + 2b|∣∣y(ξ )

∣∣]dξ

]

+
1

�(α)

∫ t1

0

[(
tρ
2 – ξρ

ρ

)α–1

–
(

tρ
1 – ξρ

ρ

)α–1]

× ξρ–1[K + |a + 2b|∣∣y(ξ )
∣∣]dξ

+
1

�(α)

∫ t2

t1

(
tρ
2 – qρ

ρ

)α–1

qρ–1

× [
K + |a + 2b|∣∣y(ξ )

∣∣]dξ

≤ �

�(α)

∣∣∣∣
(

tρ
2
ρ

)γ –1

–
(

tρ
1
ρ

)γ –1∣∣∣∣
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×
[ m∑

i=1

qi

(
K
αρ

(
eρ

i
ρ

)α

+ |a + 2b|β(γ ,α)
(

eρ
i
ρ

)α+γ –1

ζ

)]

+
K

αρ�(α)

[∣∣∣∣
(

tρ
2
ρ

)α

–
(

tρ
1
ρ

)α∣∣∣∣
]

+
ζβ(γ ,α)

�(α)
|a + 2b|

∣∣∣∣
(

tρ
2 – tρ

1
ρ

)α+γ –1∣∣∣∣.

We deduce that

∣∣(Fy)(t2) – (Fy)(t1)
∣∣ → 0,

as |t2 – t1| → 0, which implies that F (Y) is equicontinuous.
Thus, by the Arzelà-Ascoli theorem, the operator F is completely continuous. By the
Schauder fixed-point theorem the operator F has a fixed point y ∈ Y . Now, we will use
the Banach contraction principle to prove the uniqueness of the solution. �

Theorem 19 Assume that the hypotheses (A1), (A2), and
(A3) for any y, z, ŷ, ẑ ∈ R and t ∈ [0, T], there exist positive constants A > 0, B < 1 such

that

∣∣w(t, y, z) – w(t, ŷ, ẑ)
∣∣ ≤ A|y – ŷ| + B|z – ẑ|

hold. Then, the problem (3) and (4) admits a unique solution in C1–γ ,ρ[0, T], whenever

� = C
β(γ ,α)
�(α)

[
�

m∑
i=1

qi

(
eρ

i
ρ

)α+γ –1

+
(

Tρ

ρ

)α
]

< 1, (28)

where C = A+|a+2b|
1–B .

Proof Let y, z ∈ C1–γ ,ρI0, be such that

ρDα,β [y](t) = w
(
t, y(t), ρDα,β [y](t)

)
– p(t)y(t),

ρDα,β [z](t) = w
(
t, z(t), ρDα,β [z](t)

)
– p(t)z(t).

Thus, we have

∣∣∣∣
[
(Fy)(t) – (Fz)(t)

]( tρ

ρ

)1–γ ∣∣∣∣

≤ �

�(α)

(
tρ
2
ρ

)γ –1 m∑
i=1

qi

[∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× ∣∣(w
(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

)

–
(
w

(
ξ , z(ξ ), ρDα,β [z](ξ )

)
– p(ξ )z(ξ )

)∣∣dξ

]

+
1

�(α)

(
tρ

ρ

)1–γ ∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1
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× ∣∣(w
(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

)

–
(
w

(
ξ , z(ξ ), ρDα,β [z](ξ )

)
– p(ξ )z(ξ )

)∣∣dξ .

Then, for all t ∈ I0, we have

∣∣∣∣
[
(Fy)(t) – (Fz)(t)

]( tρ

ρ

)1–γ ∣∣∣∣

≤ �

�(α)

(
tρ
2
ρ

)γ –1 m∑
i=1

qi

[∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1

× ∣∣ρDα,β [y](s) – ρDα,β [z](ξ )
∣∣dξ

]

+
1

�(α)

(
tρ

ρ

)1–γ ∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1

× ∣∣ρDα,β [y](s) – ρDα,β [z](ξ )
∣∣dξ .

