
Advances in Continuous
and Discrete Models

Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 
https://doi.org/10.1186/s13662-022-03702-y

R E S E A R C H Open Access

Operator compression with deep neural
networks
Fabian Kröpfl1*, Roland Maier2 and Daniel Peterseim1,3

*Correspondence:
fabian.kroepfl@uni-a.de
1Institute of Mathematics, University
of Augsburg, Universitätsstr. 12a,
86159 Augsburg, Germany
Full list of author information is
available at the end of the article

Abstract
This paper studies the compression of partial differential operators using neural
networks. We consider a family of operators, parameterized by a potentially
high-dimensional space of coefficients that may vary on a large range of scales. Based
on the existing methods that compress such a multiscale operator to a
finite-dimensional sparse surrogate model on a given target scale, we propose to
directly approximate the coefficient-to-surrogate map with a neural network. We
emulate local assembly structures of the surrogates and thus only require a
moderately sized network that can be trained efficiently in an offline phase. This
enables large compression ratios and the online computation of a surrogate based on
simple forward passes through the network is substantially accelerated compared to
classical numerical upscaling approaches. We apply the abstract framework to a
family of prototypical second-order elliptic heterogeneous diffusion operators as a
demonstrating example.

MSC: 68T07; 65N30; 35J15

Keywords: Deep learning; Neural networks; Numerical homogenization; Model
order reduction

1 Introduction
The remarkable success of machine learning technology, especially deep learning, in clas-
sical AI disciplines such as image recognition and natural language processing has led to
an increased research interest in leveraging the power of these approaches in other sci-
ence and engineering disciplines over the last years. In the field of numerical modeling
and simulation, promising approaches are emerging that try to integrate machine learn-
ing algorithms and traditional physics-based approaches, combining the advantages of the
data-driven regime with known physics and domain knowledge. In this spirit, many dif-
ferent approaches to approximating solutions of partial differential equations (PDEs) with
neural networks have been proposed, for example so-called physics-informed neural net-
works (PINNs) [60], the deep Galerkin method [63], or the deep Ritz method [19]. It has
become evident that the strategy of using neural networks as ansatz functions for the ap-
proximation of a PDE’s solution is especially advantageous for high-dimensional problems
that are outside the reach of classical mesh-based methods [17, 18, 33]. For some classes

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-022-03702-y
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-022-03702-y&domain=pdf
mailto:fabian.kroepfl@uni-a.de


Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 2 of 23

of PDEs, e.g., Kolmogorov PDEs and semilinear heat equations, it has even been proven
that neural networks break the curse of dimensionality [9, 39].

In this spirit, we strongly believe that the strength of neural networks lies in scenarios
where one deals with a whole family of PDEs rather than one single equation, for example
in the context of so-called parametric PDEs, i.e., settings where a family of partial dif-
ferential operators parameterized by some coefficient is considered, see, e.g., [62]. This
is particularly true for multiscale problems, where one is interested in computing coarse-
scale surrogates for problems involving a range of scales that cannot be resolved in a direct
numerical simulation.

In this paper, we study the problem of approximating a coefficient-to-surrogate map with
a neural network in a very general setting of parameterized PDEs with arbitrarily rough
coefficients that may vary on a microscopic scale. In other words, we are not trying to
directly approximate the parameter-to-solution map, but rather compress the fine-scale
information contained in the continuous operator to a finite-dimensional sparse object
that is able to replicate the effective behavior of the solution on a macroscopic scale of
interest even in the presence of unresolved oscillations of the underlying coefficient.

The output surrogate models are based on the idea of modern numerical homogeniza-
tion techniques such as localized orthogonal decomposition [46, 49, 56], gamblets [52],
rough polyharmonic splines [53], the multiscale finite element method [21, 38], or the
generalized finite element method [7, 20]; see [5] and the references therein for a com-
prehensive overview. These methods have demonstrated high performance in many rel-
evant applications such as porous media flow or wave scattering in heterogeneous media
to mention only a few. In particular, they typically do not require explicit assumptions on
the existence of lower-dimensional structures in the underlying family of PDE coefficients
and yield sparse system matrices that ensure uniform approximation properties of the re-
sulting surrogate. Moreover, the computation of the system matrices mimics the standard
assembly procedure from finite element theory, consisting of the generation of local sys-
tem matrices and their combination by local-to-global mappings, which is exploited to
reduce the size of the network architecture and its complexity considerably.

The possibility of fast computation of the surrogates has high potential for multi-query
problems, such as in uncertainty quantification, and time-dependent or inverse multi-
scale problems, which require the computation of surrogates for many different a priori
unknown coefficients. Though the aforementioned numerical homogenization methods
lead to accurate surrogates for the whole class of coefficients, their computation requires
the resolution of all scales locally which marks a severe limitation when it has to be per-
formed many times for the solution of a multi-query problem. There have been attempts
to tackle this problem, but the results so far are only applicable to small perturbation
regimes [35, 50] or settings where the parameterization fulfills additional smoothness re-
quirements [3].

To overcome this problem, we propose to learn the whole nonlinear coefficient-to-
surrogate map from a training set consisting of pairs of coefficients and their correspond-
ing surrogates with a deep neural network. In other words, we are combining the domain
knowledge from numerical homogenization with a data-driven deep learning approach by
essentially learning a numerical homogenization method from data. To this end, we pro-
pose using an offline-online approach. In the offline phase, the neural network is trained
based on data generated with existing numerical homogenization techniques. In the on-



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 3 of 23

line phase, the compression of previously unseen operators can then be reduced to a sim-
ple forward pass of the neural network, which eliminates the computational bottleneck
encountered in multi-query settings.

Our method is conceptually different from the existing approaches that try to integrate
ideas from homogenization with neural networks. In [6] for example, the authors pro-
pose to learn a homogenized PDE from simulation data by linking deep learning with an
equation-free multiscale approach. Other papers in the context of uncertainty quantifica-
tion suggest training a neural network to identify suitable multiscale basis functions for
the finite volume method given a porous random medium [13, 54]. In [31], the authors
consider the problem of elasticity with history-dependent material properties, where a
recurrent deep neural network connects microscopic and macroscopic material parame-
ters. In deep multiscale model learning [65], learning techniques are used to predict the
evolution from one time step to another within a given coarse multiscale space. The goal
of this approach is to obtain a reasonable coarse operator for the successive approxima-
tion of a time-dependent PDE. Furthermore, several experimental and theoretical works
on the approximation of the coefficient-to-solution map [11, 28, 30, 43] or other quantities
of interest such as the ground state energy in Schrödinger equations [41] by deep neural
networks have been published in the context of parametric PDEs.

This paper is structured as follows: in Sect. 2, we introduce and motivate the abstract
framework for a very general class of linear differential operators. After that, we study the
problem of elliptic homogenization as an example of how to apply the general methodol-
ogy in practice. In Sect. 4, we conduct numerical experiments that show the feasibility of
our ideas developed in the previous two sections. We conclude this work with an outlook
on further research questions.

2 Abstract framework
In this section, we describe the general abstract problem of finding discrete compressed
surrogates to a family of differential operators that allow us to satisfactorily approximate
the original operators on a target scale of interest, given only the underlying coefficients
but not a high resolution representation of the operators. We elaborate on how to speed up
the online computation of those compressed representatives using deep neural networks
after an initial offline training phase.

2.1 Setting
Let D ⊆ R

d , d ∈ {1, 2, 3} be a bounded Lipschitz domain and H1
0 (D) be the Sobolev space

of L2-functions with weak first derivatives in L2(D) that vanish on the boundary of D. We
write H–1(D) for the dual space of H1

0 (D) and 〈·, ·〉 for the duality pairing between H–1(D)
and H1

0 (D). Consider a family of linear differential operators

L :=
{
LA : H1

0 (D) → H–1(D) | A ∈A
}

that is parameterized by some class A ⊆ L∞(D) of admissible coefficients. We emphasize
that we do not pose any assumptions on the structure of the coefficients A ∈A such as pe-
riodicity or scale separation and explicitly allow for arbitrarily rough coefficients that may
vary on a continuum of scales up to some microscale ε � diam(D). We assume that for ev-
ery A ∈A the associated operator LA is symmetric (〈LAu, v〉 = 〈u,LAv〉), local (〈LAu, v〉 = 0
if u and v have disjoint supports) and bijective.



