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term does not satisfy the Ambrosetti...Rabinowitz condition. The main tools for
obtaining this result are the mountain pass theorem and a modi“ed version of
Ekelandes variational principle for an energy functional with the compactness
condition of the Palais... Smale type, namely the Cerami condition. Also we discuss
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1 Introduction
In the last years the study of problems involving di erential equations and variational
problems associated with thp(-)-Laplacian operator has been paid to anincreasing deal of
attention because they can be viewed as a model for many physical phenomena which arise
in several investigations related to elastic mechanics, electro-rheological "uid (ssmart "u-
idsZ), image processingtc. We refer the reader to §, 16, 21, 32, 43, 49 and the references
therein.

On the other hand, in the recent years the study of equations with nonstandard growth
and related nonlocal equations has gained an increasing deal of attention due to both
pure mathematical research aspects and real-world applications. This fact is justi“ed by
the occurrence of the aforementioned problems in many di erent applications such as
conservation laws, ultra-materials and water waves, phase transitions, thin obstacle prob-
lem, optimization, "ames propagation, strati“ed materials, anomalous di usion, ultra-
relativistic limits of quantum mechanics, crystal dislocation, soft thin “Ims, minimal sur-
faces, semipermeable membranes and "ame propagation, multiple scattering, mathemat-
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ical “nance, and so on. For a comprehensive introduction to the study of nonlocal prob-
lems, we refer to the work of Di Nezza, Palatucci, and Valdino2(], see [L3, 25, 34, 36, 50|
and the references therein for more details.

Therefore, a natural question is to understand if some results can be recovered when
we change the locap(-)-Laplacian, de“ned as div(] u|P®-2 u), into the nonlocal frac-
tional p(-)-Laplacian. In this direction, several researchers have attempted to extend the
study of the classical exponent variable case to include the fractional case (see for instance
[4,7,8,26,27, 31,38, 58)). In particular, as far as we are aware, Kaumaetal.[31] de“ned
anew class of fractional Sobolev spaces with variable exponents that takes a fractional vari-
able exponent operator into consideration. In particular, irf] the authors discussed sev-
eral fundamental properties related to the aforementioned function space and the related
nonlocal operator and, using a direct variational method, the authors showed an applica-
tion to a class of nonlocal fractional problems with several variable exponents. Precisely,
as applications, they proved the existence of at least one solution for equations driven by
the fractionalp(-)-Laplacian. Inspired by these recent works, further fundamental embed-
dings for the fractional Sobolev spaces with variable exponents and their applications,
such asa priori bounds and multiplicity of solutions of problems driven by the fractional
p(:)-Laplacian,have been provided by Ho and Kim 6]. Also they obtained the existence
of many solutions for a class of critical nonlocal problems with variable exponents; see
[27]. We refer the interested reader to4, 5, 58] for the existence results to Kirchho -type
problems driven by gp(-)-fractional operator.

This paper is devoted to the study of the existence of nontrivial solutions for the follow-
ing Schrédinger-type problem involving the nonlocal fractiongl(-)-Laplacian:

Lrz+V(X)|ZP*)Z = rax)|z" ¥ Z+f(x,2) in RN, (P)

whereN 2,1 >0isaparametep:RNx RN (1, )isacontinuous function satisfying
p(X):=px,x) forallx RN, r:RN (1, )iscontinuous,V anda are suitable potential
functions in (0, ), andf :RY x R R satis“es a Carathéodory condition. Heregx
stands for the following pointwise-de“ned nonlocal operator:

Licz(X) :Z/D;N |20¢) .. 2(y)|"*? {z(x) .. 2(y))K(x,y)dy forallx RN,

wherep C(RN x RN) is uniformly continuous such thatp is symmetric, i.e.p(X,y) =
p(y,¥) forall x,y RN;0<s<1;1<infyy pnxen PGY)  SUPyy, mNxgn POGY) < % and
K:RNx RN  (0,+ )isakernelfunction such that the following conditions are ful“lled:
(K1) mKC LYRN x RN), where m(x,y) = min{|x .. y|P®¥), 1};
(K2) There exists a constant 6y > 0 such that (X, y)|x ...y|N*S?¥ gy for almost all
(x,y) RNx RN andx=y;
(IC3) K(x,y) =K(y,x) forall (x,y) RN x RN,
With the choice K(x,y) = |x ..y|N -7 the operator £, becomes the fractionab(:)-
Laplacian operator (.A)S(_) de“ned as

