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Abstract
In this paper, we analyze a new exponential-type integrator for the nonlinear cubic
Schrödinger equation on the d dimensional torus Td . The scheme has also been
derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi
10:1–76, 2022). It is explicit and efficient to implement. Here, we present an alternative
derivation and give a rigorous error analysis. In particular, we prove the second-order
convergence in Hγ (Td) for initial data in Hγ+2(Td) for any γ > d/2. This improves the
previous work (Knöller et al. in SIAM J. Numer. Anal. 57:1967–1986, 2019).
The design of the scheme is based on a new method to approximate the nonlinear

frequency interaction. This allows us to deal with the complex resonance structure in
arbitrary dimensions. Numerical experiments that are in line with the theoretical
result complement this work.
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1 Introduction
The nonlinear Schrödinger equation (NLS) arises as a model equation in several areas of
physics see, e.g., Sulem and Sulem [20]. In this paper, we are concerned with the numerical
integration of the NLS equation on a d dimensional torus:

⎧
⎨

⎩

i∂tu(t, x) + �u(t, x) + λ|u(t, x)|2u(t, x) = 0, t > 0, x ∈ T
d,

u(0, x) = u0(x), x ∈ T
d,

(1.1)

where T = (0, 2π ), λ = ±1, u = u(t, x) : R+ ×T
d →C is the sought-after solution, and u0 ∈

Hϑ (Td) for some ϑ ≥ 0 is the given initial data. Here we only consider the case λ = 1; the
case λ = –1 can be treated in exactly the same way. Note that the well-posedness of the
nonlinear Schrödinger equation in Hϑ (Td) has been established for ϑ > d

2 – 1. For details,
we refer to [2].

Many authors studied numerical aspects of the NLS equation. A considerable amount
of literature has been published on splitting and exponential integration methods. For
a general introduction to these methods, we refer to [9–12, 18]. It is well known that
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schemes of an arbitrarily high order can be constructed assuming that the solution of
(1.1) is smooth enough. For instance, the second-order convergence in Hϑ was obtained
by requiring four additional derivatives of the solution for the Strang splitting scheme [17].
Further convergence results for the semilinear Schrödinger equation can be found, e.g., in
[1, 4–6, 8, 13, 14, 21].

For classical methods and their analysis, strong regularity assumptions are unavoidable.
Recently, however, so-called low-regularity integrators have emerged as a powerful tool
for reducing the regularity requirements. The first breakthrough was made in [19], where
the authors introduced a new exponential-type numerical scheme and achieved first-order
convergence in Hϑ (Td) for Hϑ+1(Td) initial data with ϑ > d

2 . Later, a first-order integrator
was proposed in [22]. It converges in Hϑ (T) without any loss of regularity and conserves
mass up to order five. A second-order Fourier-type integrator was given by Knöller, Os-
termann, and Schratz [16]. The integrator is based on the variation-of-constants formula
and uses certain resonance-based approximations in Fourier space. For the second-order
convergence, the scheme requires two additional derivatives of the solution in one space
dimension and three derivatives in higher space dimensions. In this paper, we present and
analyze an improved integrator that enables us to get the desired second-order accuracy
with only two additional bounded spatial derivatives in dimensions d ≥ 1.

There are two main difficulties in designing low-regularity integrators. The first one is to
control the spatial derivatives in the approximation while keeping the nonlinearity point-
wise defined in physical space rather than in Fourier space. The second one is to overcome
the difficulties caused by the complicated structure of resonances in higher dimensions.
To explain this, let

ξ =
(
ξ 1, . . . , ξd) ∈ Z

d, ξ · η = ξ 1η1 + · · · + ξdηd, |ξ |2 = ξ · ξ .

and consider the phase function

φ3 = |ξ |2 + |ξ 1|2 – |ξ 2|2 – |ξ 3|2.

In [16], letting

α = 2|ξ 1|2, β = 2ξ 1 · ξ 2 + 2ξ 1 · ξ 3 + 2ξ 2 · ξ 3,

the authors approximated the phase function by

eisφ3 = eisα+isβ = eisα + eisβ – 1 + R1(α,β , s), (1.2)

where |R1(α,β , s)| � s2|α||β|. This choice requires three additional derivatives in higher
space dimensions for second-order convergence.