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 4 of 23

Bijectivity implies that for any given A ∈ A and f ∈ H–1(D) there exists a unique u ∈
H1

0 (D) that solves the equation

LAu = f (2.1)

in a weak sense, i.e., the solution satisfies

〈LAu, v〉 = 〈f , v〉 for all v ∈ H1
0 (D). (2.2)

For given problem data A and f , we are interested in computing an approximation to u on
some target scale in reasonable time.

2.2 Discretization
In order to be able to solve this problem computationally, we choose a finite-dimensional
subspace Vh ⊆ H1

0 (D) of dimension m = dim(Vh). As a standard example, one could take
Vh to be a classical finite element space based on some mesh Th with characteristic mesh
size h and approximate (2.2) with a Galerkin method. However, in the very general setting
with A possibly having fine oscillations on a scale that is not resolved by the mesh size h,
this approach leads to unreliable approximations of u. Then again, the resolution of these
fine-scale features can be prohibitively expensive in terms of computational resources if ε

is very small. Note that resolution here may mean that the actual mesh size is significantly
smaller than ε, depending on the oscillations of the coefficient and its regularity [8, 58].
This means that more advanced discretization techniques are required to still obtain rea-
sonable approximations in the unresolved setting. In practice, the challenge is therefore
to compress the fine-scale information that is contained in the operator LA to a suitable
surrogate SA on the target scale h, i.e., the surrogate SA must be chosen in such a way
that it is still able to capture the characteristic behavior of the operator LA on the scale of
interest. Moreover, we require SA to be a bijection that maps the space Vh to itself. This
ensures that for any A ∈ A and f ∈ H–1(D) we can find unique uh ∈ Vh that weakly solves
the discretized equation

SAuh = fh, (2.3)

with fh = Mf , where M is a quadrature-type operator that maps a function in H–1 to an
appropriate approximation in Vh. Problem (2.3) needs to be understood as finding uh that
satisfies

〈SAuh, vh〉 = 〈fh, vh〉 for all vh ∈ Vh.

The choice of the surrogate is obviously highly dependent on the problem at hand, see
for example Sect. 3.2 for possible choices in the case of second-order elliptic diffusion
operators.

2.3 Characterization in terms of a system matrix
We restrict our discussion to choices of surrogates that can be represented by an m ×
m system matrix SA that is often called the effective system matrix in the following. We



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 5 of 23

assume that SA ∈ R
m×m is of the form (SA)ij = 〈SAλj,λi〉 for a basis λ1, . . . ,λm of Vh. Note

that the basis should be chosen as localized as possible in order for the resulting system
matrix to be sparse. The process of operator compression can then be formalized by a
compression operator

C : A →R
m×m

that maps a given coefficient A to the system matrix SA representing the compressed sur-
rogate SA of the operator LA. Once C has been evaluated for given A ∈A, the solution to
(2.2) can then be approximated with a function uh ∈ Vh for any right-hand side f ∈ H–1(D)
by solving the linear system SAU = F , where F ∈R

m is the vector with entries Fi := 〈Mf ,λi〉
and U ∈R

m contains the coefficients of the basis representation uh =
∑m

i=1 Uiλi.

2.4 Multi-query scenarios
For many classes of coefficients A and based on the choice of the surrogate, evaluating C

requires solving local auxiliary problems, during which the finest scale ε has to be resolved
at some point. While this is acceptable if one wants to compress only a few operators in
an offline computation, it becomes a major problem once C has to be evaluated for many
different coefficients A in an online phase, as for example in certain inverse problems,
uncertainty quantification, or the simulation of evolution equations with time-dependent
coefficients. This motivates a data-driven offline–online approach, where the offline phase
consists of training a neural network to approximate the compression operatorC, such that
in the subsequent online phase the evaluation of C can be replaced with a simple forward
pass through the network, thus eliminating the computational bottleneck.

2.5 System matrix decomposition
In principle, one could try to directly approximate the global operator C with a neural
network. If the coefficient involves oscillations on some fine scale ε, this would lead to
a network architecture with an input layer of size O(ε–d), an output layer of size O(m),
and possible hidden layers. Particularly for small ε, this leads to very large networks and,
thus, requires a huge amount of free parameters and therefore extraordinary amounts of
training data and storage space in order to preserve good generalization capabilities.

To reduce the necessary size of the network, one can exploit available information on the
compression operator C by means of a certain structure in the resulting effective matrices
SA. To this end, we think of SA as a matrix composed of multiple inflated sub-matrices,
i.e.,

SA =
∑

j∈J

�j(SA,j), (2.4)

where J denotes some given index set and SA,j ∈ R
s×t , s, t � m, are (typically dense) local

matrices of equal size. The functions

�j : Rs×t →R
m×m (2.5)

represent local-to-global mappings inspired by classical finite element assembly processes
as further explained below. More precisely, there exist index transformations πj and ϕj,



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 6 of 23

such that

�j(S)
[
πj(k),ϕj(l)

]
= S[k, l], 1 ≤ k ≤ s, 1 ≤ l ≤ t,

where M[ir , ic] denotes the entry of a matrix M in the ith
r row and the ith

c column. Note
that πj and ϕj can also map to zero, indicating that the corresponding entry should be
disregarded. Let us also emphasize that the mappings �j (and, in turn, the index transfor-
mations πj and ϕj) are completely independent of coefficients A and solely depend on the
domain D as well as the geometry of an allotted discretization. The precise definitions of
the maps πj and ϕj as well as the index set J are usually determined in a canonical way by
the choice of the computational mesh and the compression operator C. In Sect. 3.4, we
present an example of how such mappings may look like.

Depending on the compression operator C and decomposition (2.4), we can expect that
all the local matrices SA,j are created in a similar fashion and only depend on a local sub-
sample of the coefficient. This can be understood as a generalization of the assembly pro-
cess that underlies classical finite element system matrices: these matrices are composed
of local system matrices that are computed on each element separately and only require
knowledge about the coefficient on the respective element. In that context, the local sub-
matrices all have a similar structure and the mapping by the functions �j leads to over-
lapping contributions on the global level. Going back to the abstract setting, we generalize
these properties and assume the existence of a lower-dimensional reduced compression
operator

Cred : Rr →R
s×t , (2.6)

such that the contributions SA,j are of the form

SA,j = (Cred ◦ Rj)(A), (2.7)

where the operators

Rj : A → R
r (2.8)

extract r relevant features of a given global coefficient. In the context of, e.g., finite element
matrices, the operators Rj correspond to the restriction of a coefficient to an element-
based piecewise constant approximation and Cred incorporates the computation of a local
system matrix based on such a sub-sample of the coefficient. To achieve a uniform length
r of the output for the operators Rj, these operators may include artificially introduced
zeros depending on the respective geometric configurations (e.g., at the boundary). An
example for a quadrilateral mesh in two dimensions is shown in Fig. 1.