By (A3),

∣∣ρDα,β [y](ξ ) – ρDα,β [z](ξ )
∣∣

=
∣∣(w

(
ξ , y(ξ ), ρDα,β [y](ξ )

)
– p(ξ )y(ξ )

)

–
(
w

(
ξ , z(ξ ), ρDα,β [z](ξ )

)
– p(ξ )z(ξ )

)∣∣
≤ ∣∣w(

ξ , y(ξ ), ρDα,β [y](ξ )
)

– w
(
ξ , z(ξ ), ρDα,β [z](ξ )

)∣∣
+

∣∣p(t)
∣∣∣∣y(t) – z(t)

∣∣
≤ A

∣∣y(t) – z(t)
∣∣ + B

∣∣ρDα,β [y](ξ ) – ρDα,β [z](ξ )
∣∣

+
∣∣p(t)

∣∣∣∣y(t) – z(t)
∣∣

≤ (
A + |a + 2b|)∣∣y(t) – z(t)

∣∣
+ B

∣∣ρDα,β [y](ξ ) – ρDα,β [z](ξ )
∣∣.

Thus,

∣∣ρDα,β [y](ξ ) – ρDα,β [z](ξ )
∣∣ ≤ C

∣∣y(t) – z(t)
∣∣,

and

∣∣∣∣
(
(Fy)(t) – (Fz)(t)

)( tρ

ρ

)1–γ ∣∣∣∣

≤ C
�

�(α)

m∑
i=1

qi

∫ ei

0

(
eρ

i – ξρ

ρ

)α–1

ξρ–1∣∣y(t) – z(t)
∣∣dξ

+
C

�(α)

(
tρ

ρ

)1–γ ∫ t

0

(
tρ – ξρ

ρ

)α–1

ξρ–1∣∣y(t) – z(t)
∣∣dξ ,
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where C = A+|a+2b|
1–B . This gives

∥∥(Fy) – (Fz)
∥∥

C1–γ ,ρ

≤ C
β(γ ,α)
�(α)

[
�

m∑
i=1

qi

(
eρ

i
ρ

)α+γ –1

+
(

Tρ

ρ

)α
]
‖y – z‖C1–γ ,ρ

≤ �‖y – z‖C1–γ ,ρ .

Due to Eq. (28), the operator F is a contraction mapping. Using the Banach contraction
mapping theorem, we deduce that F has a unique fixed point that is the unique solution
of the problem (3) and (4). �

4 Some illustrative examples
Now, we illustrate some examples that guarantee our main results. In this case, we use a
computational technique for checking the solutions of MFDEs with the H-KFD problem
(3) and (4), and applying a tiny step h by the implicit trapezoidal PI rule, which, as we will
see, usually shows excellent accuracy [39].

Example 1 Consider the MFDE with H-KFD

12D 3
7 , 5

8 [y](t) + p(t)y(t) =
4

15 + exp( t
π

)

[
sin2(y(t))

10 + sin2(y(t))

+
|12D 3

7 , 5
8 [y](t)|

45 + |12D 3
7 , 5

8 [y](t)|

]
, (29)

for t ∈ I0 = [0,π ], with the initial condition

12I 3
14 [y](0) =

21
4

y
(

2π

13

)
+

19
5

y
(

3π

7

)
+

22
15

y
(

8π

11

)
+

28
9

y
(

14π

15

)
, (30)

where

p(t) =
115
83

–
2
√

329
15

cos(2t), ∀t ∈ (0,π ].

Clearly, α = 3
7 ∈ (0, 1), β = 5

8 ∈ [0, 1],

γ = α + β(1 – α) =
11
14

∈ [0, 1),

ρ = 12 > 0, q1 = 21
4 , q2 = 19

5 , q3 = 22
15 , and q4 = 28

9 are real numbers, e1 = 2π
13 , e2 = 3π

7 , e3 = 8π
11 ,

e4 = 14π
15 ∈ (0,π ), and

a =
115
83

, b =
√

329
15

.

