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*Correspondence:
jefimija79@gmail.com
1Department of Mathematics,
Faculty of Science and
Mathematics, University of Niš,
Višegradska 33, 18000 Niš, Serbia

Abstract
We discuss sublinear differential equations of the Emden–Fowler type x′′ = q(t)xγ

under the assumption that the coefficient q is a rapidly varying function. We show
that all of their strongly decreasing and strongly increasing solutions are rapidly
varying functions and are in the asymptotic equivalence relation with a precisely
defined function determined by the coefficient q.
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1 Introduction
This paper is concerned with positive solutions of differential equations of the Emden–
Fowler type of the form

x′′(t) = q(t)x(t)γ , t ≥ a > 0, (E)

where γ �= 1 is a positive constant, and q is positive, continuous function on [a,∞).
Equation (E) is called sublinear or superlinear according to γ < 1 or γ > 1. We consider

the sublinear case, i.e., when 0 < γ < 1.
Any positive solution x of (E), continuable at infinity and eventually different from zero,

is either increasing or decreasing. A positive decreasing solution of (E) is said to be
• strongly decreasing if limt→∞ x(t) = 0, limt→∞ x′(t) = 0,
• asymptotically constant if limt→∞ x(t) = const > 0, limt→∞ x′(t) = 0.

A positive increasing solution of (E) is said to be
• asymptotically linear if limt→∞ x(t) = ∞, limt→∞ x(t)

t = const > 0,
• strongly increasing if limt→∞ x(t) = ∞, limt→∞ x′(t) = ∞.

The existence of the above four types has been studied in [2, 25]. In the sublinear case,
the existence of strongly increasing solutions is completely characterized, while for the
existence of strongly decreasing solutions, only the sufficient condition is known, as it is
stated in the following propositions.
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Proposition 1.1 ([25, Theorem 3.8]) Sublinear equation (E) has a strongly increasing so-
lution if and only if

∫ ∞

a
tγ q(t) dt = ∞. (1.1)

Proposition 1.2 ([25, Theorem 3.2]) Sublinear equation (E) has a strongly decreasing so-
lution if

∫ ∞

a
tq(t) dt < ∞. (1.2)

The existence and asymptotic behavior of regularly varying solutions of nonlinear differ-
ential equations were extensively studied in [8, 9, 11, 13–16, 18–22, 24]. Unlike regularly
varying solutions, rapidly varying solutions of linear and nonlinear equations are much
less studied. The study of second-order linear differential equation in the framework of
rapid variation was initiated by Marić [23]. Half-linear differential equations in the frame-
work of the Karamata theory and the de Haan theory were treated in [26–28]. Also, the
existence of regularly and rapidly varying solutions of third-order nonlinear differential
equations was studied in [17], while in [10, 12] the conditions for the existence and asymp-
totic representations of solutions are given assuming that the coefficient of the equation
belongs to the subclass of rapidly varying functions. Although the results in [10, 12] can
be applied to (E), the problem of determining the conditions for all solutions to be rapidly
varying functions is not considered in these papers. Therefore, our goal in this paper is
to prove that all strongly decreasing and strongly increasing solutions are rapidly varying
functions under the assumption that the coefficient q is rapidly varying and to examine
the properties of these solutions in more detail. In addition, the existence conditions and
asymptotic representations of solutions are given in [10, 12] under the assumption that
the coefficient of the equation belongs to the subclass of rapidly varying functions. The
solutions considered in these papers also belong to the subclass of rapidly varying func-
tions. Therefore, the results obtained in this paper improve the results in [10, 12], since we
consider the equation with rapidly varying coefficient and its rapidly varying solutions.

This paper is organized as follows: In Sect. 2, we give the basic definitions and properties
of the regularly and rapidly varying functions. We also present asymptotic equivalence re-
lations in the class of rapidly varying functions of index ∞, which are defined in [1, 5], and
some of their basic properties that are useful for our research. In addition, we introduce
analogous relations in the class of rapidly varying functions of index –∞ and examine
their properties. The main results are stated in Sect. 3. In Sect. 4, we prove some impor-
tant lemmas that significantly shorten the proof of the main results. Section 5 contains the
proofs of the main results. Some illustrative examples are presented in Sect. 6.

2 Preliminaries
In this section, first, we recall basic information on the Karamata theory of regularly vary-
ing functions and the de Haan theory of rapidly varying functions.
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Definition 2.1 A measurable function f : [a,∞) → (0,∞) is said to be regularly varying
of index ρ ∈R if

lim
t→∞

f (λt)
f (t)

= λρ for all λ > 0.