Now we explain our current approach, for which we consider a slightly more general sit-
uation. Assume that α has a “good” structure, which means

∫ τ

0 eisα ds is point-wise defined
(as in the example above) while β has a “bad” structure but still has a low upper bound,
e.g., consisting of mixed derivatives (as in the example above). In order to approximate

∫ τ

0
eis(α+β) ds = τϕ

(
iτ (α + β)

)
,
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where

ϕ(z) =

⎧
⎨

⎩

ez–1
z , z �= 0,

1, z = 0,
(1.3)

we employ the Taylor series expansion

ϕ
(
iτ (α + β)

) ≈ ϕ(iτα) + iτβϕ′(iτα).

Next, we use that

ϕ′(z) = –ψ(z),

where

ψ(z) =

⎧
⎨

⎩

ez–1–zez

z2 , z �= 0,

– 1
2 , z = 0,

(1.4)

and replace iβπ by eiβτ – 1. Then, we obtain

∫ τ

0
eis(α+β) ds = τϕ(iτα) – τ

(
eiτβ – 1

)
ψ(iτα) + R2(α,β , τ ), (1.5)

where |R2(α,β , τ )| � τ 3|β|2. This bound will be proved in Lemma 2.2 below. Relying on
this structure, the scheme requires only two additional derivatives for τ 2, which gives con-
vergence in Hϑ (Td) for initial data in Hϑ+2(Td).

Finally, it does not require any specific structure of β . In particular, β–1 is not contained
in the expression (1.5). This is another advantage compared to (1.2), for which the inte-
gration (or a further approximation) of

∫ τ

0 eisβ ds is needed.
Now we state the main result of this paper. We define the new low-regularity integrator

with second-order accuracy as

u0 = u0,

un+1 = eiτ�un + iτeiτ�
{[

ϕ(–2iτ�) + ψ(–2iτ�)
]
ūn · (un)2}

– iτ
[
eiτ�ψ(–2iτ�)ūn] · (eiτ�un)2 –

τ 2

2
eiτ�

[∣
∣un∣∣4un]

(1.6)

for n ≥ 0. For this method, we have the following convergence result.

Theorem 1.1 Let un be the numerical solution (1.6) of the Schrödinger equation (1.1) up
to some fixed time T > 0. Under the assumption that u0 ∈ Hγ +2(Td) for some γ > d

2 , there
exist constants τ0, C > 0 such that for any 0 < τ ≤ τ0, it holds

∥
∥u(tn, ·) – un∥∥

Hγ ≤ Cτ 2, 0 ≤ nτ ≤ T . (1.7)

The constants τ0 and C only depend on T and ‖u‖L∞((0,T);Hγ +2(Td)).
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Having finished the analysis of this paper, we became aware of the recent work [3] by
Bruned and Schratz, in which low-regularity integrators for dispersive equations are dis-
cussed in a broader context. In particular, using the formalism of decorated trees, vari-
ous numerical methods for the nonlinear Schrödinger equation are proposed. The above
method (1.6) is stated in formula (5.17). Nevertheless, we give here an alternative (and
brief ) derivation of the method because the employed approximations form the basis of
our rigorous error analysis.

The paper is organized as follows: In Sect. 2, we introduce some notations and collect
some useful lemmas. In Sect. 3, we discuss the construction of the method and analyze
the accuracy and regularity requirements of each single approximation step. Collecting all
these results, we prove our convergence result (Theorem 1.1) in Sect. 4. This theoretical
result is illustrated with some numerical experiments in Sect. 5.

2 Preliminaries
In this section, we introduce some notations, recall a result from harmonic analysis, and
give some elementary estimates. All of these will be used frequently in the following sec-
tions.

2.1 Some notations
We start with notations, some of which are borrowed from [7]. We write A � B or B � A
to denote the statement that A ≤ CB for some constant C > 0. This constant may vary
from line to line, but it is independent of τ or n. Further, we write A ∼ B for A � B � A,
we denote

〈ξ 〉 =
√

1 + ξ · ξ , ξ =
(
ξ 1, . . . , ξd) ∈ Z

d

and define (dξ ) to be the normalized counting measure on Z
d such that

∫

a(ξ )(dξ ) =
∑

ξ∈Zd

a(ξ ).