We define the map w : [0,π ] ×R
2 →R by

w(t, y, z) =
4

15 + exp( t
π

)

[
sin2 y

10 + sin2 y
+

|z|
45 + |z|

]
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for y, z ∈R. Then, by Definition 1, we have

C 3
14 ,12

(
[0,π ]

)
=

{
y : (a, b] →R :

( t12 – ( 115
83 )12

12

) 3
14

y(t) ∈ C
(
[0,π ]

)}
,

and so w ∈ C 3
14 ,12([0,π ]) for all y ∈ C 3

14 ,12([0,π ]). Also,

∣∣w(t, y, z)
∣∣ =

∣∣∣∣ 4
15 + exp( t

π
)

[
sin2 y

10 + sin2 y
+

|z|
45 + |z|

]∣∣∣∣

=
∣∣∣∣ 4
15 + exp( t

π
)

∣∣∣∣
∣∣∣∣ sin2 y
10 + sin2 y

+
|z|

45 + |z|
∣∣∣∣

≤ 1
2

,

for t ∈ [0,π ]. Put K = 1
2 . Therefore, w satisfies the conditions (A1) and (A2) of Theorem 18.

On the other hand, by employing Eq. (16), we obtain

� = ργ –1

[
�(γ )ργ –1 –

m∑
i=1

qi
(
eρ

i
)γ –1

]–1

= 12( –3
14 )

[
12( –3

14 )�

(
11
14

)
–

[
21
4

((
2π

13

)12)( –3
14 )

+
19
5

((
3π

7

)12)( –3
14 )

+
22
15

((
8π

11

)12)( –3
14 )

+
28
9

((
14π

15

)12)( –3
14 )]]–1

= 12( –3
14 )

[
12( –3

14 )�

(
11
14

)
–

[
21
4

(
2π

13

)( –18
7 )

+
19
5

(
3π

7

)( –18
7 )

+
22
15

(
8π

11

)( –18
7 )

+
28
9

(
14π

15

)( –18
7 )]]–1

≈ –0.01654.

Then, by using Eqs. (27), we obtain

M0 =
K

αρ�(α)

[
�

m∑
i=1

qi

(
eρ

i
ρ

)α

+
(

Tρ

ρ

)α+1–γ
]

,

=
1
2

3
7 × 12�( 3

7 )

[
�

[
21
4

( 2π
13

12

12

)( 3
7 )

+
19
5

( 3π
7

12

12

)( 3
7 )

+
22
15

( 8π
11

12

12

)( 3
7 )

+
28
9

( 14π
15

12

12

)( 3
7 )]

+
(

π12

12

)( 9
14 )]

≈ 64.87685,
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and

M1 =
|a + 2b|β(γ ,α)

�(α)

[
�

m∑
i=1

qi

(
eρ

i
ρ

)α+γ –1

+
(

Tρ

ρ

)α
]

=
| 115

83 + 2
√

329
15 |β( 11

14 , 3
7 )

�( 3
7 )

[
�

[
21
4

( 2π
13

12

12

)( 3
7 )

+
19
5

( 3π
7

12

12

)( 3
7 )

+
22
15

( 8π
11

12

12

)( 3
7 )

+
28
9

( 14π
15

12

12

)( 3
7 )]

+
(

π12

12

)( 9
14 )]

≈ 6775.715045.

Take

ζ ≥ M0

1 – M1
≈ –0.0095763.

Table 1 shows the numerical results of M0, M1, and ζ . These results are shown graphi-
cally in Fig. 1. By employing the Algorithm 1, one can obtain all numerical results in this
example. Hence, all conditions of Theorem 18 hold, and so the problem has a solution.