The set of all regularly varying functions of index ρ is denoted by RV(ρ).

Definition 2.2 A measurable function f : [a,∞) → (0,∞) is said to be rapidly varying of
index ∞ if

lim
t→∞

f (λt)
f (t)

= ∞ for all λ > 1.

A measurable function f : [a,∞) → (0,∞) is said to be rapidly varying of index –∞ if

lim
t→∞

f (λt)
f (t)

= 0 for all λ > 1.

The set of rapidly varying functions of index ∞ (or –∞) is denoted by RPV(∞) (or
RPV(–∞)). For more information on regular and rapid variation, the reader is referred to
the monograph by Bingaham, Goldie, and Teugels [1]. For more recent contribution of the
theory of rapid variation, see [6, 7].

Example 2.1
1. It is easy to see that function f (t) = at , a > 1 is a typical representative of the class

RPV(∞), while the function f (t) = at , a ∈ (0, 1) is a typical representative of the class
RPV(–∞).

2. The function f (t) = g(t)ah(t), g ∈ RV(ρ), ρ ∈R, h ∈ RV(m), m > 0 belongs to the
RPV(∞), when a > 1 and RPV(–∞), when a ∈ (0, 1).

Next, we give some properties of rapidly varying functions.

Proposition 2.1
(1) f ∈ RPV(∞) if and only if 1/f ∈ RPV(–∞).
(2) If f , g ∈ RPV(∞) and h ∈ RV(ρ), ρ ∈R, then

(i) f p ∈ RPV(∞) for any p > 0.
(ii) f · h ∈ RPV(∞).

(iii) f · g ∈ RPV(∞).

Proof (1) This part of the proposition is shown in [29] on time scales.
(2) Since limt→∞ f (λt)

f (t) = ∞, limt→∞ g(λt)
g(t) = ∞ and limt→∞ h(λt)

h(t) = λρ for all λ > 1, we have
(i) limt→∞ (f (λt))p

(f (t))p = (limt→∞ f (λt)
f (t) )p = ∞, for any p > 0,

(ii) limt→∞ f (λt)·h(λt)
f (t)·h(t) = λρ · limt→∞ f (λt)

f (t) = ∞
(iii) limt→∞ f (λt)·g(λt)

f (t)·g(t) = ∞. �

Next, we consider some useful equivalence relations on the classes RPV(∞) and
RPV(–∞). The following relation is introduced in [1] and further considered in [3, 4].



Manojlović and Milošević Advances in Continuous and Discrete Models         (2022) 2022:19 Page 4 of 14

Definition 2.3 Let f and g be positive functions in [a,∞). These two functions are called
mutually inversely asymptotic at ∞, denoted by f (t) �∼ g(t), t → ∞, if for every λ > 1, there
exists t0 = t0(λ) such that

f
(

t
λ

)
≤ g(t) ≤ f (λt), for all t ≥ t0.

Definition of the next relation and its properties are given in [5].

Definition 2.4 Let f and g be positive functions in [a,∞). These two functions are called
mutually rapidly equivalent at ∞, denoted by f (t) r∼ g(t), t → ∞, if

lim
t→∞

f (λt)
g(t)

= lim
t→∞

g(λt)
f (t)

= ∞, for all λ > 1.

Proposition 2.2 Let f and g be positive functions in [a,∞). Then, the following assertions
hold:

(a) if f and g are measurable functions such that f (t) r∼ g(t) for t → ∞, then f and g
both belong to RPV(∞);

(b) the relation r∼ is an equivalence relation in the class RPV(∞).

Proposition 2.3 Let f ∈ RPV(∞) be a locally bounded function on [a,∞). Also, let 1/f be
a locally bounded function on [a,∞). Then the following assertions are true:

(a) f (t) r∼ 1
t
∫ t

a f (s) ds, t → ∞;
(b) f (t) r∼ 1

t
∫ ∞

t
ds

s2 f (s)
, t → ∞;

(c) F ∈ RPV(∞), where F(t) =
∫ t

a f (s) ds, t > a;
(d) ϕ ∈ RPV(∞), where ϕ(t) = 1∫ ∞

t
ds

f (s)
, t > a.

Remark 2.1 It is easy to prove that if f (t) r∼ g(t), t → ∞, then
(a) f (t)p r∼ g(t)p, t → ∞ for all p > 0,
(b) h(t) · f (t) r∼ h(t) · g(t), t → ∞ for h ∈ RV(ρ), ρ ∈ R or h ∈ RPV(∞).