The Fourier transform of a function f on T
d is defined by

f̂ (ξ ) =
1

(2π )d

∫

Td
e–ix·ξ f (x) dx.

Instead of f̂ , we sometimes also write F f or F (f ). The Fourier inversion formula takes the
form

f (x) =
∫

eix·ξ f̂ (ξ )(dξ ).

We recall the following properties of the Fourier transform:

‖f ‖L2(Td) = (2π )
d
2 ‖f̂ ‖L2(Zd) (Plancherel);

〈f , g〉 =
∫

Td
f (x)g(x) dx = (2π )d

∫

f̂ (ξ )ĝ(ξ )(dξ ) (Parseval);

(̂fg)(ξ ) =
∫

f̂ (ξ – η)ĝ(η)(dη) (convolution).
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For the Sobolev space Hs(Td), s ≥ 0, we consider the equivalent norm

‖f ‖Hs(Td) =
∥
∥Jsf

∥
∥

L2(Td) = (2π )
d
2
∥
∥
(
1 + |ξ |2) s

2 f̂ (ξ )
∥
∥

L2(Zd),

where Js = (1 – �) s
2 .

2.2 Some estimates
First, we recall the following inequalities, which were originally proved in [15].

Lemma 2.1 (The Kato-Ponce inequality, [15]) The following inequalities hold:
(i) For any γ > d

2 and f , g ∈ Hγ , we have

∥
∥Jγ (fg)

∥
∥

L2 � ‖f ‖Hγ ‖g‖Hγ .

(ii) For any δ ≥ 0, γ > d
2 and f ∈ Hδ+γ , g ∈ Hδ , we have

∥
∥Jδ(fg)

∥
∥

L2 � ‖f ‖Hδ+γ ‖g‖Hδ .

The next lemma plays a crucial role in the analysis of this paper.

Lemma 2.2 Let α,β ∈R. Then, the following properties hold:
(i) For ψ defined as in (1.4), we have

1
τ

∫ τ

0
seisα ds = –τψ(iτα). (2.1)

(ii) There exists a function R2(α,β , τ ) such that

∫ τ

0
eis(α+β) ds = τϕ(iτα) – τ

(
eiτβ – 1

)
ψ(iτα) + R2(α,β , τ ) (2.2)

with |R2(α,β , τ )| � τ 3|β|2.

Proof (i) We first note that

∫ τ

0
eisα ds =

⎧
⎨

⎩

eiτα–1
iα , α �= 0

τ , α = 0

⎫
⎬

⎭
= τϕ(iτα). (2.3)

Using integration by parts, we then find that

1
τ

∫ τ

0
seisα ds =

⎧
⎨

⎩

eiτα

iα + eiτα–1
τα2 , α �= 0,

1
2τ , α = 0,

(2.4)

which proves (i).
(ii) From (2.2), we obtain that the remainder R2 satisfies

R2(α,β , τ ) =
∫ τ

0
eis(α+β) ds – τϕ(iτα) + τ

(
eiτβ – 1

)
ψ(iτα). (2.5)
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Using (2.1) and (2.3), we rewrite (2.5) in the following way

R2(α,β , τ ) =
∫ τ

0

(

eis(α+β) – eisα – iβeisβ · 1
τ

∫ τ

0
σeiσα dσ

)

ds.

First, we decompose

∫ τ

0

(
eis(α+β) – eisα)

ds =
∫ τ

0

(
eis(α+β) – eisα – isβeisα)

ds + iβ
∫ τ

0
seisα ds,

and thus get

R2(α,β , τ ) =
∫ τ

0
eisα(

eisβ – 1 – isβ
)

ds + iβ
∫ τ

0

(
1 – eisβ)

ds · 1
τ

∫ τ

0
seisα ds. (2.6)

Finally, note that

∣
∣eisα(

eisβ – 1 – isβ
)∣
∣ � s2|β|2,

∣
∣1 – eisβ ∣

∣ � s|β|,
∣
∣
∣
∣

1
τ

∫ τ

0
seisα ds

∣
∣
∣
∣ � τ .