The problem of evaluating C can now be decomposed into multiple evaluations of the
reduced operator Cred that takes the local information Rj(A) of A and outputs a corre-
sponding local matrix as described in (2.7). In our setting of a coefficient A that is po-
tentially unresolved by the target scale h, evaluating Cred is nontrivial and might become
a bottleneck in multi-query scenarios as already indicated in Sect. 2.4. In such cases, we



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 7 of 23

propose to approximate the operator Cred with a deep neural network

�(·, θ ) : Rr →R
s×t ,

where θ ∈R
p is a set of p trainable parameters of moderate size such that, for given A ∈A,

the effective system matrix C(A) = SA can be efficiently approximated by

ŜA :=
∑

j∈J

�j
(
�

(
Rj(A), θ

))
,

which requires just a single forward pass of the minibatch (Rj(A))j∈J through the network.
Note that the approximation ŜA possesses the same sparsity structure as the matrix SA,
since the neural network yields only approximations to the local sub-matrices SA,j, whereas
the assembling process which determines the sparsity structure of the global matrix is
determined by the mappings �j, which are independent of the network � .

We emphasize that a decomposition of SA as described in (2.4)–(2.8) does not necessar-
ily require a uniform operator Cred. If multiple reduced operators are required for such a
decomposition, the idea of approximating them by one single neural network can still be
applied. It is, however, necessary for the ability of the network to generalize well beyond
data seen during training that the reduced operators at least involve certain similarities.

2.6 Network training
In practice, the neural network �(·, θ ) has to be trained in an offline phase from a set of
training examples before it can be used for approximating the mapping Cred. We propose
to draw N global coefficients (A(i))N

i=1 from A, extracting the relevant information (A(i)
j ) :=

(Rj(A(i))) from them and compressing it into the corresponding effective matrices (S(i)
A,j)

with Cred. This results in a total of |J| · N training samples available for the neural network
to train on, namely (A(i)

j , S(i)
A,j), i = 1, . . . N , j ∈ J . In order to learn the parameters of the

network, we then minimize the loss functional

J (θ ) =
1

N · |J|
N∑

i=1

∑

j∈J

1
2

‖�(A(i)
j , θ ) – S(i)

A,j‖2
Rs×t

‖S(i)
A,j‖2

Rs×t

(2.9)

over the parameter space R
p using iterative gradient-based optimization on minibatches

of the training data. This can be very efficiently implemented within modern deep learn-
ing frameworks such as TensorFlow [1], PyTorch [55], or Flux [40], which allow for the
automatic differentiation of the loss functional with respect to the network parameters.

2.7 Full algorithm
After having established all the conceptual pieces, we now put them together and return
to the abstract variational problem (2.2) from the beginning of the section. Suppose that
we want to solve (2.2) for a large number of given coefficients A(i), i = 1, . . . , M, and a given
right-hand side f ∈ H–1(D). For ease of notation, we restrict ourselves to a single right-
hand side, which is, however, not necessarily required for our approach. The proposed
procedure is summarized in Algorithm 1, divided into the offline and online stages of the
method.



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 8 of 23

Algorithm 1 Operator compression with neural network
(i) Offline phase

Input: number of samples N , index set J , operators Rj, error functional J
reduced compression operator Cred, initial neural network �(·, θ ),

Output: trained neural network �(·, θ )

Draw N samples (A(i))N
i=1 from A

for i = 1, . . . , N do
for j ∈ J do

Extract relevant information from coefficient: A(i)
j = Rj(A(i))

Compress to local matrix: S (i)
A,j = Cred(A(i)

j )
end for

end for
Train neural network �(·, θ ): update parameters θ based on data (A(i)

j , S (i)
A,j)i,j,

i = 1, . . . , N , j ∈ J , by minimizing the error functional J over the parameter space
R

p

return �(·, θ )
(ii) Online phase

Input: coefficients (A(i))M
i=1, index set J , operators Rj, trained network �(·, θ ),

right-hand side vector F , local-to-global mappings �j

Output: coefficient vectors (U (i))M
i=1

for i = 1, . . . , M do
for j ∈ J do

Extract relevant information from coefficient: A(i)
j = Rj(A(i))

end for
Fast compression: Ŝ (i)

A =
∑

j∈J �j(�(A(i)
j , θ ))

Solve: U (i) = (̂S (i)
A )–1F

end for
return (U (i))M

i=1

3 Application to elliptic homogenization
In this section, we specifically consider a family of prototypical elliptic diffusion operators
as a demonstrating example of how to apply the abstract framework laid down in Sect. 2
in practice.

3.1 Setting
From now on let the domain D be polyhedral. We consider the family of linear second-
order diffusion operators

L :=
{

– div(A∇·) : H1
0 (D) → H–1(D) | A ∈A

}
,

parameterized by the following set of admissible coefficients which possibly encode mi-
crostructures:

A :=
{

A ∈ L∞(D) | ∃ 0 < α ≤ β < ∞ : α ≤ A(x) ≤ β for almost all x ∈ D
}

. (3.1)



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 9 of 23

For the sake of simplicity, we restrict ourselves to scalar coefficients here. Note, however,
that also the consideration of matrix-valued coefficients is not an issue from a numerical
homogenization viewpoint. We remark that the family of operators L fulfills the assump-
tions of locality and symmetry from the abstract framework. In this setting, the abstract
problem (2.1) amounts to solving the following linear elliptic PDE with homogeneous
Dirichlet boundary condition:

⎧
⎨

⎩
– div(A∇u) = f in D,

u = 0 on ∂D,

which possesses a unique weak solution u ∈ H1
0 (D) for every f ∈ H–1(D) and A ∈ A. The

corresponding counterpart to the weak formulation (2.2) can be written as: find u ∈ H1
0 (D)

such that

aA(u, v) :=
∫

D
A∇u · ∇v dx = 〈f , v〉 for all v ∈ H1

0 (D) (3.2)

by using integration by parts on the divergence term.

3.2 Discretization and compression
Let now Th be a Cartesian mesh with characteristic mesh size h and denote with Q1(Th) the
corresponding space of piecewise bilinear functions. We consider the conforming finite
element space Vh := Q1(Th)∩H1

0 (D) of dimension m := dim(Vh). Generally, also other types
of meshes and finite element spaces could be employed, but we restrict ourselves to the
above choice for the moment. As we have already mentioned in Sect. 2.2, if the mesh Th

does not resolve the fine-scale oscillations of A, approximating u with a pure finite element
ansatz of seeking uh ∈ Vh such that

aA(uh, vh) = 〈f , vh〉 for all vh ∈ Vh

will not yield satisfactory results. In a setting where resolving A with the mesh is computa-
tionally too demanding, we are therefore interested in suitable choices for a compression
operator C. In particular, we want C to produce effective system matrices on the target
scale h that can be used to obtain appropriate approximations on this scale. In the follow-
ing, we briefly comment on possible choices for this operator that are based on the finite
element space Vh.

3.2.1 Compression by analytical homogenization
The idea of analytical homogenization is to replace an oscillating A with an appropriate ho-
mogenized coefficient Ahom ∈ L∞(D,Rd×d). The mathematical theory of homogenization
can treat very general nonperiodic coefficients in the framework of G- or H-convergence
[14, 51, 64]. However, apart from being nonconstructive in many cases, homogenization
in the classical analytical sense considers a sequence of operators – div(Aε∇·) indexed by
ε > 0 and aims to characterize the limit as ε tends to zero. In many realistic applications,
such a sequence of models can hardly be identified or may not be available in the first place.
Assuming that the necessary requirements on the coefficient A are met, a homogenized
coefficient Ahom exists and does not involve oscillations on a fine scale. The coefficient



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 10 of 23

Ahom can then be used in combination with a classical finite element ansatz, since Ahom

does no longer include troublesome fine-scale quantities. In practice, the homogenized
coefficients cannot be computed easily and need to be approximated. This is, for instance,
done with the heterogeneous multiscale method (HMM) [2, 15, 16], which in the end re-
places A with a computable approximation Ah ∈ L∞(D,Rd×d

sym ) of Ahom with (Ah)|T ∈R
d×d
sym

for all T ∈ Th. With this piecewise constant approximation of A, we obtain a possible com-
pression operator C. Given an enumeration 1, . . . , m of the inner nodes in Th and writing
λ1, . . . ,λm for the associated nodal basis of Vh, the compressed operator C(A) can be de-
fined as

(
C(A)

)
i,j = (SA)i,j :=

∑

T∈Th

∫

T

(
(Ah)|T∇λj

) · ∇λi dx. (3.3)

That is, one takes the classical finite element stiffness matrix corresponding to the homog-
enized coefficient Ahom as an effective system matrix. In this case, decomposition (2.4)
corresponds to a partition into element-wise stiffness matrices (with constant coefficient,
respectively) that are merged with a simple finite element assembly routine.