Here, we introduce two new relations on RPV(–∞).

Definition 2.5 Let f and g be positive functions in [a,∞). These two functions are called
mutually inversely asymptotic at –∞, denoted by f (t) ∼

�
g(t), t → ∞, if for every λ > 1,

there exists t0 = t0(λ) such that

f (λt) ≤ g(t) ≤ f
(

t
λ

)
, for all t ≥ t0.

Definition 2.6 Let f and g be positive functions in [a,∞). These two functions are called
mutually rapidly equivalent at –∞, denoted by f (t) ∼

r
g(t), t → ∞, if

lim
t→∞

f (λt)
g(t)

= lim
t→∞

g(λt)
f (t)

= 0, for all λ > 1.

The next proposition establishes a connection between relations r∼ and ∼
r

.
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Proposition 2.4 Let f and g be positive functions in [a,∞). Then

f (t) r∼ g(t), t → ∞ if and only if
1

f (t)
∼
r

1
g(t)

, t → ∞.

Proof The proposition directly follows from the equalities

lim
t→∞

f (λt)
g(t)

=
[

lim
t→∞

1
f (λt)

1
g(t)

]–1

and lim
t→∞

g(λt)
f (t)

=
[

lim
t→∞

1
g(λt)

1
f (t)

]–1

. �

The next proposition directly follows from Proposition 2.4, Proposition 2.2, and Propo-
sition 2.1.

Proposition 2.5 Let f and g be positive functions in [a,∞). Then the following assertions
hold:

(a) if f and g are measurable functions such that f (t) ∼
r

g(t) for t → ∞, then f and g
both belong to RPV(–∞);

(b) the relation ∼
r

is an equivalence relation in the class RPV(–∞).

Remark 2.2 Proposition 2.3(b) will be easier to use if we rewrite it in a different form.
Denote g(t) = 1

t2f (t) . Hence, due to Remark 2.1, we have

t2f (t) r∼ t∫ ∞
t g(s) ds

, t → ∞

yielding

1
t2f (t)

∼
r

1
t

∫ ∞

t
g(s) ds, t → ∞

by using the Proposition 2.4. Since f ∈ RPV(∞), from Proposition 2.1, we conclude that
g ∈ RPV(–∞). Also, since 1/f is a locally bounded function on [a,∞), so is g .

Therefore, we have the following proposition.

Proposition 2.6 Let g ∈ RPV(–∞) be a locally bounded function on [a,∞). Then

g(t) ∼
r

1
t

∫ ∞

t
g(s) ds, t → ∞. (2.1)

3 Main results
Theorem 3.1 Suppose that q ∈ RPV(∞) satisfies the condition (1.1). Every strongly in-
creasing solution of (E) is rapidly varying of index ∞. Moreover, any such solution x satisfies
the asymptotic relation

x(t) �∼ X(t), t → ∞, (3.1)

where the function X is given by

X(t) =
(
t2q(t)

) 1
1–γ . (3.2)
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Theorem 3.2 Suppose that q ∈ RPV(–∞) satisfies the condition (1.2). Every strongly de-
creasing solution of (E) is rapidly varying of index –∞. Moreover, any such solution x sat-
isfies the asymptotic relation

x(t) ∼
�

X(t), t → ∞. (3.3)

4 Auxiliary lemmas
Let us denote

X1(t) =
(

t
∫ t

a
q(s) ds

) 1
1–γ

, (4.1)

X2(t) =
(∫ t

a

(∫ s

a
q(r)

2
3+γ dr

) 3+γ
1–γ

ds
) 1

2
. (4.2)

First, we show that functions X, X1, and X2 are in the relation r∼ under the assumption
that q is a rapidly varying function of index ∞.

Lemma 4.1 Suppose that q ∈ RPV(∞). Then

X(t) r∼ X1(t), t → ∞, (4.3)

where the functions X and X1 are given by (3.2) and (4.1), respectively.

