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Abstract
This work is concerned with the issue of dissipative filtering for stochastic
semi-Markovian jump via neural networks where the time-varying delay is based
upon another semi-Markov process. Dissipative performance analysis is employed to
solve a mode-dependent filtering problem in a unified way. To achieve this task, we
implemented the recently proposed notion of extended dissipativity, which gives an
inequality equivalent to the well-known H∞, L2–L∞, and dissipative performances.
Different from the existing literature (Arslan et al. in Neural Netw 91:11–21, 2017; Chen
et al. in ISA Trans. 101:170–176, 2020) where mostly delay-free filters have been
investigated, our filter contains a communication delay. Based upon the
delay-dependent conditions, for the analysis of stochastic stability and extended
dissipativity for neural networks with time-varying delays, our results are obtained by
using a mode-dependent Lyapunov–Krasovskii functional together with a novel
integral inequality. Original stochastic filtering conditions are characterized by linear
matrix inequalities. A numerical simulation is elaborated to elucidate the feasibility of
the proposed design methodology.

Keywords: Semi-Markov jump systems; Mode-dependent delays; Neural networks

1 Introduction
To study most modern phenomena, delayed neural networks (DNNs) are widely used in
almost all fields, including but not limited to, associative memory, target tracking, pat-
tern identification, signal processing, combination optimization, and nonlinear control
[3–8], where the system status, connection weight, and activation functions take random
values. In some application domains, stochastic neural networks outperform real-valued
solutions, allowing them to solve particular issues like XOR problems and symmetry de-
tection [9, 10]. As a result, studying their dynamics is extremely important. In recent lit-
erature, DNNs and a large number of results have been obtained [11, 12]. There are a lot
of findings on dynamic analysis of delayed neural networks right now. For instance, for
stochastic DNNs, the asymptotic stability problem has been addressed in [13], where the
time-varying delay happens in a probabilistic manner. For connected DNNs in a master–
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slave architecture with bounded asynchronous delays, the finite time antisynchronization
problem has been addressed in [14].

It should be mentioned that mode-dependent filters in the previously described litera-
ture are not considering time-varying delays. In general, the signal filter itself has delays
in its model, and the filter’s input would be a delayed version signal from the plant when
taking into account the communication channel [15]. As a result, it is more important to
consider filters having both state and input delays. Unfortunately, such a fascinating sub-
ject has not been extensively studied for neural networks delay systems, yet, which remains
an open and demanding problem.

It is noteworthy that the true state of the network may not easily be discovered due to
stochastic uncertainty and environmental variations [16–21], which is usually critical for
the successful use of neural networks. It is nicely acknowledged that time delay is con-
tinually encountered due to the fact neural networks are regularly employed in all types
of hardware circuits—digital or integrated circuits. Because in networks the time delay
is a source of oscillatory response and instability, the stability analysis problem of neu-
ral networks while considering time delay attracts enormous attention from researchers
[22, 23]. In particular, H∞ filtering has become a popular research topic in the fields of
signal processing and network communications. While the system is precisely recognized
and the statistical properties of exogenous disturbances are known, the Kalman filtering
approach is the most effective filter that minimizes the H∞-norm of the estimation error
[24]. The filtering problem entails using output measurement to estimate the state of a
system [25, 26] and some improved methods for a stochastic system in [27, 28]. Tradi-
tional Kalman filtering, on the other hand, may perform poorly when dealing with mod-
eling errors and noises with uncertain spectral densities. The H∞ filtering is presented as
a solution to the problem while considering such uncertainty. Also H∞ filtering is used to
solve estimation problems in which the energy-to-energy gain from external disturbances
to the estimation error can be limited to less than a prescribed level. Therefore, in the
last few years and with devotion of researchers, numerous results related to H∞ filtering
have been established [29–33]. There has been little research attention paid to the dissipa-
tive filtering problem for DNNs with mode-dependent time-varying delays. Our current
research stems from this situation.

Based on the foregoing, we aim to solve the dissipative filtering problem for stochastic
doubly-semi-Markovian switching DNNs in this paper. This article’s main novelties can
be summarized in the following points:

1. This is one of the first studies of the dissipative filtering problem for stochastic DNNs,
in which all of the system characteristic matrices switch according to a
semi–Markovian process.