Table 1 Numerical results of M0, M1, and ζ in Example 1

t M0 M1 ζ

0.00000 –2.4314E–01 –2.5393E+01 –9.2100E–03
0.10472 –2.4314E–01 –2.5393E+01 –9.2100E–03
0.20944 –2.4314E–01 –2.5393E+01 –9.2100E–03
0.31416 –2.4313E–01 –2.5393E+01 –9.2100E–03
0.41888 –2.4312E–01 –2.5392E+01 –9.2100E–03
0.52360 –2.4307E–01 –2.5386E+01 –9.2100E–03
0.62832 –2.4287E–01 –2.5365E+01 –9.2100E–03
0.73304 –2.4227E–01 –2.5302E+01 –9.2100E–03
0.83776 –2.4071E–01 –2.5139E+01 –9.2100E–03
0.94248 –2.3711E–01 –2.4764E+01 –9.2000E–03
1.04720 –2.2955E–01 –2.3974E+01 –9.1900E–03
1.15192 –2.1480E–01 –2.2433E+01 –9.1700E–03
1.25664 –1.8769E–01 –1.9602E+01 –9.1100E–03
1.36136 –1.4032E–01 –1.4655E+01 –8.9600E–03
1.46608 –6.1020E–02 –6.3734E+00 –8.2800E–03
1.57080 6.6950E–02 6.9923E+00 –1.1170E–02
1.67552 2.6702E–01 2.7888E+01 –9.9300E–03
1.78024 5.7122E–01 5.9658E+01 –9.7400E–03
1.88496 1.0225E+00 1.0679E+02 –9.6700E–03
1.98968 1.6775E+00 1.7520E+02 –9.6300E–03
2.09440 2.6098E+00 2.7257E+02 –9.6100E–03
2.19911 3.9136E+00 4.0874E+02 –9.6000E–03
2.30383 5.7082E+00 5.9616E+02 –9.5900E–03
2.40855 8.1425E+00 8.5040E+02 –9.5900E–03
2.51327 1.1401E+01 1.1908E+03 –9.5800E–03
2.61799 1.5712E+01 1.6409E+03 –9.5800E–03
2.72271 2.1349E+01 2.2296E+03 –9.5800E–03
2.82743 2.8646E+01 2.9917E+03 –9.5800E–03
2.93215 3.8001E+01 3.9689E+03 –9.5800E–03
3.03687 4.9891E+01 5.2106E+03 –9.5800E–03



Berhail et al. Advances in Continuous and Discrete Models         (2022) 2022:44 Page 22 of 32

Figure 1 Graphical representation of variables M0, M1, and ζ for t ∈ (0,π ] in Example 1

Example 2 Consider the MFDE with H-KFD

7
5 D 1

8 , 5
6 [y](t) + p(t)y(t) =

5
24 + (1 + t

π
)2

[ | cos(y(t))|
16 + | cos(y(t))|

+
sin2(

7
5 D 1

8 , 5
6 [y](t))

34 + sin2(
7
5 D 1

8 , 5
6 [y](t))

]
, (31)

for t ∈ I0 = [0,π ], with the initial condition

7
5 I 7

48 [y](0) =
13
4

y
(

π

11

)
+

10
7

y
(

3π

8

)
+

9
10

y
(

6π

7

)
, (32)



Berhail et al. Advances in Continuous and Discrete Models         (2022) 2022:44 Page 23 of 32

where

p(t) =
3√75
12

–
15
14

cos(2t), ∀t ∈ (0,π ].

Clearly, α = 1
8 ∈ (0, 1), β = 5

6 ∈ [0, 1], γ = α+β(1–α) = 41
48 ∈ [0, 1), ρ = 7

5 > 0, q1 = 13
4 , q2 = 10

7 ,
and q3 = 9

10 are real numbers, e1 = π
11 , e2 = 3π

8 , and e3 = 6π
7 belong to (0,π ) and

a =
3√75
12

, b =
15
14

.

We define the map w : [0,π ] ×R
2 →R by

w(t, y, z) =
5

24 + (1 + t
π

)2

[ | cos y|
16 + | cos y| +

sin2 z
34 + sin2 z

]

for y, z ∈R. Then, by Definition 1, we have

C 7
48 , 7

5

(
[0,π ]

)
=

{
y : (a, b] →R :

( t
7
5 – (

3√75
12 )

7
5

7
5

) 7
48

y(t) ∈ C
(
[0,π ]

)}
,

and so w ∈ C 7
48 , 7

5
([0,π ]) for all y ∈ C 7

48 , 7
5

([0,π ]). Also,

∣∣w(t, y, z) – w(t, ŷ, ẑ)
∣∣ =

∣∣∣∣ 5
24 + (1 + t

π
)2

[ | cos y|
16 + | cos y| +

sin2 z
34 + sin2 z

]

–
5

24 + (1 + t
π

)2

[ | cos ŷ|
16 + | cos ŷ| +

sin2 ẑ
34 + sin2 ẑ

]∣∣∣∣

≤ 5
24 + (1 + t

π
)2

[∣∣∣∣ | cos y|
16 + | cos y| –

| cos ŷ|
16 + | cos ŷ|

∣∣∣∣

+
∣∣∣∣ sin2 z
34 + sin2 z

–
sin2 ẑ

34 + sin2 ẑ

∣∣∣∣
]

≤ 1
85

|y – ŷ| +
1

170
|z – ẑ|,

for t ∈ [0,π ]. Put A = 1
85 and B = 1

170 . Therefore, w satisfies the condition (A3) of Theo-
rem 19. Furthermore,

C =
A + |a + 2b|

1 – B
≈ 6.409488.