Proof Using Proposition 2.3(a), we have

q(t) r∼ 1
t

∫ t

a
q(s) ds, t → ∞. (4.4)

Multiplying (4.4) by t2, in the view of Remark 2.1, we get

t2q(t) r∼ t
∫ t

a
q(s) ds, t → ∞,

implying

(
t2q(t)

) 1
1–γ

r∼
(

t
∫ t

a
q(s) ds

) 1
1–γ

, t → ∞,

since 1
1–γ

> 0. This completes the proof of Lemma 4.1. �

Lemma 4.2 Suppose that q ∈ RPV(∞). Then

X(t) r∼ X2(t), t → ∞, (4.5)

where the functions X and X2 are given by (3.2) and (4.2), respectively.
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Proof Applying Proposition 2.3(a), we conclude that

∫ t

a
q(s)

2
3+γ ds r∼ t · q(t)

2
3+γ , t → ∞.

Since 3+γ

1–γ
> 0, due to Remark 2.1, we get

(∫ t

a
q(s)

2
3+γ ds

) 3+γ
1–γ r∼ t

3+γ
1–γ q(t)

2
1–γ , t → ∞. (4.6)

On the other hand, another application of Proposition 2.3(a) gives us

∫ t

a

(∫ s

a
q(r)

2
3+γ dr

) 3+γ
1–γ

ds r∼ t
(∫ t

a
q(s)

2
3+γ ds

) 3+γ
1–γ

, t → ∞. (4.7)

By combining (4.6) and (4.7), we have

∫ t

a

(∫ s

a
q(r)

2
3+γ dr

) 3+γ
1–γ

ds r∼ t
4

1–γ q(t)
2

1–γ , t → ∞,

implying

(∫ t

a

(∫ s

a
q(r)

2
3+γ dr

) 3+γ
1–γ

ds
) 1

2 r∼ (
t2q(t)

) 1
1–γ , t → ∞.

This completes the proof of Lemma 4.2. �

Denote by

Y1(t) =
(∫ ∞

t

∫ ∞

s
q(r) dr ds

) 1
1–γ

, (4.8)

Y2(t) =
(∫ ∞

t

(∫ ∞

s
q(r)

2
3+γ dr

) 3+γ
1–γ

ds
) 1

2
. (4.9)

Next, we show that functions X, Y1, and Y2 are in the relation ∼
r

under the assumption
that q is a rapidly varying function of index –∞.

Lemma 4.3 Suppose that q ∈ RPV(–∞). Then

X(t) ∼
r

Y1(t), t → ∞, (4.10)

where the functions X and Y1 are given by (3.2) and (4.8), respectively.

Proof Using Proposition 2.6, we get

∫ ∞

t
q(s) ds ∼

r
tq(t), t → ∞. (4.11)
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On the other hand, another application of Proposition 2.6 gives us

∫ ∞

t

∫ ∞

s
q(r) dr ds ∼

r
t
∫ ∞

t
q(s) ds, t → ∞. (4.12)

From (4.11) and (4.12), we conclude

∫ ∞

t

∫ ∞

s
q(r) dr ds ∼

r
t2q(t), t → ∞

implying (4.10). �

Lemma 4.4 Suppose that q ∈ RPV(–∞). Then

X(t) ∼
r

Y2(t), t → ∞, (4.13)

where the functions X and Y2 are given by (3.2) and (4.9), respectively.

Proof Applying Proposition 2.6, we conclude that

∫ ∞

t
q(s)

2
3+γ ds ∼

r
t · q(t)

2
3+γ , t → ∞,

implying

(∫ ∞

t
q(s)

2
3+γ ds

) 3+γ
1–γ ∼

r
t

3+γ
1–γ q(t)

2
1–γ , t → ∞, (4.14)

since 3+γ

1–γ
> 0. On the other hand, another use of Proposition 2.6 gives us

∫ ∞

t

(∫ ∞

s
q(r)

2
3+γ dr

) 3+γ
1–γ

ds ∼
r

t
(∫ ∞

t
q(s)

2
3+γ ds

) 3+γ
1–γ

, t → ∞. (4.15)

By combining (4.14) and (4.15), we get

∫ ∞

t

(∫ ∞

s
q(r)

2
3+γ dr

) 3+γ
1–γ

ds ∼
r

t
4

1–γ q(t)
2

1–γ , t → ∞

yielding (4.13). �

5 Proofs of main results
Proof of Theorem 3.1 Since q satisfies the condition (1.1), we obtain that the equation (E)
has a strongly increasing solution.