We emphasize that approaches based on analytical homogenization – such as (3.3) –
are able to provide reasonable approximations on the target scale h but are subject to
structural assumptions, in particular scale separation and local periodicity. The goal to
overcome these restrictions has led to a new class of numerical methods that are specif-
ically tailored to treating general coefficients with minimal assumptions. These methods
are known as numerical homogenization approaches and typically only require a bound-
edness condition as in (3.1).

3.2.2 Compression by numerical homogenization
The general idea of numerical homogenization methods is to replace the trial space Vh

with a suitable multiscale space Ṽh, see for instance the references [5, 7, 21, 38, 46, 52, 53].
One possible construction uses a one-to-one correspondence of Ṽh to the space Vh, which
implies that the two spaces possess the same number of degrees of freedom. Typically, the
multiscale space is chosen in a problem-adapted way. We indicate this dependence by
defining the new space Ṽh := PAVh, where PA : Vh → H1

0 (D) particularly depends on A.
Therefore, another possible choice of the operator C leads to the effective matrix C(A)
given by

(
C(A)

)
i,j = (SA)i,j := aA(PAλj,λi). (3.4)

A prominent example for such an approach – and, thus, the operator C – is the Petrov–
Galerkin version of the localized orthogonal decomposition (LOD) method which ex-
plicitly constructs a suitable operator PA. The LOD was introduced in [46] and the-
oretically and practically works for very general coefficients. It has also been success-
fully applied to other problem classes, for instance, wave propagation problems in the
context of Helmholtz and Maxwell equations [26, 27, 45, 57, 61] or the wave equa-
tion [4, 29, 44, 59], eigenvalue problems [47, 48], and in connection with time-dependent
nonlinear Schrödinger equations [37]. However, it requires a slight deviation from local-
ity. That is, while the classical finite element method and the HMM result in a system



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 11 of 23

matrix that only includes neighbor-to-neighbor communication between the degrees of
freedom, the multiscale approach (3.4) moderately increases this communication to effec-
tively incorporate the fine-scale information in A for a broader range of coefficients, which
is a common property of modern homogenization techniques. As indicated in [12], this
slightly increased communication indeed seems to be necessary to handle very general
coefficients.

Since we consider a class A of arbitrarily rough coefficients, the compression opera-
tor (3.4) corresponding to the operator PA constructed in the LOD method is a suitable
choice for our discussion as well as for the numerical experiments of Sect. 4. In the fol-
lowing subsection, we therefore have a closer look into its construction and summarize
some main results. Note that we restrict ourselves to an elliptic model problem with ho-
mogeneous Dirichlet boundary conditions, but the compression approach can generally
be extended to more involved settings such as the ones mentioned above.

3.3 Localized orthogonal decomposition
The method is based on a projective quasi-interpolation operator Ih : H1

0 (D) → Vh with
the following approximation and stability properties: for an element T ∈ Th, we require
that

∥∥h–1(v – Ihv)
∥∥

L2(T) + ‖∇Ihv‖L2(T) ≤ C‖∇v‖L2(N(T))

for all v ∈ H1
0 (D), where the constant C is independent of h, and N(S) := N1(S) is the neigh-

borhood (of order 1) of S ⊆ D defined by

N1(S) :=
⋃

{K ∈ Th|S ∩ K �= ∅}.

For a particular choice of Ih, we refer to [24].
For given Ih with the above properties, we can define the so-called fine-scale space W ,

which contains all functions that are not well captured by the finite element functions in
Vh. It is defined as the kernel of Ih with respect to H1

0 (D), i.e.,

W := kerIh|H1
0 (D),

and its local version, for any S ⊆ D, is given by

W(S) :=
{

w ∈W |supp(w) ⊆ S
}

.

In order to incorporate fine-scale information contained in the coefficient A, the idea is
now to compute coefficient-dependent local corrections of functions vh ∈ Vh. To this end,
we define the neighborhood of order � ∈N iteratively by N�(S) := N(N�–1(S)), � ≥ 2. For any
function vh ∈ Vh, its element corrector Q�

A,T vh∈W(N�(T)), T ∈ Th, is defined by

aA
(
Q�

A,T vh, w
)

=
∫

T
A∇vh · ∇w dx for all w ∈W

(
N�(T)

)
. (3.5)

Note that in an implementation, the element corrections Q�
A,T have to be computed on

a sufficiently fine mesh that resolves the oscillations of the coefficient A. Since the alge-
braic realization of the correctors and guidelines for an efficient implementation of the



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 12 of 23

LOD method in general are not within the scope of the article, we refer to [23] for details.
We emphasize that, by construction, the supports of the correctors Q�

A,T vh are limited to
N�(T). The global correction Q�

A : Vh → W then consists of a summation of these local
contributions and is given by

Q�
A :=

∑

T∈Th

Q�
A,T .

Note that the choice � = ∞ corresponds to a computation of the element corrections on
the entire domain D and leads to the orthogonality property

aA
((

1 – Q∞
A

)
vh, w

)
= 0 for all w ∈W , (3.6)

that defines an aA-orthogonal splitting H1
0 (D) = (1 – Q∞

A )Vh ⊕ W . This particularly ex-
plains the name orthogonal decomposition. The use of localized element corrections is
motivated by the decay of the corrections Q∞

A,T away from the element T . This is, for in-
stance, shown in [36, 56] (based on [46]) and reads

∥∥∇(
Q∞

A – Q�
A
)
vh

∥∥
L2(D) ≤ Ce–cdec�‖∇vh‖L2(D)

with a constant cdec which is independent of h and �.
Motivated by decomposition (3.6) and the localized approximations in (3.5), we choose

PA := 1 – Q�
A in (3.4). The space Ṽh := PAVh = (1 – Q�

A)Vh, which has the same number
of degrees of freedom as Vh, can then be used as an ansatz space for the discretization
of (3.2). Note that the original LOD method introduced in [46] considers a discretization
where Ṽh is also used as test space. We, however, consider the Petrov–Galerkin variant of
the method as analyzed in [22] that uses the classical finite element space Vh as test space
instead, i.e., we seek uh ∈ Vh such that

aA
((

1 – Q�
A
)
uh, vh

)
= 〈fh, vh〉 for all vh ∈ Vh, (3.7)

where fh = Mf ∈ Vh is again a suitable approximation of f ∈ H–1(D). This defines a com-
pressed operator SA as in (2.3) that maps uh ∈ Vh to fh ∈ Vh. As it turns out, the Petrov–
Galerkin formulation has some computational advantages over the classical method, in
particular in terms of memory requirement. For details, we again refer to [23]. The theory
in [22] shows that the approximation uh defined in (3.7) is first-order accurate in L2(D)
provided that � � | log h| and, additionally, f ∈ L2(D). More precisely, it holds

∥∥(
– div(A∇)

)–1 – S
–1
A

∥∥
L2(D)→L2(D) = sup

f ∈L2(D)

‖(– div(A∇))–1(f ) – S–1
A (Mf ) ‖L2(D)

‖f ‖L2(D)

� h + e–cdec�,

where Mf denotes the L2-projection of f onto Vh. Note that the methodology can actually
be applied to more general settings beyond the elliptic case, see for instance [49] for an
overview.