On the other hand, by employing Eq. (16), we obtain

� = ργ –1

[
�(γ )ργ –1 –

m∑
i=1

qi
(
eρ

i
)γ –1

]–1

≈ –0.181048,
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Table 2 Numerical results of � for t ∈ [0,π ] in Example 2

t �

0.00000 –2.8519E+00
0.10472 –1.0688E+00
0.20944 –8.3886E–01
0.31416 –6.9083E–01
0.41888 –5.7925E–01
0.52360 –4.8875E–01
0.62832 –4.1213E–01
0.73304 –3.4542E–01
0.83776 –2.8616E–01
0.94248 –2.3273E–01
1.04720 –1.8399E–01
1.15192 –1.3912E–01
1.25664 –9.7490E–02
1.36136 –5.8640E–02
1.46608 –2.2180E–02
1.57080 1.2190E–02
1.67552 4.4720E–02
1.78024 7.5620E–02
1.88496 1.0505E–01
1.98968 1.3316E–01
2.09440 1.6007E–01
2.19911 1.8590E–01
2.30383 2.1073E–01
2.40855 2.3465E–01
2.51327 2.5772E–01
2.61799 2.8002E–01
2.72271 3.0159E–01
2.82743 3.2248E–01
2.93215 3.4275E–01
3.03687 3.6243E–01

and by using Eqs. (28), we obtain

� = C
β(γ ,α)
�(α)

[
�

m∑
i=1

qi

(
eρ

i
ρ

)α+γ –1

+
(

Tρ

ρ

)α
]

= C
β( 41

48 , 1
8 )

�( 1
8 )

[
�

m∑
i=1

qi

(
e6

i
6

)( 1
8 + 41

48 –1)

+
(

π6

6

)( 1
8 )

]

≈ 0.970123 < 1.

Table 2 shows the numerical results of �. These results are shown graphically in Fig. 2. By
using the Algorithm 2, we can obtain all numerical results in this example. Therefore, all
conditions of Theorem 19 hold, and hence this problem has a solution.

5 An application of a particle in the plane
Linear motion is the most basic of all motions. According to Newton’s first law of motion,
objects that do not experience any net force will continue to move in a straight line with a
constant velocity until they are subjected to a net force.

Here, in this section, we consider an application to examine the validity of our theoretical
results on the fractional-order representation of the motion of a particle along a straight
line. In this case, we consider a constrained motion of a particle along a straight line re-
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Figure 2 Graphical representation of � for t ∈ [0,π ] in Example 2

Figure 3 A particle along a straight line restrained by two linear springs with equal spring constants

strained by two linear springs with equal spring constants (stiffness coefficient) under an
external force and fractional damping along the t-axis (Fig. 3).

The springs, unless subjected to a force, are assumed to have free length (unstretched
length) and resist a change in length. The motion of the system along the t-axis is inde-
pendent of the initial spring tension. The springs are anchored on the t-axis at t = –1 and
t = 1, and the vibration of the particle in this example is restricted to the t-axis only.

The vibration of the system is represented by a system of equations with the first equa-
tion having a similar form to simple harmonic oscillator, which cannot produce instability.
Hence, the existence solution of the system depends on the following equation represented
as MFDEs with H-KFD

ρD0.75,0.4[y](t) +
1
8
[
2 – 2� – θ2� – θ2� cos t

]
y(t)

= ν1
ρD0.75,0.4[y](t) – ν2 sin

(
y(t)

)
,

(33)

for t ∈ I0 = [0, 2], here θ , ν1, ν2 are constants and � is the unstretched length of the spring,
with the initial condition