Therefore, (2.6) can be controlled by Cτ 3|β|2. �

3 Construction of the method
Now we derive a second-order numerical method for (1.1). Since the employed approxi-
mations form the basis of our error analysis, we present some construction details. For an
alternative derivation of this method, we refer to [3].

Let τ > 0 be the time step size and tn = nτ , n ≥ 0 the temporal grid points. First, by
employing the twisted variable v = e–it�u and Duhamel’s formula, we get

v(tn + σ ) = v(tn) + i
∫ σ

0
e–i(tn+ρ)�(∣

∣ei(tn+ρ)�v(tn + ρ)
∣
∣2ei(tn+ρ)�v(tn + ρ)

)
dρ. (3.1)

Then, freezing the nonlinear interaction by approximating ei(tn+ρ)� ≈ ei(tn+σ )� and v(tn +
ρ) ≈ v(tn), we get

v(tn + σ ) = v(tn) + iσe–i(tn+σ )�(∣
∣ei(tn+σ )�v(tn)

∣
∣2ei(tn+σ )�v(tn)

)
+ Rn

3(v,σ ). (3.2)

The remainder term Rn
3(v,σ ) satisfies the following estimate.

Lemma 3.1 Let γ > d
2 , σ ∈ [0, τ ] and v ∈ L∞((0, T); Hγ +2). Then,

∥
∥Rn

3(v,σ )
∥
∥

Hγ � τ 2(‖v‖L∞((0,T);Hγ +2) + ‖v‖3
L∞((0,T);Hγ +2)

)
.

We postpone the proof of the lemma to Sect. 3.1.
Next, we derive a second-order expansion of Duhamel’s formula

v(tn + τ ) = v(tn) + i
∫ τ

0
e–i(tn+σ )�(∣

∣ei(tn+σ )�v(tn + σ )
∣
∣2ei(tn+σ )�v(tn + σ )

)
dσ . (3.3)
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Replacing v(tn + σ ) by (3.2), we infer that

v(tn+1) = v(tn) + I1(tn) + I2(tn) + Rn
4(v), (3.4)

where

I1(tn) = i
∫ τ

0
e–i(tn+s)�(∣

∣ei(tn+s)�v(tn)
∣
∣2ei(tn+s)�v(tn)

)
ds,

I2(tn) = –
∫ τ

0
se–i(tn+s)�(∣

∣ei(tn+s)�v(tn)
∣
∣4ei(tn+s)�v(tn)

)
ds. (3.5)

The remainder term Rn
4(v) can be bounded as stated in the following lemma. Again, the

proof of this lemma is postponed to Sect. 3.1.

Lemma 3.2 Let γ > d
2 and 0 < τ ≤ 1. Then, for v ∈ L∞((0, T); Hγ +2),

∥
∥Rn

4(v)
∥
∥

Hγ ≤ Cτ 3,

where the constant C only depends on ‖v‖L∞((0,T);Hγ +2).

Due to the complexity of the phase functions

φ3 = |ξ |2 + |ξ 1|2 – |ξ 2|2 – |ξ 3|2, φ5 = |ξ |2 + |ξ 1|2 + |ξ 2|2 – |ξ 3|2 – |ξ 4|2 – |ξ 5|2,

we note that the terms in I1 and I2 cannot be easily expressed in physical space.
Therefore, we consider I1 first in Fourier space. Using

eis�w(x) =
∫

eisx·ηe–is|η|2 ŵ(η)(dη), (3.6)

we get

Î1(tn, ξ ) = i
∫ τ

0

∫

ξ=ξ1+ξ2+ξ3

ei(tn+s)φ3 ˆ̄v(tn, ξ 1)v̂(tn, ξ 2)v̂(tn, ξ 3)(dξ 1)(dξ 2) ds.

The main problem concerns the handling of the phase eisφ3 . Defining

α = 2|ξ 1|2, β = 2ξ 1 · ξ 2 + 2ξ 1 · ξ 3 + 2ξ 2 · ξ 3

allows us to write

eisφ3 = eisα+isβ .