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 13 of 23

3.4 System matrix surrogate
We now return to the discussion of the compression operator C introduced in (3.4) that
maps coefficients A ∈A to the effective system matrices

(SA)i,j := aA
((

1 – Q�
A
)
λj,λi

)

obtained from the Petrov–Galerkin LOD method. Once SA has been computed for a given
A, an approximation uh =

∑m
j=1 Ujλj can be computed by solving the following linear sys-

tem for the coefficients U = (U1, . . . , Um)T :

SAU = F ,

where F := (〈Mf ,λ1〉, . . . , 〈Mf ,λm〉)T . Since uh is equivalently characterized by the solution
of (3.7), it captures the effective behavior of the solution to the continuous problem (3.2)
on the target scale h as discussed in the previous subsection.

The remainder of this section is dedicated to showing how the abstract decomposi-
tion (2.4) translates to the present LOD setting and how it can be implemented in practice.
Writing N (S) for the set of inner mesh nodes on some subdomain S ⊆ D and denoting
NS = |N (S)|, the effective system matrix SA can be decomposed as

SA =
∑

T∈Th

�T (SA,T ), (3.8)

where the matrices SA,T are local system matrices of the form

(SA,T )i,j =
∫

N�(T)
A ∇(

1 – Q�
A,T

)
λj · ∇λi dx, j ∈N (T), i ∈N

(
N�(T)

)
, (3.9)

i.e., they correspond to the interaction of the localized ansatz functions (1 –Q�
A,T )λj asso-

ciated with the nodes of the element T with the classical first order nodal basis functions
whose supports overlap with the element neighborhood N�(T). This means that SA,T is an
NN�(T) ×NT matrix. In practice, the coefficient A in (3.9) is often replaced with an element-
wise constant approximation Aε on a finer mesh Tε that resolves all the oscillations of A
and that we assume to be a uniform refinement of Th.

As already explained in the abstract framework, the mappings �T in (3.8) are local-to-
global mappings that assemble the contributions SA,T on an element neighborhood to a
global matrix. In particular, given an enumeration 1, . . . , NN�(T) of the nodes in N (N�(T)),
one considers a mapping gT (·) that assigns to a given node index i in the element neigh-
borhood N�(T) its global node index gT (i) ∈ {1, . . . , m}. This mapping can be represented
by an m × NN�(T) sparse matrix with entries

πT [i, j] =

⎧
⎨

⎩
1, if i = gT (j),

0, otherwise.

Analogously, given an enumeration 1, . . . , NT of the nodes in N (T), there exists a mapping
g̃T (·) – represented by an m×NT -matrix – that assigns to a given node in N (T) with index



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 14 of 23

i its global representative with index g̃T (i). The corresponding matrix is given by

ϕT [i, j] =

⎧
⎨

⎩
1, if i = g̃T (j),

0, otherwise.

Using these matrices, decomposition (3.8) reads

SA =
∑

T∈Th

πT SA,T ϕ′
T , (3.10)

where ϕ′
T denotes the transpose of the matrix ϕT .

From the definition of the local contributions SA,T introduced in (3.9), it directly follows
that SA,T does only depend on the restriction of A, respectively Aε , to the element neigh-
borhood N�(T). Let now Tε(N�(T)) be the restriction of the mesh Tε to N�(T), consisting of
r = |Tε(N�(T))| elements. Enumerating the elements then leads to the following operators
that correspond to the abstract reduction operators in (2.8):

RT : A →R
r (3.11)

that map a global coefficient A to a vector that contains the values of Aε in the respective
cells of Tε(N�(T)).

As already mentioned in the abstract section above, we aim for a uniform output size of
the operators RT , since the outputs of the operators RT will later on be fed into a neural
network with a fixed number of input neurons. In order to achieve that, we artificially
extend the domain D and the mesh Th by � layers of outer elements around the boundary
elements of Th, thus ensuring that the element neighborhood N�(T) always consists of
the same number of elements regardless of the respective location of the central element
T ∈ Th relative to the boundary. Further, we extend the piecewise constant coefficient Aε

by zero on those outer elements. Figure 1 illustrates this procedure for the case d = 2 and
� = 1 for an element T that lies in a corner of the computational domain. In this figure, Th

is a uniform quadrilateral mesh on the domain D and Tε is obtained from Th by a single

Figure 1 Illustration of the extended element neighborhood N1(T ) around a corner element T ∈ Th . An
asterisk indicates that Aε|K ∈ [α,β], a zero that Aε |K = 0 in the respective cell K of the refined mesh Tε



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 15 of 23

uniform refinement step. The asterisks indicate the coefficient Aε taking a regular value
in the interval [α,β], whereas in the cells outside of D, we set Aε to zero.

Note that this enlargement of the mesh Th to obtain equally sized element neighbor-
hoods N�(T) also introduces artificial mesh nodes that lie outside of D and that are all for-
mally considered as inner nodes for the definition of NS = |N (S)| with a subset S in the ex-
tended domain. This implies that the local system matrices SA,T of dimension NN�(T) × NT

introduced in (3.9) are all of equal size as well and the rows of SA,T corresponding to test
functions associated with nodes that are attached to outer elements contain only zeros.
During the assembly process of the local contributions to a global matrix, these zero rows
are disregarded (which is also consistent with our definition of the matrices πT , ϕT ).

Finally, in order to unify the computation of local contributions, we use an abstract map-
ping Cred with fixed input dimension r and fixed output dimension NN�(T) ×2d as proposed
for the abstract framework in Sect. 2.5. The mapping takes the restriction of Aε to an el-
ement neighborhood N�(T) as input data and outputs the corresponding approximation
of a local effective matrix SA,T that will be determined by an underlying neural network
�(·, θ ).

4 Numerical experiments
In this section, we demonstrate the feasibility of our proposed approach by perform-
ing numerical experiments in the setting of Sect. 3. For all experiments, we consider the
two-dimensional computational domain D = (0, 1)2, which we discretize with a uniform
quadrilateral mesh Th of characteristic mesh size h = 2–5. The coefficients are allowed to
vary on the finer unresolved scale ε = 2–8.

4.1 Coefficient family
In order to test our method’s ability to deal with coefficients that show oscillating behavior
across multiple scales, we introduce a hierarchy of meshes T k , k = 0, 1, . . . , 8, where the
initial mesh T 0 consists only of a single element, and the subsequent meshes are obtained
by uniform refinement, i.e., T k is obtained from T k–1 by subdiving each element of T k–1

into four equally sized elements. This implies that the characteristic mesh size of T k is
given by 2–k . In the following, we refer to the parameter k as the mesh level. In particular,
the computational mesh Th = T 5 corresponds to the mesh level 5, whereas the coefficients
may vary on the mesh level 8 and are therefore only resolved by the finest mesh T 8. We
thus have a scenario where an information gap of 3 mesh levels has to be bridged. Based
on the mesh hierarchy, we now define the coefficient family A of interest. Let Ak denote
the set of element-wise constant coefficients on T k whose values in the respective cells
are iid uniformly distributed on the interval [α,β] := [1, 5], i.e.,

Ak :=
{

A ∈ Q0(T k)|A|T iid∼ U
(
[1, 5]

)
for all T ∈ T k}.

Furthermore, let Ams denote the set of coefficients of the form

A =
1
9

8∑

k=0

Ak , Ak ∈Ak .

These multiscale coefficients are especially interesting, since they vary on all considered
scales simultaneously and are therefore very hard to deal with using classical homogeniza-



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 16 of 23

tion techniques due to their unstructured nature. The total set of interest A is then defined
as

A :=
8⋃

k=0

Ak ∪Ams.

In the following, we will frequently index coefficients sampled fromA by their correspond-
ing level, i.e., write Ak , k ∈ {0, . . . , 8, ms} instead of a plain A.