ρI0.15[y](0) =
1
5

y(0.1) +
1
5

y(0.4) +
1
5

y(0.9) +
1
5

y(1.3) +
1
5

y(1.6) +
1
5

y(1.9), (34)

where

p(t) =
1
8
(
2 – 2� – θ2� – θ2� cos t

)
,
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for t ∈ (0, 2]. Consider particular values of the parameters � = 1.5 m and θ = 0.5. It is clear
that ρ = 3 > 0, α = 0.75 ∈ (0, 1), β = 0.4 ∈ [0, 1],

γ = α + β(1 – α) = 0.85 ∈ [0, 1),

a =
1
8
(
2 – 2� – θ2�

)
= –0.171875, b =

1
16

θ2� = 0.0234375,

and

q1 =
32
5

, q2 =
26
5

, q3 =
25
6

, q4 =
24
7

, q5 =
22
9

, q6 =
19
10

,

e1 = 0.1, e2 = 0.4, e3 = 0.9, e4 = 1.3, e5 = 1.6, e6 = 1.9.

The general integral solution of (33) is the fractional integral equation

y(t) =
�

�(0.75)

(
tρ

ρ

)–0.15
[ 6∑

i=1

ωi

∫ ei

0

(
eρ

i – ξρ

ρ

)–0.25

ξρ–1

× [
w

(
ξ , y(ξ ), ρD0.75,0.4[y](ξ )

)
– p(ξ )y(ξ )

]
dξ

]

+
1

�(0.75)

∫ t

0

(
tρ – ξρ

ρ

)–0.25

ξρ–1

× [
w

(
ξ , y(ξ ), ρDα,βy(ξ )

)
– p(ξ )y(ξ )

]
dξ , (35)

where

� =
ρ–0.15

�(0.85)ρ–0.15 –
∑7

i=1 qi(eρ
i )–0.15

, (36)

ei, for i = 0, 1, . . . , 6 are prefixed points satisfying

0 < e1 ≤ e2 ≤ e3 ≤ e4 ≤ e5 ≤ e6 < 2,

and qi are real numbers. We define the map w : [0, 2] ×R
2 →R by

w(t, y, z) =
ν1

35(ν1 + ν2)
y –

ν2

15(ν1 + ν2)
sin z,

for y, z ∈R, where nu1 and nu1 are positive constants. Then, by Definition 1, we have

C0.85,3
(
[0, 2]

)

=
{

y :
(

1
8
(
2 – 2� – θ2�

)
,

1
16

θ2�

]
→R :

( t3 – ( 1
8 (2 – 2� – θ2�))3

3

)0.85

y(t) ∈ C
(
[0, 2]

)}

=
{

y : (–0.17187, 0.02343] →R :
(

t3 – (–0.171875)3

3

)0.85

y(t) ∈ C
(
[0, 2]

)}
,
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and so w ∈ C0.85,3([0, 2]) for all y ∈ C0.85,3([0, 2]). Also,

∣∣w(t, y, z) – w(t, ŷ, ẑ)
∣∣ =

∣∣∣∣ ν1

35(ν1 + ν2)
y –

ν2

15(ν1 + ν2)
sin z

–
ν1

35(ν1 + ν2)
ŷ –

ν2

15(ν1 + ν2)
sin ẑ

∣∣∣∣
≤

∣∣∣∣ ν1

35(ν1 + ν2)

∣∣∣∣|y – ŷ| +
∣∣∣∣ ν2

15(ν1 + ν2)

∣∣∣∣|z – ẑ|,

for t ∈ [0, 2]. Put A = ν1
35(ν1+ν2) and B = ν2

15(ν1+ν2) . Therefore, w satisfies the conditions (A3)
of Theorem 19. Furthermore,

C =
A + |a + 2b|

1 – B

=
[

ν1

35(ν1 + ν2)
+ |–0.17187 + 2 × 0.02343|

][
15ν1 + 14ν2

15(ν1 + ν2)

]–1

=
[

ν1

35(ν1 + ν2)
+ 0.125

][
15ν1 + 14ν2

15(ν1 + ν2)

]–1

=
[

5.375ν1 + 4.375ν2

35(ν1 + ν2)

][
15(ν1 + ν2)
15ν1 + 14ν2

]

=
16.125ν1 + 13.125ν2

105ν1 + 98ν2
.