2. The time-varying delay under discussion is based on another semi-Markov process,
which considerably expands the conventional mode-dependent delay situation in
both state and input delays in both filters.

3. By combining the relevant LMIs with mode-dependent criteria, it is possible to
ensure that the investigated error system is stochastically stable for a certain
extended dissipative disturbance attenuation level.

The rest of this paper is laid out as follows. A stochastic semi-Markovian switching DNN
model with mode-dependent filter delays is proposed in Sect. 2, along with other relevant
preliminaries. In Sect. 3, adequate requirements in the form of matrix inequalities are con-
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Figure 1 General framework of a neural network filtering with mode-dependent delay

structed by using an appropriate mode-dependent Lyapunov functional in combination
with a reciprocal convex inequality to ensure that the examined system is stochastically
stable with a specified performance index level. One example is given in Sect. 4 to demon-
strate the efficacy of the theoretical results achieved. Finally, in Sect. 5, conclusions are
formed.

Notations. This paper uses fairly standard notation throughout. The subscript T de-
notes the transposition of the matrix. The notation ♠ presents an entry which is induced
by symmetry. Furthermore, the notation X ≥ Y (respectively, X > Y) for real symmetric
matrices X and Y throughout this article denotes that the X – Y matrix is positive semidef-
inite (respectively, positive definite). Also �nx , �nr , and �nω denote, respectively, the set
of nx-dimensional complex vectors, nr-dimensional real vectors, and nω real matrices; I
stands for an identity matrix of appropriate dimension. Let (�,F , {Ft≥0},P) be a complete
probability space with filtration {Ft}t≥0, satisfying the usual condition (i.e., the filtration
F0 contains all P-null sets, and F0 is monotonically increasing and right continuous). The
block-diagonal matrix is presented by diag(. . . ); | · | denotes the Euclidean norm for vectors
and ‖ · ‖ denotes the spectral norm for matrices; l2[0,∞) represents the space of square-
integrable vector functions over [0,∞).

2 System description and problem formulation
As shown in Fig. 1, we consider the following Markovian jump stochastic system with
mode-dependent time-varying delays, which is modeled by neural networks.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṁ(t) = –Ar(t)m(t) + T0p(m(t)) + T1p(m(t – �1σ (t)(t)))

+ A�1r(t)m(t – �1σ (t)(t)) + Br(t)ω(t),

z(t) = Er(t)m(t) + E�1r(t)m(t – �1σ (t)(t)),

y(t) = Cr(t)m(t),

m(t) = �(t), t ≥ 0,

(1)
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where m(t) = [ m1 m2 m3 ... mn ]T ∈ �nx presents the state vector of the neural network;

Ar(t) = diag{α1r(t),α2r(t), . . . ,αnr(t)},

belongs to the set of diagonal matrices with positive entries αlr(t) > 0, l = 1, 2, . . . , n; neuron
activation function is presented by p(m(t)) = [ p1(m1(t)) p2(m2(t)) p3(m3(t)) ... pn(mn(t)) ]T ; while T0

and T1 are associated with the weight connection and their delay connection, respectively;
y(t) = [ y1 y2 y3 ... yr ]T ∈ �nr is the system measurement; ω(t) ∈ �nω is the exogenous distur-
bance that belongs to l2[0,∞); z(t) = [ z1 z2 z3 ... zp ]T ∈ �np is the signal to be estimated; �(t)
is a continuous vector-valued initial function on [–�̄1, 0]; �1(t) > 0 is the state delay of the
system; Ar(t), A�1r(t), Br(t), Er(t), E�1r(t), and Cr(t) are system parameter matrices with proper
dimensions.

For system (1), consider a full-order mode-dependent delayed filter of the following
form:

⎧
⎪⎪⎨

⎪⎪⎩

ṁf (t) = Afr(t)mf (t) + A�fr(t)mf (t – �2σ (t)(t)) + Bfr(t)y(t),

zf (t) = Cfr(t)mf (t) + C�fr(t)mf (t – �2σ (t)(t)) + Dfr(t)y(t),

mf (t) = �f (t), t ∈ [–�̄2, 0],

(2)

where mf ∈ �nx and zf ∈ �nz denote the state and output of the filter, respectively; �f (t)
is the initial condition; y(t) is transmitted; the matrices Afr(t), A�fr(t), Bfr(t), Cfr(t), C�fr(t), and
Dfr(t) are the filter parameters to be determined.