p(xy)...
(..A)392(X) = P.V. /R N lZ(X)“Zl())(/)_l_y|N+s§i,(y))()“Z(y)) dy, x RV,




Lee et al Advances in Continuous and Discrete Models (2022) 2022:14 Page 3 of 25

The “rst purpose of the present paper is to establish the existence of at least two dis-
tinct nontrivial solutions for Schrédinger-type problems involving the nonlocal fractional
p(-)-Laplacian in case where the nonlinear term is concave...convex. The primary tools
for obtaining this result are the mountain pass theorem (se8]] and a variant of Eke-
landes variational principle (se€d]) for an energy functional. We assume that this energy
functional satis“es a Palais...Smale-type compactness condition, namely the Cerami con-
dition. This kind of nonlinearity has been extensively studied since the seminal work of
Ambrosetti, Brezis, and Ceramig]. For elliptic equations with the concave...convex non-
linearity, we refer the reader also tol]2, 14, 15, 19, 28, 53..55] and the references therein.
Precisely, the existence of multiple solutions for an elliptic problem of a nonhomogeneous
fractional p-Kirchho -type, involving concave...convex nonlinearities, has been studied in
[55]. By means of variational techniques and Ekelandes variational principle, the authors in
[28] obtained the existence of two nontrivial nonnegative solutions and in“nitely many so-
lutions for the following degenerategh(x)-Laplacian equations involving concave...convex
type nonlinearities with two parameters:

div(w(x)| z|P®-2 2) = ra(x)|2]'®Z+ ub(¥)|2]9®%Z in Q,
z=0 onog,

whereQ RN is a bounded domain with a smooth boundary2,p,q,r C(2,(1, ))
with r(x) <p(x) <q(x) forallx ,w,a, bare measurable functions of that are positives
a.e.in, andA, u are real parameters. Very recently, Biswas and Tiwalkil] investigated
an elliptic problem involving nonlocal operator with variable exponents and concave...
convex nonlinearity in a bounded domain with Dirichlet boundary condition. Biswas and
Tiwari assumed the condition by Ambrosetti and Rabinowitz3] (see [, 24] for elliptic
equations with variable exponents) and then employed the mountain pass theorem and
Ekelandes variational principle to obtain the multiplicity result.

As we known, the condition of Ambrosetti...Rabinowitz type i8], that is, there exists
a constantt > p such that

0<0F(x,7) f(x,1)T,

forallr R\{0}andx RN,WhereF(x,r)=/ f(x,t)dt, (1.2)
0

is essential in securing the boundedness of the Palais...Smale sequence of an energy func-
tional. However, this condition is quite restrictive and removes several nonlinearities. For
this reason, during the last few decades there have been extensive studies which tried to
dropit; see L, 16, 29, 30, 33, 34, 38..40, 42, 44].

In that sense, our “rst aim is to discuss the existence of two nontrivial distinct solutions
to problem (P) for the case of a combined e ect of concave...convex nonlinearities when
the nonlinear growthf does not satisfy the condition of Ambrosetti...Rabinowitz type.
The main point in the present paper is to discuss the existence of multiple solutions B) (
under a new and mild assumption for the convex terrhthat does not satisfy 1.1) and is
di erent from those studied in [1, 16, 29, 30, 33, 34, 38..40, 42, 44]. In particular, we give
some examples to demonstrate that this condition is not arti“cial. The main di culty for
obtaining the multiplicity result under this assumption on the convex ternf is to verify
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the Cerami condition of the energy functional associated witl®). It is worth noting that
we overcome it from the coercivity of the potential functiorV .

For recent developments in the context of concave...convex problems, we mention the
work of Papageorgiou...Scapella#b] where the authors studied nonlinear Robin prob-
lems driven by thep-Laplacian plus and inde“nite potential in which the reaction exhibits
the competing e ects of a parametric concave (thatisp(.. 1)-sublinear) term and of a con-
vex (thatis, ... 1)-superlinear) term. Ir45] the authors did not require the Ambrosetti...
Rabinowitz condition and obtained a bifurcation-type theorem that describes the depen-
dence of a set of positive solutions on the paramet&r> 0. In line with the contents of
the paper §5], Papageorgiou and ScapellatdT] considered Robin problems driven by
the (p,g)-Laplacian plus an inde“nite potential term and did not require the Ambrosetti...
Rabinowitz condition for the reaction. We mention that in 5] there is no parameter and
the authors, in addition to constant sign solutions, produced nodal solutions. Finally, we
cite a variant of the classical concave...convex problem studied8).[Precisely, Papageor-
giou and Scapellato in46] studied a nonlinear resonant boundary value problem where
there is no parameter, the convex term is replaced by a resonant (that s, .( 1)-linear)
term, and the concave contribution comes from the boundary condition.

The second main aim of this paper is to obtain several existence results of a sequence of
in“nitely many solutions to problem (P). First we are to discuss that multiple large energy
solutions for problem @) exist (see Theoren3.12. The second is to establish that problem
(P) possesses a sequence of in“nitely many small energy solutions (see The@@&®6). The
strategy of the proof for these consequences is based on the applications of variational
tools such as the fountain theorem and the dual fountain theorem, which were initially
built by the papers P] and [10], respectively. Our study on such multiplicity results for
nonlinear elliptic equations of variational type is particularly inspired by the contributions
in recent works [18, 30, 38,41, 48, 51] and the references therein. However, in some sense
the proof of our consequence for multiple small energy solutions is di erent from that
of the previous related works10, 41, 51, 52]. To the best of our knowledge, while many
authors are interested in the study of elliptic problems in both local and nonlocal cases,
the present paper is the “rst endeavor to develop the existence results for the concave...
convex-type problems driven by nonlocal fractionad(-)-Laplacian.