We consider particular values of the parameters ν1 = 7.25 and ν2 = 0.3. On the other hand,
by employing Eq. (16), we obtain

� = ργ –1

[
�(γ )ργ –1 –

m∑
i=1

qi
(
eρ

i
)γ –1

]–1

= 3–0.15

[
�(0.85)3–0.15 –

6∑
i=1

qi
(
e3

i
)–0.15

]–1

.

and by using Eq. (28), we obtain

� = C
β(γ ,α)
�(α)

[
�

m∑
i=1

qi

(
eρ

i
ρ

)α+γ –1

+
(

Tρ

ρ

)α
]

0

= C
β(0.85, 0.75)

�(0.75)

[
�

6∑
i=1

qi

(
eρ

i
ρ

)0.75+0.85–1

+
(

T3

3

)0.75
]

.

Table 3 shows the numerical results of � for � = 1, 1.25, 1.5, and 1.75. These results are
shown graphically in Fig. 4. Therefore, all conditions of Theorem 19 hold. Thus, the MFDE

with H-KFD (33) has a solution.

6 Conclusion
Over the last several years, the study of FME has drawn increasing attention due to its ap-
plications in various fields of the physical sciences, in applied mathematics, and in many
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Table 3 Numerical results of � for � = 1, 1.25, 1.5, and 1.75, and t ∈ [0, 2]

t �

� = 1.0 � = 1.25 � = 1.5 � = 1.75

0.00000 –9.1500E–03 –2.9990E–02 –5.0830E–02 –7.1660E–02
0.06667 –9.1100E–03 –2.9880E–02 –5.0640E–02 –7.1400E–02
0.13333 –8.9900E–03 –2.9460E–02 –4.9930E–02 –7.0400E–02
0.20000 –8.7500E–03 –2.8670E–02 –4.8590E–02 –6.8520E–02
0.26667 –8.3800E–03 –2.7470E–02 –4.6560E–02 –6.5650E–02
0.33333 –7.8800E–03 –2.5830E–02 –4.3780E–02 –6.1730E–02
0.40000 –7.2400E–03 –2.3720E–02 –4.0200E–02 –5.6690E–02
0.46667 –6.4400E–03 –2.1120E–02 –3.5800E–02 –5.0480E–02
0.53333 –5.5000E–03 –1.8010E–02 –3.0530E–02 –4.3050E–02
0.60000 –4.3900E–03 –1.4380E–02 –2.4370E–02 –3.4370E–02
0.66667 –3.1100E–03 –1.0210E–02 –1.7300E–02 –2.4390E–02
0.73333 –1.6700E–03 –5.4800E–03 –9.2800E–03 –1.3090E–02
0.80000 –5.0000E–05 –1.7000E–04 –3.0000E–04 –4.2000E–04
0.86667 1.7400E–03 5.7100E–03 9.6800E–03 1.3640E–02
0.93333 3.7200E–03 1.2190E–02 2.0650E–02 2.9120E–02
1.00000 5.8800E–03 1.9270E–02 3.2660E–02 4.6050E–02
1.06667 8.2300E–03 2.6960E–02 4.5700E–02 6.4440E–02
1.13333 1.0760E–02 3.5290E–02 5.9810E–02 8.4330E–02
1.20000 1.3500E–02 4.4250E–02 7.4990E–02 1.0574E–01
1.26667 1.6430E–02 5.3850E–02 9.1270E–02 1.2869E–01
1.33333 1.9560E–02 6.4100E–02 1.0865E–01 1.5320E–01
1.40000 2.2890E–02 7.5020E–02 1.2716E–01 1.7929E–01
1.46667 2.6420E–02 8.6610E–02 1.4680E–01 2.0699E–01
1.53333 3.0160E–02 9.8870E–02 1.6758E–01 2.3630E–01
1.60000 3.4110E–02 1.1182E–01 1.8953E–01 2.6724E–01
1.66667 3.8270E–02 1.2547E–01 2.1266E–01 2.9985E–01
1.73333 4.2650E–02 1.3981E–01 2.3696E–01 3.3412E–01
1.80000 4.7240E–02 1.5486E–01 2.6247E–01 3.7008E–01
1.86667 5.2050E–02 1.7062E–01 2.8918E–01 4.0775E–01
1.93333 5.7080E–02 1.8710E–01 3.1712E–01 4.4714E–01