In the rest of this paper, for each possible r(t) = i ∈ Sr and σ (t) = p ∈ Sσ , we write,
for example, Ar(t) = Ai, A�1r(t) = A�1i , and so on. Define the augmented vector m̂(t) =
[ m(t)T mf (t)T ]T and filtering error as ẑ(t) = z(t) – zf (t). Then, combining the system (1) and
the filter (2) leads to the filtering error system:

⎧
⎪⎪⎨

⎪⎪⎩

˙̂m(t) = Ām̂(t) + T̄0p̂(Hm̂(t)) + T̄1p̂(Hm̂(t – �1σ (t)(t)))

+
∑2

k=1 Ā�k m̂(t – �kσ (t)(t)) + B̄ω(t),

ẑ(t) = Ēm̂(t) +
∑2

k=1 Ē�k m̂(t – �kσ (t)(t)),

(3)

where

Ā =

[
–Ai 0
BfjCi Afj

]

, Ā�1 =

[
A�1i 0

0 0

]

,

Ā�2 =

[
0 0
0 A�fj

]

, B̄ =

[
Bi

0

]

,

T̄0 =

[
T0

0

]

, T̄1 =

[
T1

0

]

, Ē =
[

Ei – DfjCi –Cfj

]
,

Ē�1 =
[

E�1i 0
]

, Ē�2 =
[

0 –C�fj

]
, H =

[

I 0
]

.

In the following, we introduce some lemmas and definitions, which will support us in the
developing the main results.



Aslam et al. Advances in Continuous and Discrete Models         (2022) 2022:21 Page 5 of 15

Assumption 1 ([34]) The neuron activation function fulfills one of the following condi-
tions, and U1, U2 are real constant matrixes that satisfy U1 – U2 ≥ 0 and

[

p(m) – U1m
]T [

p(m) – U2m
]

≤ 0, ∀m ∈ �nx . (4)

Assumption 2 ([35]) The �kσ (t)(t) are mode-dependent time-delays such that

0 ≤ �kσ (t)(t) ≤ �̄k , �̇kσ (t)(t) ≤ μk , k = 1, 2, (5)

where �̄k > 0 and μk are prescribed scalars.

The main purpose of this article is to design the dissipative filter (2) with time-varying
delays.

Lemma 1 ([35]) For given positive integers m and n, constant α̂ ∈ (0, 1), vector ς ∈ Rm,
and any matrices Q ∈ Rn×n with Q > 0, S1 ∈ Rn×m, and S2 ∈ Rn×m, if a positive matrix
G ∈Rn×n with

[ Q GT

♠ Q

]
> 0 exists, the following inequalities hold:

min
α̂∈(0,1)

[
1
α̂

ςT ST
1 QS1ς +

1
1 – α̂

ςT ST
2 QS2ς

]

≥
[

ςT ST
1 ςT ST

2

]
[

Q GT

♠ Q

][
S1ς

S2ς

]

.

3 Main results
Theorem 1 Under Assumption 1, the given filter (3) with scalars ν	̂, fulfilling 0 < ν	̂ < 1, 	̂ =
0, 1, 2 and ν0 + ν1 + ν2 = 1, is stochastically stable for any time-varying delays �kp(t) satis-
fying (5), if there exist matrices G > 0, Sk > 0, Wk > 0, Pip > 0, Qki > 0, Rki > 0, Zki > 0, Mki

such that
[ Zki Mki

♠ Mki

]
> 0, k = 1, 2, 3, and the following inequalities hold:

G – Pip < 0, (6)

∇a :=
Nr∑

j=1

πij[Qkj + Rkj] – Sk < 0, (7)

∇b :=
Nr∑

j=1

πijRkj – Sk < 0, (8)

∇c :=
Nr∑

j=1

πijZkj – �
–1
k Wk < 0, (9)

⎡

⎢
⎢
⎢
⎣

–ν0G 0 0 ĒT ∃̃T
0

♠ –ν1G 0 ĒT
�1

∃̃T
0

♠ ♠ –ν2G ĒT
�2

∃̃T
0

♠ ♠ ♠ –I

⎤

⎥
⎥
⎥
⎦

< 0, (10)