Applying the formulas presented in Lemma 2.2, we get

Î1(tn, ξ ) = iτ
∫

ξ=ξ1+ξ2+ξ3

ϕ(iτα)eitnφ3 ˆ̄v(tn, ξ 1)v̂(tn, ξ 2)v̂(tn, ξ 3)(dξ 1)(dξ 2)

– iτ
∫

ξ=ξ1+ξ2+ξ3

(
eiτβ – 1

)
ψ(iτα)eitnφ3 ˆ̄v(tn, ξ 1)v̂(tn, ξ 2)v̂(tn, ξ 3)(dξ 1)(dξ 2)
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+ R̂n
5(v)(ξ ), (3.7)

where the remainder term Rn
5(v) obeys the bound given in the following lemma. Its proof

will be postponed to Sect. 3.1.

Lemma 3.3 Let γ > d
2 and v ∈ L∞((0, T); Hγ +2). Then,

∥
∥Rn

5(v)
∥
∥

Hγ � τ 3‖v‖3
L∞((0,T);Hγ +2).

Using β = φ3 – α and (3.6), we transform (3.7) back to physical space to get

I1(tn) = iτe–itn�
{[

ϕ(–2iτ�)e–itn�v̄(tn)
] · (eitn�v(tn)

)2}

– iτe–itn+1�
{[

ψ(–2iτ�)e–itn–1�v̄(tn)
] · (eitn+1�v(tn)

)2} (3.8)

+ iτe–itn�
{[

ψ(–2iτ�)e–itn�v̄(tn)
] · (eitn�v(tn)

)2} + Rn
5(v).

The term I2 is of higher order in τ . Therefore, it is sufficient to freeze the linear flow and
approximate the term as

I2(tn) = –
∫ τ

0
se–itn�

(∣
∣eitn�v(tn)

∣
∣4eitn�v(tn)

)
ds + Rn

6(v) (3.9)

= –
1
2
τ 2e–itn�

(∣
∣eitn�v(tn)

∣
∣4eitn�v(tn)

)
+ Rn

6(v), (3.10)

where the remainder term Rn
6(v) obeys the bound given in the following lemma. Again,

its proof will be postponed to Sect. 3.1.

Lemma 3.4 Let γ > d
2 and v ∈ L∞((0, T); Hγ +2). Then

∥
∥Rn

6(v)
∥
∥

Hγ � τ 3‖v‖5
L∞((0,T);Hγ +2).

Now combining (3.4), (3.8), and (3.10), we have that

v(tn+1) = �n(v(tn)
)

+ Rn
4(v) + Rn

5(v) + Rn
6(v), (3.11)

where the operator �n is defined by

�n(f ) = f + iτe–itn�
{(

ϕ(–2iτ�)e–itn� f̄
) · (eitn�f

)2}

– iτe–itn+1�
{(

ψ(–2iτ�)e–itn–1� f̄
) · (eitn+1�f

)2}

+ iτe–itn�
{(

ψ(–2iτ�)e–itn� f̄
) · (eitn�f

)2}

–
1
2
τ 2e–itn�

(∣
∣eitn�f

∣
∣4eitn�f

)
.

(3.12)

Our second-order low-regularity integrator is obtained by dropping the remainder
terms Rn

4 , Rn
5 , Rn

6 in (3.11). The method for the twisted variable is summarized as fol-
lows: let v0 = u0 and

vn+1 =�n(vn) for n ≥ 0. (3.13)
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Finally, setting un = eitn�vn, we obtain the announced numerical scheme (1.6) for the NLS
equation (1.1).

3.1 Estimates of the remainder terms
Now we prove Lemmas 3.1 to 3.4.

Proof of Lemma 3.1 By (3.2), we have that

Rn
3(v, s)

= i
∫ s

0

(
e–i(tn+σ )� – e–i(tn+s)�)(∣

∣ei(tn+σ )�v(tn + σ )
∣
∣2ei(tn+σ )�v(tn + σ )

)
dσ

+ i
∫ s

0
e–i(tn+s)�(∣

∣ei(tn+σ )�v(tn + σ )
∣
∣2 –

∣
∣ei(tn+s)�v(tn + s)

∣
∣2)ei(tn+σ )�v(tn + σ ) dσ

+ i
∫ s

0
e–i(tn+s)�(∣

∣ei(tn+s)�v(tn + s)
∣
∣2(ei(tn+σ )�v(tn + σ ) – ei(tn+s)�v(tn)

))
dσ .