Figure 4 Graphical representation of � for t ∈ [0, 2] and � = 1.0, 1.25, 1.5, and 1.75
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engineering fields. To the best of the authors’ knowledge, there are no paper studies on
ME with H-KFD. Motivated by the importance of these equations, we investigated the
existence and uniqueness of solutions for MFDEs associated to H-KFDs. The Schauder
fixed-point theorem was the key of our analysis to establish the existence of solutions.
However, by adding un extra condition, we succeeded in obtaining a unique solution by us-
ing the Banach fixed-point theorem. Finally, we present two examples with application to
validate our main theoretical results. We were able to produce a computational technique
for checking our problem and two algorithms for numerical approximation of solutions
with excellent accuracy.

Appendix: Supporting information

Algorithm 1 MATLAB code for Example 1
1: clear;

2: format long;

3: alpha = 1/8;

4: betavar = 5/6;

5: gammavar= alpha + betavar * ( 1 - alpha);

6: rho = 12;

7: q_1= 1/16; q_2= 23/18; q_3= 16/15; q_4= 3/19;

8: e_1= pi/18; e_2 = 7*pi/18; e_3 =13*pi/18; e_4 =17*pi/18;

9: a=115/83; b=sqrt(329)/15;

10: Result(1,1)= rho^(gammavar-1)/...

11: (gamma(gammavar) * rho^(gammavar-1)- ...

12: ( q_1 * (e_1^(rho))^(gammavar-1) ...

13: + q_2 * (e_2^(rho))^(gammavar-1) ...

14: + q_3 * (e_3^(rho))^(gammavar-1) ...

15: + q_4 * (e_4^(rho))^(gammavar-1) ));

16: Result(1,2)= 0.5/(alpha * rho* gamma(alpha)) *(Result(1,1) ...

17: * ( q_1 * ( e_1^(rho)/rho)^(alpha) ...

18: + q_2 * ( e_2^(rho)/rho)^(alpha) ...

19: + q_3 * ( e_3^(rho)/rho)^(alpha) ...

20: + q_4 * ( e_4^(rho)/rho)^(alpha) ) ...

21: + (pi^(rho)/rho)^(alpha + 1 - gammavar) );

22: Result(1,3)= abs(a+2*b) *beta(gammavar, alpha)/gamma(alpha) ...

23: * (Result(1,1) ...

24: * ( q_1 * ( e_1^(rho)/rho)^(alpha) ...

25: + q_2 * ( e_2^(rho)/rho)^(alpha) ...

26: + q_3 * ( e_3^(rho)/rho)^(alpha) ...

27: + q_4 * ( e_4^(rho)/rho)^(alpha) ) ...

28: + (pi^(rho)/rho)^(alpha + 1 - gammavar) );

29: Result(1,4)= Result(1,2)/(1-Result(1,3));
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Algorithm 2 MATLAB code for Example 2
1: clear;

2: format long;

3: alpha = 1/8;

4: betavar = 5/6;

5: gammavar= alpha + betavar * ( 1 - alpha);

6: rho = 1.4;

7: q_1= 13/4; q_2= 10/7; q_3= 9/10;

8: e_1= pi/11; e_2 = 3*pi/8; e_3 =6*pi/7;

9: a=75^(1/3); b=15/14;

10: Result(1,1)= rho^(gammavar-1)/...

11: (gamma(gammavar) * rho^(gammavar-1)- ...

12: ( q_1 * (e_1^(rho))^(gammavar-1) ...

13: + q_2 * (e_2^(rho))^(gammavar-1) ...

14: + q_3 * (e_3^(rho))^(gammavar-1) ...

15: ));

16: A=1/85;

17: B=1/170;

18: C= (A+abs(a+2*b))/(1-B);

19: Result(1,2)= C* beta(gammavar, alpha)/gamma(alpha)...

20: * (Result(1,1) ...

21: * ( q_1 * ( e_1^(rho)/rho)^(alpha+gammavar-1) ...

22: + q_2 * ( e_2^(rho)/rho)^(alpha+gammavar-1) ...

23: + q_3 * ( e_3^(rho)/rho)^(alpha+gammavar-1) ...

24: ) + (pi^(rho)/rho)^(alpha) );
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