⎡

⎢
⎢
⎢
⎣

χij χaT
ij A

T Pip E
T ∃̃T

1

♠ –∃3 – γ 2I B̄T Pip 0
♠ ♠ 
 – 2Pip 0
♠ ♠ ♠ –I

⎤

⎥
⎥
⎥
⎦

< 0, (11)
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where 
 =
∑2

k=1(�̄2
kZki + 1

2 �̄
2
kWk) and

χij =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

χ1
ij χ21 M1i χ22 M2i PipT̄0 – aÛ2 PipT̄1 – bÛ2

♠ χ31 Z1i – M1i 0 0 0 0
♠ ♠ –Z1i – R1i 0 0 0 0
♠ ♠ ♠ χ32 Z2i – M2i 0 0
♠ ♠ ♠ ♠ –Z2i – R2i 0 0
♠ ♠ ♠ ♠ ♠ –aI 0
♠ ♠ ♠ ♠ ♠ ♠ –bI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

χa
ij =

[

–∃T
2 Ē + B̄T Pip –∃T

2 Ē�1 0 –∃T
2 Ē�2 0 0 0

]
,

A =
[

Ā Ā�1 0 Ā�2 0 0 0
]

, E =
[

Ē Ē�1 0 Ē�2 0 0 0
]

,

χ1
ij =

( Nr∑

j=1

πijPjp +
Nσ∑

q=1

λpqPiq +
2∑

k=1

{Qki + Rki – Zki + �̄kSk}
)

+ PipĀ + ĀT Pip – (a + b)Û1,

χ2k = PipĀ�k + Zki – Mki, k = 1, 2,

χ3k = –(1 – μk)Qki – 2Zki + Mki + MT
ki, k = 1, 2.

Proof We construct the following Lyapunov–Krasovskii functional candidate for system
(3):

G
(
t, m̂(t),σ (t), r(t)

)
= m̂(t)T P(r(t),σ (t))m̂(t) +

5∑

l=1

Gl(t), (12)

where

G1(t) =
2∑

k=1

(∫ t

t–�kσ (t)(t)
m̂(α)T Qkrt m̂(α)

)

dα,

G2(t) =
2∑

k=1

(∫ t

t–�k

m̂(α)T Rkrt m̂(α)
)

dα,

G3(t) =
2∑

k=1

(

�k

∫ 0

–�k

∫ t

t+β

˙̂m(α)T Zkrt
˙̂m(α)

)

dα dβ ,

G4(t) =
2∑

k=1

(∫ 0

–�k

∫ t

t+β

m̂(α)T Skm̂(α)
)

dα dβ ,

G5(t) =
2∑

k=1

(∫ 0

–�k

∫ 0

θ

∫ t

t+β

˙̂m(α)T Wk ˙̂m(α)
)

dα dβ dθ ,

in which P(r(t),σ (t)), Qkrt , Rkrt , Zkrt , Sk , and Zk are to be determined, when r(t) = i and σ (t) =
p. Let A be the weak infinitesimal generator of the random process {m̂(t),σ (t), r(t)} (see,
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e.g., [23]). Then, by using similar techniques as those in [23, 38], we have

A
{
G(t, m̂(t),σ (t), r(t)

}

= m̂(t)T

( Nr∑

j=1

πijPjp +
Nσ∑

q=1

λpqPiq + Qki + Rki + �̄kSk

)

m̂(t)

+ 2m̂(t)T Pip ˙̂m(t) –
(
1 – �̄k(t)

)
m̂

(
t – �kp(t)

)T Qkim̂
(
t – �k(t)

)

–
2∑

k=1

m̂(t – �̄k)T Rkim̂(t – �̄k) +
2∑

k=1

˙̂m(t)T
(

�̄
2
kZki +

1
2
�̄

2
kWk

)
˙̂m(t)

–
2∑

k=1

�̄k

∫ t

t–�̄k

˙̂m(α)T Zki ˙̂m(α) dα +
2∑

k=1

∫ t

t–�kp(t)
m̂(α)T∇am̂(α) dα

+
2∑

k=1

∫ t–�kp(t)

t–�̄k

m̂(α)T∇bm̂(α) dα +
2∑

k=1

�̄k

∫ 0

–�̄k

∫ t

t+β

˙̂m(α)T∇c ˙̂m(α) dα dβ .