4.2 Data generation and preprocessing
In order to train the network, we sample 500 coefficients A(i)

k , i = 1, . . . , 500, from each
Ak , k ∈ {0, . . . , 8, ms}, where the individual samples A(i)

k on the coarser mesh levels k =
0, . . . , 7 are prolongated to the finest mesh T 8 in order to achieve a uniform dimension
across all scales. The set of all sample coefficients is subsequently divided into a training,
validation, and test set according to a 80–10–10 split. In order to achieve an identical
distribution in all three sets, the splitting is performed separately on every level (including
ms), i.e., for every k ∈ {0, . . . , 8, ms}, the first 400 coefficients A(i)

k , i = 1, . . . , 400, get assigned
to the training setDtrain, the samples with indices 401, . . . , 450 to the validation setDval, and
those with indices 451, . . . , 500 to the test set Dtest. Then, we individually split each sample
A(i)

k , using the reduction operators RT introduced in (3.11), into sub-samples A(i)
k,T based

on element neighborhoods N�(T) for � = 2 that are centered around the elements T ∈ Th,
also taking into account the artificial extension of the element neighborhoods around the
boundary of D. Since our target scale of interest is h = 2–5 and Th is a uniform quadrilateral
mesh, this yields 1024 sub-samples A(i)

k,T ∈R
1600 per sample A(i)

k ∈R
65,536. Note that the size

of the sub-samples is obtained from the construction of the local neighborhoods N�(T).
Here, each neighborhood consists of (2�+1)2 = 25 elements in Th = T 5, which corresponds
to 64 · 25 = 1600 elements in the mesh Tε = T 8.

The corresponding “labels”, i.e., the local effective system matrices S(i)
A,k,T ∈ R

36×4, are
then computed with the Petrov–Galerkin LOD according to (3.9) and flattened column-
wise to vectors in R

144. In total, we obtain 10 · 400 · 1024 = 4,096,000 pairs (A(i)
k,T , S(i)

A,k,T ) ∈
Dtrain to train our network with, and 512,000 pairs in Dval and Dtest each.

4.3 Network architecture and training
Given the above dataset, we now try to fit it with a suitable neural network � . As net-
work architecture, we consider a dense feedforward network with a total of eight layers
including the input and output layer. As activation function, we choose the standard ReLU
activation given by ρ(x) := max(0, x) in the first seven layers and the identity function in
the last layer. By convention, the activation function acts component-wise on vectors. The
network output is thus of the form

�(x) = W (8)ρ
(
W (7)(. . .ρ

(
W (2)ρ

(
W (1)x + b(1)) + b(2)) . . .

)
+ b(7)) + b(8), (4.1)

where the weight matrices and bias vectors have the following dimensions:

W (1) ∈R
1600×1600, W (2) ∈ R

800×1600, W (3) ∈R
800×800, W (4) ∈R

400×800,

W (5) ∈R
400×400, W (6) ∈R

144×400, W (7) ∈R
144×144, W (8) ∈R

144×144,



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 17 of 23

b(1) ∈R
1600, b(2),∈R

800, b(3) ∈R
800, b(4) ∈ R

400,

b(5) ∈R
400, b(6) ∈ R

144, b(7) ∈R
144, b(8) ∈R

144,

yielding a total of 5,063,504 trainable parameters. The idea behind this architecture is that
in the first six layers, information about the coefficient in the input element neighbor-
hood is gathered and combined by allowing communication between all inputs in layers
with odd indices, whereas in the layers with even indices, this information is repeatedly
compressed. That is, every other layer is built in such a way that the input and output
dimension are equal. If the neurons in that layer are understood as some sort of degrees
of freedom in a mesh, this refers to having communication among all of these degrees of
freedoms, while the layers in between reduce the number of degrees of freedom, which
can be interpreted as transferring information to a coarser mesh. In the last two layers,
this compressed information is taken and assembled to the local effective system matrix.
Note that this logarithmic dependence of the number of layers on the number of scales
that need to be bridged by the network (two layers per mesh level to be bridged plus two
layers to assemble the local effective matrix) yielded the most reliable results in our ex-
periments. Shallower networks had difficulties fitting the complex training set consisting
of coefficients varying on different scales, whereas deeper networks were more prone to
overfitting the training set. More involved architectures, for example the ones that include
skip connections between layers like in the classic ResNet [34], are also conceivable; how-
ever, this seems not to be necessary to obtain good results. The key message here is that
the coefficient-to-surrogate map can be satisfyingly approximated by a simple feedforward
architecture, whose size does depend only on the scales ε and h, but not on any finer dis-
cretization scales. The implementation of the network as well as the training is performed
using the library Flux [40] for the open-source scientific computing language Julia [10].

After initializing all parameters in the network according to a Glorot uniform distribu-
tion [32], network (4.1) is trained on minibatches of 1000 samples for a total of 20 epochs
on Dtrain, using the ADAM optimizer [42] with a step size of 10–4 for the first 5 epochs
before reducing it to 10–5 for the subsequent 15 epochs. It could be observed that further
training led to a stagnation of the validation error, whereas the error on the training set
continued to decrease (very slowly but gradually), indicating overfitting of the network.
The development of the loss functional J defined in (2.9) over the epochs is shown in
Fig. 2. Note that training and validation loss stay very close to each other during the whole
training process since Dtrain and Dval have the same sample distribution due to our cho-
sen splitting procedure. The development of the loss during the training and an average
loss of 7.78 · 10–5 on the test set Dtest indicates that the network has at least learned to
approximate the local effective system matrices. In applications, however, we are mostly
concerned about how well this translates to the global level, when computing solutions to
problem (3.2) using a global system matrix assembled from network outputs. In order to
investigate this question, the next three subsections are dedicated to evaluating the per-
formance of the trained network at exactly this task for several coefficients unseen during
training. For a given right-hand side f and coefficient A, we denote with uh the solution
of (3.7), obtained with the Petrov–Galerkin LOD matrix SA defined in (3.10), and with ûh

the solution obtained by using the neural network approximation of this matrix, i.e.,

ŜA :=
∑

T∈Th

πT �
(
RT (A)

)
ϕ′

T . (4.2)



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 18 of 23

Figure 2 Development of loss functional J during 20 epochs of the network training

The spectral norm difference ‖SA – ŜA‖2, the L2-error ‖uh – ûh‖L2(D) as well as the visual
discrepancy between the two solutions are then considered as a measure of the network’s
global performance. We emphasize once more that computing approximate surrogates via
(4.2) is significantly faster compared to (3.8) and (3.9). This is due to the fact that no correc-
tor problems of the form (3.5) have to be solved to obtain the surrogate model. As pointed
out, the solution of these local problems requires inversion on a very fine discretization
scale that is significantly smaller than the scale ε on which the coefficient varies. In order to
compute the system matrix SA, one has to solve NTh fine-scale linear systems, where NTh

denotes the number of elements in Th. In contrast, the main computational effort of eval-
uating our trained network consists of NL matrix-matrix multiplications, where NL is the
number of layers in the network (not taking into account bias vectors and the activation
function).

4.4 Experiment 1
For our first experiment, we consider an unstructured multiscale coefficient sampled from
Ams that was not a part of the training set and a constant right-hand side f ≡ 1. The coeffi-
cient (top left), the error |uh(x) – ûh(x)| (top right) as well as representative cross-sections
along x1 = 0.5 (bottom left) and x2 = 0.5 (bottom right) of the two solutions uh and ûh are
shown in Fig. 3. The spectral norm difference ‖SA – ŜA‖2 ≈ 6.58 · 10–2 and the L2-error
‖uh – ûh‖L2(D) ≈ 2.13 · 10–4 confirm the visual impression – the network has successfully
learned to produce a system matrix that is able to capture the behavior of the solution on
the target scale well.