Note that from (3.1), Lemma 2.1(i), and the Sobolev embedding, we get

sup
0≤σ≤τ

∥
∥v(tn + σ ) – v(tn)

∥
∥

Hγ � τ‖v‖3
L∞((0,T);Hγ ).

Moreover, for any f ∈ Hγ ,

∥
∥
(
e–i(tn+σ )� – e–i(tn+s)�)

f
∥
∥

Hγ � |σ – s|‖f ‖Hγ +2 . (3.14)

Applying these two estimates, we obtain

∥
∥ei(tn+σ )�v(tn + σ ) – ei(tn+s)�v(tn)

∥
∥

Hγ � τ
(‖v‖L∞((0,T);Hγ +2) + ‖v‖3

L∞((0,T);Hγ +2)

)

and thus

∥
∥Rn

3(v, s)
∥
∥

Hγ � τ 2(‖v‖L∞((0,T);Hγ +2) + ‖v‖3
L∞((0,T);Hγ +2)

)
.

This is the desired result. �

Proof of Lemma 3.2 Inserting (3.2) with σ = ρ in (3.1) and using (3.4), we find that the
remainder Rn

4(v) consists of terms of the form

i
∫ τ

0
e–i(tn+s)�(

ei(tn+s)�Wj · e–i(tn+s)�Wk · ei(tn+s)�W�

)
ds, j + k + � ≥ 5,

where

W1 = v(tn),

W2 = ise–i(tn+s)�(∣
∣ei(tn+s)�v(tn)

∣
∣2ei(tn+s)�v(tn)

)
,

W3 = Rn
3(v, s).
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By Lemma 3.1 and Lemma 2.1(i), we thus get

∥
∥Rn

4(v)
∥
∥

Hγ � C
(∥
∥v(tn)

∥
∥

L∞((0,t);Hγ +2)

)
τ 3.

This finishes the proof of the lemma. �

Proof of Lemma 3.3 Without loss of generality, we may assume that v̂(tn) and ˆ̄v(tn) are
positive (otherwise, one may replace them with their absolute values).

From Lemma 2.2, we have

R̂n
5(v)(ξ ) =

∫

ξ=ξ1+ξ2+ξ3

R2(α,β , τ )eitnφ3 ˆ̄v(tn, ξ 1)v̂(tn, ξ 2)v̂(tn, ξ 3)(dξ 1)(dξ 2)

and further

∣
∣R̂n

5(v)(ξ )
∣
∣ � τ 3

∫

ξ=ξ1+ξ2+ξ3

β2 ˆ̄v(tn, ξ 1)v̂(tn, ξ 2)v̂(tn, ξ 3)(dξ 1)(dξ 2).

By symmetry, we may assume that |ξ 1| ≥ |ξ 2| ≥ |ξ 3|. This yields

〈ξ 〉γ β2 � 〈ξ 〉γ (|ξ 1|2|ξ 2|2 + |ξ 1|2|ξ 3|2 + |ξ 2|2|ξ 3|2
)

� |ξ 1|2+γ |ξ 2|2.

Using this estimate, we get

〈ξ 〉γ ∣
∣R̂n

5(v)(ξ )
∣
∣

� τ 3
∫

ξ=ξ1+ξ2+ξ3,|ξ1|≥|ξ2|≥|ξ3|
|ξ 1|2+γ |ξ 2|2 ˆ̄v(tn, ξ 1)v̂(tn, ξ 2)v̂(tn, ξ 3)(dξ 1)(dξ 2)

� τ 3F
(
(–�)1+γ /2v̄ · (–�)v · v

)
(tn, ξ ).