(13)

Recalling (14) and applying Lemma 1 for each k = 1, 2, we have

–�̄k

∫ t

t–�̄k

ṁ(α)T Zkiṁ(α) dα ≤ ℵ(t)TMkℵ(t), (14)

where

ℵ(t) =
[

m(t)T m(t – �kp)T m(t – �̄k)T ω(t)T
]T

,

Mk =

⎡

⎢
⎢
⎢
⎣

–Zki Zki – Mki Mki 0
♠ –2Zki + Mki + MT

ki Zki – Mki 0
♠ ♠ –Zki 0
♠ ♠ ♠ 0

⎤

⎥
⎥
⎥
⎦

.

From Assumption 1, we get

[
m̂(t)

p̂(H(m̂(t)))

]T [
Û1 Û2

Û2 I

][
m̂(t)

p̂(H(m̂(t)))

]

≤ 0, (15)

where (Û1, Û2) = (HT Û1H, –HT Û2). Furthermore, (Û1, Û2) = (U
T
1 U2+UT

2 U1
2 , U

T
1 +UT

2
2 ). So for

the parameters a > 0 and b > 0, this yields

–a

[
m̂(t)

p̂(H(m̂(t)))

]T [
Û1 Û2

Û2 I

][
m̂(t)

p̂(H(m̂(t)))

]

≥ 0, (16)

–b

[
m̂(t)

p̂(H(m̂(t – �1p(t))))

]T [
Û1 Û2

Û2 I

][
m̂(t)

p̂(H(m̂(t – �1p(t))))

]

≥ 0. (17)

To simplify the notation, define

ζ T (t) =
[

m̂(t) m̂(t – �1p(t)) m̂(t – �̄1p) m̂(t – �2p(t)) m̂(t – �̄2p) p̂(Hm̂(t))
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p̂(Hm̂(t – �1p(t))) ω(t)
]

.

It follows from (12)–(17) that then

A
{
G(t, m̂(t),σ (t), r(t)

}
– J(t) ≤ ζ (t)T

�̃ijζ (t), (18)

where

�̃ij =

[
χij χaT

ij

♠ –∃3 – γ 2I

]

+

[
A

T

B
T

]




[
A

T

B
T

]T

+

[
E

T

0

]

∃̃T
1 ∃̃1

[
E

T

0

]T

.

Note that


 = Pip
[
Pip


–1Pip
]–1Pip ≤ Pip[2Pip – 
]–1Pip.

Applying the Schur complement equivalence to (11) yields �̃ij < 0.
Thus, by following the same procedure as in [35], we can show that system (3) with is

stochastically stable in the sense of Definition 2 [35]. �

Theorem 2 Under Assumption 1, the given filter (3) is stochastically stable in the sense of
dissipative property for any time-varying delays �kp(t) satisfying (5), if there exist matrices
Pip = diag{Pip1 , Pip2} > 0, G > 0, Sk > 0, Wk > 0, Qki > 0, Rki > 0, Zki > 0, Mki, Afj, Bfj, Cfj, Dfj,
A�fj, and C�fj such that

[ Zki Mki
♠ Mki

]
> 0, k = 1, 2, 3, and the following inequalities hold:

⎡

⎢
⎢
⎢
⎣

–ν0G 0 0 �ai∃̃T
0

♠ –ν1G 0 �bi∃̃T
0

♠ ♠ –ν2G �ci∃̃T
0

♠ ♠ ♠ –I

⎤

⎥
⎥
⎥
⎦

< 0, (19)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

χ̌1
ij χ̌21 M1i χ̌22 M2i ϕ̌1 ϕ̌2 �1ij∃2 + �4ij �T

1ij �ai∃̃T
1

♠ χ̌31 φ̌1 0 0 0 0 –�2ij∃2 �T
2ij �bi∃̃T

1

♠ ♠ φ̌2 0 0 0 0 0 0 0
♠ ♠ ♠ χ̌32 φ̌3 0 0 –�3ij∃2 �T

3ij �ci∃̃T
1

♠ ♠ ♠ ♠ φ̌4 0 0 0 0 0
♠ ♠ ♠ ♠ ♠ –aI 0 0 0 0
♠ ♠ ♠ ♠ ♠ ♠ –bI 0 0 0
♠ ♠ ♠ ♠ ♠ ♠ ♠ –∃3 – γ 2I �T

4ij 0
♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ 
 – 2Pip 0
♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ –I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(20)