Let x be arbitrary strongly increasing solution of (E) defined on [T ,∞), T ≥ a. First, we
show that there exist positive constants m, M such that

mX2(t) ≤ x(t) ≤ MX1(t), for large t, (5.1)
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where X1 and X2 are given by (4.1) and (4.2), respectively. Integrating x′ on [T , t], we get

x(t) = x(T) +
∫ t

T
x′(s) ds ≤ x(T) + x′(t)(t – T), t ≥ T ,

because x′ is increasing. Hence, we find K1 > 0 such that

x(t) ≤ K1tx′(t), t ≥ T . (5.2)

Since x is increasing, integration of (E) from T to t gives

x′(t) = x′(T) +
∫ t

T
q(s)x(s)γ ds ≤ x′(T) + x(t)γ

∫ t

T
q(s) ds, t ≥ T ,

implying, due to the fact
∫ t

T q(s) ds → ∞ as t → ∞, that we find K2 > 0 such that

x′(t) ≤ K2x(t)γ
∫ t

T
q(s) ds, t ≥ T . (5.3)

By combining (5.2) and (5.3), we have

x(t) ≤ K1K2tx(t)γ
∫ t

T
q(s) ds, t ≥ T .

Thus, there exists M > 0 such that

x(t) ≤ M
(

t
∫ t

T
q(s) ds

) 1
1–γ

, t ≥ T .

The right-hand side of the inequality (5.1) is proved.
Next, we prove the left-hand side of the inequality (5.1). Set w(t) = x(t)x′(t) and

ν =
γ + 1
γ + 3

, μ =
2

γ + 3
, κ =

1 – γ

γ + 3
. (5.4)

An application of Young’s inequality gives

w′(t) = w(t)
(

q(t)x(t)γ

x′(t)
+

x′(t)
x(t)

)
≥ w(t)

μμνν

(
q(t)x(t)γ

x′(t)

)μ(
x′(t)
x(t)

)ν

=
w(t)
μμνν

x(t)γμ–νx′(t)ν–μq(t)μ.

Since, γμ – ν = ν – μ = –κ , we get

w′(t) ≥ 1
μμνν

w(t)1–κq(t)μ. (5.5)

After dividing (5.5) by w(t)1–κ and integrating the obtained inequality on [T , t], we get that
there is k1 > 0 such that

w(t)κ ≥ k1

∫ t

T
q(s)μ ds, t ≥ T
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or

x(t)x′(t) ≥ k
1
κ

1

(∫ t

T
q(s)μ ds

) 1
κ

, t ≥ T . (5.6)

Integrating (5.6) from T to t, we find k2 > 0 and T∗ ≥ T sufficiently large such that

x(t)2

2
≥ k2

∫ t

a

(∫ s

a
q(r)

2
γ +3 dr

) γ +3
1–γ

ds, t ≥ T∗. (5.7)

From (5.7), we obtain that there exists m > 0 such that the left-hand side of the inequality
(5.1) is satisfied.

Next, we prove that x is a rapidly varying function of index ∞. Fix arbitrary λ > 1. Indeed,
from (5.1) for sufficiently large t, we have

mX2(λt) ≤ x(λt) ≤ MX1(λt), (5.8)

and

1
MX1(t)

≤ 1
x(t)

≤ 1
mX2(t)

. (5.9)

From (5.8) and (5.9), we obtain

m
M

X2(λt)
X1(t)

≤ x(λt)
x(t)

≤ M
m

X1(λt)
X2(t)

(5.10)

for sufficiently large t. By Lemma 4.1 and Lemma 4.2, we have X1(t) r∼ X2(t), t → ∞, which
means

lim
t→∞

X2(λt)
X1(t)

= lim
t→∞

X1(λt)
X2(t)

= ∞. (5.11)

Since λ was arbitrary, combining (5.10) and (5.11) gives us limt→∞ x(λt)
x(t) = ∞ for all λ > 1,

that is, x ∈ RPV(∞).
It remains to prove that the solution x satisfies the asymptotic relation (3.1). Fix arbitrary

λ > 1. Let m and M be positive numbers, satisfying (5.1) for t ≥ T1 ≥ T . By Lemma 4.1 and
Lemma 4.2, we have (4.3) and (4.5), so there exists T2 = T2(λ) ≥ T1 such that

MX1(t) ≤ X(λt) ∧ X
(

t
λ

)
≤ mX2(t), t ≥ T2.