Therefore, by Plancherel’s identity and Lemma 2.1(ii) with δ = 0, we obtain that for any
γ1 > d

2 ,

∥
∥Rn

5(v)
∥
∥

Hγ � τ 3∥∥(–�)1+γ /2v̄ · (–�)v · v
∥
∥

L∞((0,T);L2)

� τ 3‖v‖L∞((0,T);Hγ +2)‖v‖L∞((0,T);Hγ1+2)‖v‖L∞((0,T);Hγ1 ).

Since γ > d
2 , choosing γ1 = γ , we get the desired result. �

Proof of Lemma 3.4 By (3.5) and (3.9), we have that

Rn
6 = –

∫ τ

0
s
(
e–i(tn+s)� – e–itn�

)(∣
∣ei(tn+s)�v(tn)

∣
∣4ei(tn+s)�v(tn)

)
ds

–
∫ τ

0
se–itn�

([∣
∣ei(tn+s)�v(tn)

∣
∣4 –

∣
∣eitn�v(tn)

∣
∣4]ei(tn+s)�v(tn)

)
ds

–
∫ τ

0
se–itn�

(∣
∣eitn�v(tn)

∣
∣4 · (e–i(tn+s)� – e–itn�

)
v(tn)

)
ds.

Then, the claimed result follows directly from (3.14) and Lemma 2.1(i). �
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4 Proof of Theorem 1.1
Taking the difference between the numerical scheme (3.13) and the exact solution gives

vn+1 – v(tn+1) = �n(v(tn)
)

– v(tn+1) + �n(vn) – �n(v(tn)
)

= Ln + �n(vn) – �n(v(tn)
)
,

where Ln = �n(v(tn)) – v(tn+1) is the local error.

4.1 Local error
The following bound on the local error holds.

Lemma 4.1 Let γ > d
2 and 0 < τ ≤ 1. Then,

∥
∥Ln∥∥

Hγ ≤ Cτ 3,

where the constant C only depends on ‖v‖L∞((0,T);Hγ +2).

Proof By (3.11), we get that

Ln = –Rn
4(v) – Rn

5(v) – Rn
6(v).

Thus, the desired estimate follows from Lemmas 3.2, 3.3, and 3.4. �

4.2 Stability
The main result in this subsection is the following stability estimate.

Lemma 4.2 Let γ > d
2 . Then,

∥
∥�n(vn) – �n(v(tn)

)∥
∥

Hγ ≤ (1 + Cτ )
∥
∥vn – v(tn)

∥
∥

Hγ + Cτ
∥
∥vn – v(tn)

∥
∥5

Hγ ,

where the constant C only depends on ‖v‖L∞((0,T);Hγ ).

Proof For short, we denote gn = vn – v(tn). Then, using (3.12), we have

�n(vn) – �n(v(tn)
)

= gn +
4∑

j=1

(
�n

j
(
vn) – �n

j
(
v(tn)

))
,

where

�n
1(f ) = iτe–itn�

{(
ϕ(–2iτ�)e–itn� f̄

) · (eitn�f
)2}

�n
2(f ) = –iτe–itn+1�

{(
ψ(–2iτ�)e–itn–1� f̄

) · (eitn+1�f
)2}

�n
3(f ) = iτe–itn�

{(
ψ(–2iτ�)e–itn� f̄

) · (eitn�f
)2}

�n
4(f ) = –

1
2
τ 2e–itn�

(∣
∣eitn�f

∣
∣4eitn�f

)
.
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Note that by the definition of ϕ and ψ in (1.4), we have that

∥
∥ϕ(–2iτ�)f

∥
∥

Hγ � ‖f ‖Hγ ,
∥
∥ψ(–2iτ�)f

∥
∥

Hγ � ‖f ‖Hγ .