χ̌1
ij =

( Nr∑

j=1

πijPjp +
Nσ∑

q=1

λpqPiq +
2∑

k=1

{Qki + Rki – Zki + �̄kSk}
)

+ �1ij + �T
1ij – (a + b)Û1,

χ2k = �(k+1)ij + Zki – M̌ki, k = 1, 2, ϕ̌1 = �5ij – aÛ2, ϕ̌2 = �6ij – bÛ2,

φ̌1 = Z1i – M1i, φ̌2 = –Z1i – R1i, φ̌3 = Z2i – M2i, φ̌4 = –Z2i – R2i,

χ̌3k = –(1 – μk)Qki – 2Zki + Mki + MT
ki, k = 1, 2,
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�1ij =

[
–Pip1 Ai 0
BfjCi Afj

]

, �2ij =

[
Pip1 A�1i 0

0 0

]

, �3ij =

[
0 0
0 A�fj

]

,

�4ij =

[
Pip1 Bi

0

]

, �5ij =

[
Pip1 T0

0

]

, �6ij =

[
Pip1 T1

0

]

,

�aij =

[
ET

i – CT
i Dfj

–CT
fj

]

, �bij =

[
ET

�1i

0

]

, �cij =

[
0

–CT
�fj

]

.

Some of the parameters are the same as mentioned in the previous theorem.

Proof

Pip = diag{Pip1 , Pip2}.

Based on the above matrix, we further define the matrix variables mentioned in Theo-
rem 1:

⎧
⎪⎪⎨

⎪⎪⎩

Afj = Pip2 Afj,

A�fj = Pip2 A�fj,

Bfj = Pip2 Bfj,

⎧
⎪⎪⎨

⎪⎪⎩

Cfj = Cfj,

C�fj = C�fj,

Dfj = Dfj,

(21)

From the above, it means that all the conditions in Theorem 1 are satisfied. Therefore,
by Theorem 1, the filtering error system (3) is extended dissipative for any time-varying
delays �kp(t) which are mode dependent and satisfying (5). The proof is completed. �

4 Numerical example
This section presents one numerical example to show the effectiveness of our derived
theoretical results. Consider a semi-Markovian switching for neural network (1) with two
operation modes, i.e., Sr = 1, 2. The corresponding self-feedback connection matrices of
the subsystems are:

[
A1 A�11 T0 B1

A2 A�12 T1 B2

]

=

⎡

⎢
⎢
⎢
⎢
⎣

2.3 0 3.9 0.5 0.3 0.2 0.16 0.09
0 0.9 1.8 –2.6 0.3 –0.2 0.21 –0.31

1.9 0 4.9 3.7 0.3 0.5 0.21 0.11
9 2 0.45 1.8 –0.2 0.1 0.27 –0.29

⎤

⎥
⎥
⎥
⎥
⎦

,

[
E1 E�11 C1

E2 E�12 C2

]

=

[
0.1 0 –0.5 1.5 1 0

0.1 0.1 0.9 0 1 0

]

.

Furthermore, the activation functions are taken as

m(t) =

[
0.5m1(t) – tanh(0.3m1(t)) + 0.2m2(t)

0.95m2(t) – tanh(0.75m1(t))

]

.

Mode-dependent time-varying delays are chosen as:

�11(t) = 1.0 + 0.2 sin(t),
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Figure 2 Trajectory of the semi-Markov process r(t)

�12(t) = 0.5 + 0.3 cos(t) with �̄k = 0.35,

which implies that �̄1 = 1.25, �̄2 = 1.75. Let γ = 5.5, with tuning the parameters for the H∞
filtering (∃0 = 0, ∃1 = –1, ∃2 = 0, and ∃3 = γ 2). By solving the matrix inequalities (6)–(9)
and (19)–(20), a feasible solution can be found. Here, for space considerations, only a part
of the solution is presented:

[
Af 1 Af 2

A�f 1 A�f 2

]

=

⎡

⎢
⎢
⎢
⎢
⎣

12.1390 –9.4334 0.2188 12.6660
–7.2454 10.2466 –0.2379 –8.4686

–0.0376 0.0388 0 –0.0240
0.0740 –0.0765 0.0003 0.0453

⎤

⎥
⎥
⎥
⎥
⎦

,

[
Bf 1 Bf 2

Cf 1 Cf 2

]

=

⎡

⎢
⎢
⎢
⎢
⎣

–1.6474 –1.8340
1.0451 1.2894

–0.0009 –0.0018
0.0009 0.0033

⎤

⎥
⎥
⎥
⎥
⎦

,

[
C�f 1 C�f 2

Df 1 Df 2

]

=

[
–0.2483 0.5730 –0.0024 –0.1711

–0.0040 0.0041 0 –0.0022

]

.