4.5 Experiment 2
Next, we test the network’s performance for smoother and more regular coefficients than
the ones it has been trained with. As a demonstrating example, we consider the coeffi-
cient A(x) = 2 + sin(2πx1) sin(2πx2). The network’s input is obtained by evaluating A on
the midpoints of the mesh Tε on the fine unresolved scale ε. In this example, we choose the
function f (x) = x1χ{x1≥0.5} as a right-hand side, where χS denotes the characteristic func-
tion of the set S ⊆ D. The results are shown in Fig. 4. We obtain an even better L2-error
of ‖uh – ûh‖L2(D) ≈ 7.56 · 10–5 and a spectral norm difference of ‖SA – ŜA‖2 ≈ 3.91 · 10–2.
A comparison between the solutions at the cross-sections shows that there is almost no



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 19 of 23

Figure 3 Results of Experiment 1: Unstructured multiscale coefficient sampled from Ams (top left),
|uh(x) – ûh(x)| (top right), and comparison of uh vs ûh along the cross sections x1 = 0.5 (bottom left) and
x2 = 0.5 (bottom right)

Figure 4 Results of Experiment 2: Smooth coefficient (top left), |uh(x) – ûh(x)| (top right), and comparison of
uh vs ûh along the cross sections x1 = 0.5 (bottom left) and x2 = 0.5 (bottom right)



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 20 of 23

Figure 5 Results of Experiment 3: Coefficient with cracks (top left), |uh(x) – ûh(x)| (top right), and comparison
of uh vs ûh along the cross sections x1 = 0.5 (bottom left) and x2 = 0.5 (bottom right)

discernible visual difference between the LOD-solution and the approximation obtained
using our trained network.

4.6 Experiment 3
As a third experiment, we choose another coefficient that possesses an unfamiliar struc-
ture not seen by the network during the training phase, this time a less regular one. The
coefficient is shown in the top left of Fig. 5. It is composed of a background part (blue
region), which is obtained by sampling uniformly and independently on each element of
Tε from the interval [1, 2], and several “cracks” (yellow regions), in which the coefficient
varies uniformly in [4, 5]. The right-hand side here is f (x) = cos(2πx1). A computation
of the L2-error ‖uh – ûh‖L2(D) ≈ 2.72 · 10–4 shows that the overall error is still moderate;
a closer visual inspection of the solutions along the cross-sections however reveals more
prominent deviations of the neural network approximation to the ground truth. The spec-
tral norm difference ‖SA – ŜA‖2 ≈ 2.81 · 10–1 is also one order of magnitude larger than
in the previous examples. Nevertheless, it might be possible that performing a few cor-
rective training steps including samples of this nature would be sufficient to fix this issue.
A thorough investigation of this hypothesis, along with the extension to other coefficient
classes is subject of future work.

5 Conclusion and outlook
We proposed an approach to the compression of linear differential operators – parame-
terized by PDE coefficients that may depend on microscopic quantities that are not re-
solved by a target discretization scale of interest – to lower-dimensional surrogates that
are based on a combination of existing model reduction methods with a data-driven deep
learning framework. Our method is motivated by the fact that the computation of the



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 21 of 23

surrogates (represented by effective system matrices) via classical methods is nontrivial
and requires significant computational resources in multi-query settings. To overcome
this problem, we showed how the compression process can be approximated by a neural
network based on given training data that can be generated using existing compression ap-
proaches. Importantly, we avoid a global approximation by a neural network and instead
first decompose the compression map into local contributions, which can then be approx-
imated by one single unified network. As an example, we studied a class of second-order
elliptic diffusion operators. We showed how to approximate the compression map based
on the Petrov–Galerkin formulation of the localized orthogonal decomposition method
with a neural network. The proposed ansatz has been numerically validated for a large set
of piecewise constant and highly oscillatory multiscale coefficients. Furthermore, it has
been shown that the approach also generalizes well, in the sense that a well-trained net-
work is able to produce reasonable results even for classes of coefficients that it has not
been trained on.

For future research, many possible research questions building on the present work are
conceivable. Straightforward extensions would be to consider stochastic settings with dif-
ferential operators parameterized by random fields or settings with high contrast. Another
question to investigate is to what degree the method can be made robust against changes
in geometry, for example, by training the network not only on coefficients that are sampled
on a fixed domain, but rather on reference patches with varying geometries. Mimicking a
hierarchical discretization approach, one may also try to directly approximate the inverse
operator which can be represented by a sparse matrix [25]. On a more theoretical level, the
approximation properties of neural networks for various existing compression operators
could be investigated, along with the question of the number of training samples required
to faithfully approximate those for a given family of coefficients.

Acknowledgements
Not applicable.

Funding
The work of F. Kröpfl and D. Peterseim is part of the project that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement
No. 865751 - Computational RandomMultiscale Problems). R. Maier acknowledges support by the Göran Gustafsson
Foundation for Research in Natural Sciences and Medicine. Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
The dataset generated and used for the numerical experiments in this work are available from the corresponding author
F. Kröpfl on reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The work emerged from a close collaboration between the authors. All authors read and approved the final manuscript.

Author details
1Institute of Mathematics, University of Augsburg, Universitätsstr. 12a, 86159 Augsburg, Germany. 2Institute of
Mathematics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany. 3Centre for Advanced Analytics
and Predictive Sciences (CAAPS), University of Augsburg, Universitätsstr. 12a, 86159 Augsburg, Germany.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 July 2021 Accepted: 26 March 2022



Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 22 of 23

References
1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat,

S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., TensorFlow, X.Z.: Large-Scale Machine
Learning on Heterogeneous Systems (2015) Software available from tensorflow.org

2. Abdulle, A., E, W., Engquist, B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21, 1–87
(2012)

3. Abdulle, A., Henning, P.: A reduced basis localized orthogonal decomposition. J. Comput. Phys. 295, 379–401 (2015)
4. Abdulle, A., Henning, P.: Localized orthogonal decomposition method for the wave equation with a continuum of

scales. Math. Comput. 86(304), 549–587 (2017)
5. Altmann, R., Henning, P., Peterseim, D.: Numerical homogenization beyond scale separation. Acta Numer. 30, 1–86

(2021)
6. Arbabi, H., Bunder, J.E., Samaey, G., Roberts, A.J., Kevrekidis, I.G.: Linking machine learning with multiscale numerics:

data-driven discovery of homogenized equations. JOM 72(12), 4444–4457 (2020)
7. Babuška, I., Lipton, R.: Optimal local approximation spaces for generalized finite element methods with application to

multiscale problems. Multiscale Model. Simul. 9(1), 373–406 (2011)
8. Babuška, I., Osborn, J.E.: Can a finite element method perform arbitrarily badly? Math. Comput. 69(230), 443–462

(2000)
9. Berner, J., Dablander, M., Grohs, P.: Numerically solving parametric families of high-dimensional Kolmogorov partial

differential equations via deep learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances
in Neural Information Processing Systems, vol. 33, pp. 16615–16627. Curran Associates, Red Hook (2020)

10. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1),
65–98 (2017)

11. Bhattacharya, K., Hosseini, B., Kovachki, N.B., Stuart, A.M.: Model reduction and neural networks for parametric PDEs.
SMAI J. Comput. Math. 7, 121–157 (2021)

12. Caiazzo, A., Maier, R., Peterseim, D.: Reconstruction of quasi-local numerical effective models from low-resolution
measurements. J. Sci. Comput. 85(1), Article ID 10 (2020)

13. Chan, S., Elsheikh, A.H.: A machine learning approach for efficient uncertainty quantification using multiscale
methods. J. Comput. Phys. 354, 493–511 (2018)

14. De Giorgi, E.: Sulla convergenza di alcune successioni d’integrali del tipo dell’area. Rend. Mat. 6(8), 277–294 (1975)
15. E, W., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)
16. E, W., Engquist, B.: The heterogeneous multi-scale method for homogenization problems. In: Multiscale Methods in

Science and Engineering. Lect. Notes Comput. Sci. Eng., vol. 44, pp. 89–110. Springer, Berlin (2005)
17. E, W., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential

equations and backward stochastic differential equations. Commun. Math. Stat. 5(4), 349–380 (2017)
18. E, W., Han, J., Jentzen, A.: Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine

learning. Nonlinearity 35(1), 278–310 (2021)
19. E, W., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems.