Hence, by Lemma 2.1(i),

∥
∥�n

1
(
vn) – �n

1
(
v(tn)

)∥
∥

Hγ ≤ Cτ
(‖gn‖Hγ + ‖gn‖3

Hγ

)
,

where C only depends on ‖v‖L∞((0,T);Hγ ).
Similarly, we get that

4∑

j=2

∥
∥�n

j
(
vn) – �n

j
(
v(tn)

)∥
∥

Hγ ≤ Cτ
(‖gn‖Hγ + ‖gn‖5

Hγ

)
. (4.1)

Combining the above estimates, we finally obtain

∥
∥�n(v(tn)

)
– �n(vn)∥∥

Hγ ≤ ‖gn‖Hγ + Cτ
(‖gn‖Hγ + ‖gn‖5

Hγ

)
,

which is the desired result. �

4.3 Proof of Theorem 1.1
Now, combining the local error estimate with the stability result, we prove Theorem 1.1.
From Lemma 4.1 and Lemma 4.2, we infer that there exists a constant C depending only
on ‖v‖L∞((0,T);Hγ +2) such that for 0 < τ ≤ 1, we have

∥
∥v(tn+1) – vn+1∥∥

Hγ ≤ Cτ 3 + (1 + Cτ )
∥
∥v(tn) – vn∥∥

Hγ + Cτ
∥
∥v(tn) – vn∥∥5

Hγ , n ≥ 0.

By recursion, we get from this the bound

∥
∥v(tn+1) – vn+1∥∥

Hγ ≤ Cτ

n∑

j=0

(1 + Cτ )j[∥∥v(tn–j) – vn–j∥∥5
Hγ + Cτ 2].

From this estimate, we infer that there exist positive constants τ0 and C such that for any
τ ∈ [0, τ0],

∥
∥v(tn+1) – vn+1∥∥

Hγ ≤ Cτ 3
n∑

j=0

(1 + Cτ )j ≤ Cτ 2, n ≥ 0.

Note that the constants τ0 and C only depend on T and ‖u‖L∞((0,T);Hγ +2). This proves The-
orem 1.1.

5 Numerical experiments
In this section, we carry out some numerical experiments to illustrate our convergence
result in two space dimensions. For this purpose, we consider the nonlinear Schrödinger
equation (1.1) with initial data

u0(x1, x2) =
∑

(k,�)∈Z2

(
1 +

√
k2 + �2

)– 1
2 –γ –ε(1 + i)ei(kx1+�x2), ε > 0, (5.1)
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where γ is used to set the regularity of the data. This choice guarantees that u0 ∈ Hγ (T2).
In the experiment, we set ε = 0.

In order to be able to use FFT techniques, we discretize space by equidistant grid points

xj
1 =

2π j
N

, xm
2 =

2πm
N

, 0 ≤ j, m ≤ N – 1.

The numerical approximation, obtained with step size τ at t = tn = nτ on this grid will
be denoted by un

τ ,N . We choose N = 27, i.e., 214 grid points, and measure the temporal
discretization error w = u(tn, ·) – un

τ ,N , defined on the grid by w(tn, xj
1, xm

2 ) = u(tn, xj
1, xm

2 ) –
un

τ ,N (j, m). We consider this matrix as an element of the linear space L2
N with norm ‖ · ‖L2

N
defined by

‖w‖2
L2

N
=

4π2

N2

N–1∑

j,m=0

∣
∣w

(
xj

1, xm
2
)∣
∣2.

The discrete Hγ

N spaces are then defined in the usual way with the help of the discrete
Fourier transform, i.e.,

‖w‖Hγ
N

= 2π

∥
∥
∥
∥
∥

N–1∑

j,m=0

(
1 +

√
j2 + m2

)γ

ŵj,m

∥
∥
∥
∥
∥

L2
N

.

Our results for initial data u0 ∈ Hγ +2(T2) are presented in Fig. 1. We choose the three dif-
ferent values γ = 1, 1.5, 2 to illustrate the convergence rate. In the left panel, we present the
results for the standard Strang splitting. As expected, the Strang splitting shows a strong
order reduction and irregular error behavior. For our scheme (1.6), the results are given in
the right panel. As expected, the slopes of the error curves are 2 whenever γ is bigger than
1. The slope of the curve for γ = 1 is slightly less regular. This is also expected because the
value γ = 1 is the limit case in two space dimensions. Thus, the results agree well with the
corresponding results of the theoretical analysis given in Theorem 1.1.

Figure 1 Temporal discretization error in Hγ (left for the standard Strang splitting, right for our scheme (1.6))
for initial data in Hγ+2 for various values of γ . The errors are measured at T = 1 for various step sizes τ . The
dashed line in the picture on the right-hand side has slope 2
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