It follows from Theorem 2 that the augmented system (3) exhibits the H∞ stability with
a disturbance attenuation level γ . With the initial conditions �(t) = [5, –8]T and �f (t) =
[–5, 8]T , Figs. 2–3 show the trajectories of the two SMPs r(t) and σ (t), respectively, while
Figs. 4–5 present the time response of the original and filter states, which further confirms
that the filtering error system (3) is stochastically stable.

On the other hand, it is noted that a delay-free neural network filtering problem was
studied in [36]. To show the superiority of our proposed algorithm, we make a comparison.
In this comparison, we select different time-delays and achieve the maximum upper bound
delay. The comparison is shown in Table 1, where �̄ = �̄k , k = 1, 2. Furthermore, complexity
is one of the main issues of such a problem which is also addressed in Table 1, from which
one can see t more information about the superiority of the neural model.

Secondly, we select γ = 3.5, after tuning the parameters for the dissipative filtering (∃0 =
0, ∃1 = –1, ∃2 = 1 and ∃3 = γ ), and then, by solving the matrix inequalities (6)–(9) and
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Figure 3 Trajectory of the semi-Markov process σ (t)

Figure 4 Trajectory ofm1(t) with filter statemf1(t)

Table 1 Maximum allowable upper bound delay

�̄ = 1 �̄ = 1.5 �̄ = 2 �̄ = 2.5 �̄ = 4.5 No. of decision variables

Theorem 3.1 [36] 3.5462 3.3981 3.1542 2.9584 – 8.5n2 + 10.5n + 2
Theorem 2 5.8661 5.6971 5.4361 5.2657 5.1124 (3s + 1)n2 + (2s + 1)n

(19)–(20), a feasible solution can be found. Here, for space considerations, only part of the
solution is presented:

[
Af 1 Af 2

A�f 1 A�f 2

]

=

⎡

⎢
⎢
⎢
⎢
⎣

12.1390 –9.4334 0.2192 12.6660
–7.2454 10.2466 –0.2379 –8.4686

–0.0376 0.0388 0 –0.0240
0.0740 –0.0765 0.0003 0.0453

⎤

⎥
⎥
⎥
⎥
⎦

,
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Figure 5 Trajectory ofm2(t) with filter statemf2(t)

Figure 6 Trajectory of the estimation error

[
Bf 1 Bf 2

Cf 1 Cf 2

]

=

⎡

⎢
⎢
⎢
⎢
⎣

–1.6474 –1.8340
1.0451 1.2894

–0.0009 –0.0018
0.0009 0.0033

⎤

⎥
⎥
⎥
⎥
⎦

,

[
C�f 1 C�f 2

Df 1 Df 2

]

=

[
–0.2483 0.5730 –0.0024 –0.1711

–0.0040 0.0041 0 –0.0022

]

.

Figure 6 depicts the estimation error, while Fig. 7 presents the output response of the
neural network, which exhibits that the filtering error finally approaches zero.
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Figure 7 Trajectory of the output of the neural plant

5 Conclusions
In this article, we have investigated the extended dissipativity filtering problem for a
stochastic process for an NN with a delayed filter, where the time-varying delay is mode-
dependent. Some new mode-dependent sufficient conditions have been designed, under
which the filtering error of the system exhibits extended stability with a given disturbance
attenuation level. Additionally, the conditions were established in the form of linear ma-
trix inequalities (LMIs), which can be computed by adopting the standard software pack-
ages. A numerical simulation was elaborated upon to elucidate the feasibility of the pro-
posed design methodology. Moreover, an extension of the proposed work for practical
application with asynchronous filtering inputs and restricted prediction control intervals
deserves further investigation. On the other hand, the computational complexity of the
proposed algorithm is not so good due to a number of lacking matrices. Furthermore, we
also expect to study T–S fuzzy systems with actuator saturation and fault isolation delay
by combining the methods proposed in this paper and that in [37].
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