Therefore, from (5.1), we conclude that

X
(

t
λ

)
≤ x(t) ≤ X(λt), t ≥ T2, (5.12)

implying x(t) �∼ X(t), t → ∞. This completes the proof of Theorem 3.1. �
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Proof of Theorem 3.2 Assumption (1.2) ensures the existence of strongly decreasing solu-
tion of (E). Assume that x is the arbitrary strongly decreasing solution of (E) defined on
[T ,∞), T ≥ a. First, we show that there exist positive constants m and M such that

mY2(t) ≤ x(t) ≤ MY1(t), for large t, (5.13)

where Y1 and Y2 are given by (4.8) and (4.9), respectively. Since x′(t) → 0, t → ∞, and x is
decreasing, integrating (E) from t to ∞, we get

–x′(t) =
∫ ∞

t
q(s)x(s)γ ds ≤ x(t)γ

∫ ∞

t
q(s) ds, t ≥ T . (5.14)

Dividing (5.14) by x(t)γ and then integrating from t to ∞, since x(t) → 0, t → ∞, we have

1
1 – γ

x(t)1–γ ≤
∫ ∞

t

∫ ∞

s
q(r) dr ds, t ≥ T

implying that there exists M > 0 such that the right-hand side of the inequality (5.13) is
satisfied.

Next, we prove the left-hand side of the inequality (5.13). Setting w(t) = x(t)|x′(t)| and ν ,
μ, κ as in (5.4), application of Young’s inequality gives

–w′(t) = w(t)
(

q(t)x(t)γ

|x′(t)| +
|x′(t)|
x(t)

)
≥ w(t)

μμνν

(
q(t)x(t)γ

|x′(t)|
)μ( |x′(t)|

x(t)

)ν

=
w(t)
μμνν

x(t)γμ–ν
∣∣x′(t)

∣∣ν–μq(t)μ =
1

μμνν
w(t)1–κq(t)μ,

afterwards multiplying by w(t)κ–1 and integrating from t to ∞, we find k1 > 0 such that

w(t)κ ≥ k1

∫ ∞

t
q(s)μ ds, t ≥ T ,

or

–x(t)x′(t) ≥ k
1
κ

1

(∫ ∞

t
q(s)μ ds

) 1
κ

, t ≥ T . (5.15)

Since x(t) → 0, t → ∞, integrating (5.15) from t to ∞ yields that there is k2 > 0 such that

x(t)2

2
≥ k2

∫ ∞

t

(∫ ∞

s
q(r)

2
γ +3 dr

) γ +3
1–γ

ds. (5.16)

From (5.16), we obtain that there exists m > 0 such that the left-hand side of the inequality
(5.13) is satisfied.

That x ∈ RPV(–∞) and satisfies the asymptotic relation (3.3) can be proved in the same
way as in the proof of Theorem 3.1, using Lemma 4.3 and Lemma 4.4. �
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6 Examples
Now, we present two examples that illustrate main results stated by Theorem 3.1 and The-
orem 3.2.

Example 6.1 Consider the equation

x′′(t) = q1(t)xγ (t), t > 0, 0 < γ < 1, (6.1)

where q1(t) = et+(1–γ )et (1 + et). Since

q1 ∈ RPV(∞) ∧
∫ ∞

a
tγ q1(t) dt = ∞,

by Theorem 3.1 follows that every strongly increasing solution of (6.1) is rapidly varying
of index ∞, and any such solution x satisfies the asymptotic relation

x(t) �∼ Q1(t), t → ∞, (6.2)

where Q1(t) = (t2q1(t))
1

1–γ . It is easy to check that x1(t) = eet is such a solution of (6.1),
since x1 ∈ RPV(∞) and

lim
t→∞

x1(λt)
Q1(t)

= lim
t→∞

Q1(λt)
x1(t)

= ∞,

implying that x1 satisfies the asymptotic relation (6.2).

Example 6.2 Consider the equation

x′′(t) = q2(t)xγ (t), t > 0, 0 < γ < 1, (6.3)

where q2(t) = k2ek(γ –1)t , k > 0. Since

q2 ∈ RPV(–∞) ∧
∫ ∞

a
tq2(t) dt < ∞,

by Theorem 3.2 follows that every strongly decreasing solution of (6.3) is rapidly varying
of index –∞, and any such solution x satisfies the asymptotic relation

x(t) ∼
�

Q2(t), t → ∞, (6.4)

where Q2(t) = (t2q2(t))
1

1–γ . It is easy to check that x2(t) = e–kt , k > 0 is such a solution of
(6.3), since x2 ∈ RPV(–∞) and

lim
t→∞

x2(λt)
Q2(t)

= lim
t→∞

Q2(λt)
x2(t)

= 0,

implying that x2 satisfies the asymptotic relation (6.4).
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