Commun. Math. Stat. 6(1), 1–12 (2018)
20. Efendiev, Y.R., Galvis, J., Wu, X.-H.: Multiscale finite element methods for high-contrast problems using local spectral

basis functions. J. Comput. Phys. 230(4), 937–955 (2011)
21. Efendiev, Y.R., Hou, T.Y.: Multiscale Finite Element Methods: Theory and Applications. Surveys and Tutorials in the

Applied Mathematical Sciences, vol. 4. Springer, New York (2009)
22. Elfverson, D., Ginting, V., Henning, P.: On multiscale methods in Petrov-Galerkin formulation. Numer. Math. 131(4),

643–682 (2015)
23. Engwer, C., Henning, P., Målqvist, A., Peterseim, D.: Efficient implementation of the localized orthogonal

decomposition method. Comput. Methods Appl. Mech. Eng. 350, 123–153 (2019)
24. Ern, A., Guermond, J.-L.: Finite element quasi-interpolation and best approximation. ESAIM: Math. Model. Numer.

Anal. 51(4), 1367–1385 (2017)
25. Feischl, M., Peterseim, D.: Sparse compression of expected solution operators. SIAM J. Numer. Anal. 58(6), 3144–3164

(2020)
26. Gallistl, D., Henning, P., Verfürth, B.: Numerical homogenization of H(curl)-problems. SIAM J. Numer. Anal. 56(3),

1570–1596 (2018)
27. Gallistl, D., Peterseim, D.: Stable multiscale Petrov–Galerkin finite element method for high frequency acoustic

scattering. Comput. Methods Appl. Math. 295, 1–17 (2015)
28. Gao, H., Sun, L., Wang, J.-X.: Phygeonet: physics-informed geometry-adaptive convolutional neural networks for

solving parameterized steady-state PDEs on irregular domain. J. Comput. Phys. 428, 110079 (2021)
29. Geevers, S., Maier, R.: Fast mass lumped multiscale wave propagation modelling. IMA J. Numer. Anal. (2022) To appear
30. Geist, M., Petersen, P., Raslan, M., Schneider, R., Kutyniok, G.: Numerical solution of the parametric diffusion equation

by deep neural networks. J. Sci. Comput. (2022) To appear
31. Ghavamian, F., Simone, A.: Accelerating multiscale finite element simulations of history-dependent materials using a

recurrent neural network. Comput. Methods Appl. Math. 357, 112594 (2019)
32. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of

the 13th International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference
Proceedings, pp. 249–256 (2010)

33. Han, J., Jentzen, A., E, W.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad.
Sci. 115(34), 8505–8510 (2018)

34. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

35. Hellman, F., Keil, T., Målqvist, A.: Numerical upscaling of perturbed diffusion problems. SIAM J. Sci. Comput. 42(4),
A2014–A2036 (2020)

http://tensorflow.org


Kröpfl et al. Advances in Continuous and Discrete Models         (2022) 2022:29 Page 23 of 23

36. Henning, P., Peterseim, D.: Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4),
1149–1175 (2013)

37. Henning, P., Wärnegård, J.: Superconvergence of time invariants for the Gross-Pitaevskii equation. Math. Comput.
91(334), 509–555 (2022)

38. Hou, T.Y., Wu, X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous
media. J. Comput. Phys. 134(1), 169–189 (1997)

39. Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T.A.: A proof that rectified deep neural networks overcome the curse
of dimensionality in the numerical approximation of semilinear heat equations. Ser. Partial Differ. Equ. Appl. 1(2), 1–34
(2020)

40. Innes, M.: Flux: elegant machine learning with Julia. J. Open Sour. Softw. (2018)
41. Khoo, Y., Lu, J., Ying, L.: Solving parametric PDE problems with artificial neural networks. Eur. J. Appl. Math. 32(3),

421–435 (2021)
42. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). Preprint arXiv:1412.6980
43. Kutyniok, G., Petersen, P., Raslan, M., Schneider, R.: A theoretical analysis of deep neural networks and parametric

PDEs. Constr. Approx. (2022) To appear
44. Maier, R., Peterseim, D.: Explicit computational wave propagation in micro-heterogeneous media. BIT Numer. Math.

59(2), 443–462 (2019)
45. Maier, R., Verfürth, B.: Multiscale scattering in nonlinear Kerr-type media. Math. Comput. (2022) To appear
46. Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014)
47. Målqvist, A., Peterseim, D.: Computation of eigenvalues by numerical upscaling. Numer. Math. 130(2), 337–361 (2015)
48. Målqvist, A., Peterseim, D.: Generalized finite element methods for quadratic eigenvalue problems. ESAIM: Math.

Model. Numer. Anal. 51(1), 147–163 (2017)
49. Målqvist, A., Peterseim, D.: Numerical Homogenization by Localized Orthogonal Decomposition. SIAM Spotlights,

vol. 5. SIAM, Philadelphia (2020)
50. Målqvist, A., Verfürth, B.: An offline-online strategy for multiscale problems with random defects. ESAIM: Math. Model.

Numer. Anal. (2022) To appear
51. Murat, F., Tartar, L.: H-convergence. In: Séminaire d’Analyse Fonctionnelle et Numérique de l’Université d’Alger (1978)
52. Owhadi, H.: Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical

information games. SIAM Rev. 59(1), 99–149 (2017)
53. Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse

super-localization. ESAIM: Math. Model. Numer. Anal. 48(2), 517–552 (2014)
54. Padmanabha, G.A., Zabaras, N.: A Bayesian multiscale deep learning framework for flows in randommedia. Found.

Data Sci. 3(2), 251–303 (2021)
55. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,

A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., PyTorch, S.C.: An
imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.,
Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran
Associates, Red Hook (2019)

56. Peterseim, D.: Variational multiscale stabilization and the exponential decay of fine-scale correctors. In: Building
Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lect. Notes
Comput. Sci. Eng., vol. 114, pp. 341–367. Springer, Cham (2016)

57. Peterseim, D.: Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comput.
86(305), 1005–1036 (2017)

58. Peterseim, D., Sauter, S.A.: Finite elements for elliptic problems with highly varying, nonperiodic diffusion matrix.
Multiscale Model. Simul. 10(3), 665–695 (2012)

59. Peterseim, D., Schedensack, M.: Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput.
72(3), 1196–1213 (2017)

60. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

61. Ren, X., Hannukainen, A., Belahcen, A.: Homogenization of multiscale Eddy current problem by localized orthogonal
decomposition method. IEEE Trans. Magn. 55(9), 1–4 (2019)

62. Schwab, C., Zech, J.: Deep learning in high dimension: neural network expression rates for generalized polynomial
chaos expansions in UQ. Anal. Appl. 17(01), 19–55 (2019)

63. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput.
Phys. 375, 1339–1364 (2018)

64. Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm. Super. Pisa, Cl. Sci.
3(22), 571–597 (1968)

65. Wang, Y., Cheung, S.W., Chung, E.T., Efendiev, Y., Wang, M.: Deep multiscale model learning. J. Comput. Phys. 406,
109071 (2020)

http://arxiv.org/abs/arXiv:1412.6980

	Operator compression with deep neural networks
	Abstract
	MSC
	Keywords

	Introduction
	Abstract framework
	Setting
	Discretization
	Characterization in terms of a system matrix
	Multi-query scenarios
	System matrix decomposition
	Network training
	Full algorithm

	Application to elliptic homogenization
	Setting
	Discretization and compression
	Compression by analytical homogenization
	Compression by numerical homogenization

	Localized orthogonal decomposition
	System matrix surrogate

	Numerical experiments
	Coefﬁcient family
	Data generation and preprocessing
	Network architecture and training
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion and outlook
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