This paperss outline is the following: we “rstly present some necessary preliminary
knowledge of function spaces. Next we give the variational framework associated with
problem (P), and then we establish the results about at least two distinct nontrivial so-
lutions to the nonlocal fractionalp(-)-Laplacian with concave...convex nonlinearities by
applying the mountain pass theorem and a variant of Ekelandes variational principle for
an energy functional with the Cerami condition. Finally, under suitable conditions on the
convex termf, we carry out various existence results of in“nitely many nontrivial solutions
by employing the variational principle.

2 Preliminaries

In this section we present a natural functional framework associated with probleid)(

We brie"y recall some de“nitions and fundamental properties of the variable exponent
Lebesgue spaces and a Lebesgue...Sobolev space of fractional§ser(-)(2) which

will be used throughout the paper. For further details on these spaces, we refer the reader
to[4,7,8,26,27,31,58|.
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Set
C+(§):[e C(ﬁ):mig@(x)>1}.
X Q
Forany¢ C.(Q), we de‘ne
Ly =supfl(x) and £_ = inf¢(X).
X Q X Q
Let M (2) be the vector space of all measurable functions frafinto R. We identify two

such functions which di er only on a Lebesgue-null set. Given C.(2), the anisotropic
Lebesgue space')(R2) is de“ned by

Lh(')(Q)={z M(sz):/|z|“<X>dx< }
Q

We equip this space with the so-calleduxemburg normde“ned by

29" g 1

Z \nyg) = inf[z? >0 :/Q

In the anisotropic Lebesgue spaces the following Holder inequality holds.

Lemma 2.1 ([23,35]) The space [)(RN) is a separableuniformly convex Banach spage
and its conjugate space is"l)(RN) where1/h(x) + 1/h (x) = 1. For any z L"O(RN) and
o L"O®N), we have

/ Zw dX
RN

Lemma 2.2 ([23]) Let us consider the modular function

1 1
<h_+ W) Z LhO®RN) @ Lh(O@N) 2.Z 1ho@Ny @ h O®N)*

1ﬁ(z)=/ |zI"®dx foranyz L"O(RN).
RN

Then we have
1) v@>1=L<)) ifand only if Z \nogny>1(=1 <), respectively;
h+
2) [f V4 Lh()(RN) > l then z Lh()(RN) Ip‘(z) Y4 Lh(')(]RN);

3) If Z ho@ny <1 then z v@ oz

Lh J®N) LhO®RN)

Let  be a Lipschitz domain inRN. Lets (0,1) and letp C(Q x Q,(1, )) be such
that p(x,y) = p(y,x) forall x,y € and

1<p= inf p(xy) p':= sup p(xy)<+
(xy) QxQ (xy) @xQ

Forq C.(RV),de“ne

(x.y)
SAOPC) (N 0 (R [2(X) .. z(y)["
w (RY) = {z L /RN /J};N Xy dxdy<+ ¢,
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and we set

NY .= : |2(x) .. Z(y)|P*¥)
[Zlsp(.) (RY) .—1nf{)L >0 ./]RN ./]RN TP .y N dxdy<1}.

Then Wsd0RC)(RN) endowed with the norm

Z sqp = Z Lao@n) * [Zsp.) (RN)
is a separable re”exive Banach space (s&gg, 31]).

Lemma 2.3 ([26]) Let< be a bounded Lipschitz domairand let p, g, and s be as above
Assume furthermore that

spr<N and q(x) p(x) forallx Q.
Then the following embedding holds

WSAOPEI(Q) e« L'O(Q)

Np(x,x)
N..sp(X,x)

foranyr C.() such that r(x) <pg(X) := forallx Q.

For the sake of brevity, we writga(x) in place of p(x,x) for some cases, and hence
p  C:+(RN). In addition, we write WSPC)(RN) in place of WSPOPC)(RN), We recall the
following embeddings (se€6, Theorem 3.5]).

Lemma2.4 Lets (0,1).Letp C.(RN x RN)be a uniformly continuous and symmetric
function with sp" <N. Then it holds that
(i) WSPCIRN) < L'ORN) for any uniform continuous function v C(RN) fulfilling
p(x,X) r(x)forallx RN andinf, gn(ps(X)..r(x))>0
(i) WSPCIRNY< < LIORN) foranyr  Co(RN) with r(x) <py(X) forall x RN,

loc

In the following, let 0 <s<1 and letp C.(RN x RN) be a uniformly continuous and
symmetric function such thatsp" <N. Suppose thatC : RN x RN (0, )is a function
with conditions (K1)...K3). Let us denote withw 3*C)(RN) the completion of C, (RN)
with respect to the norm

z wEPC) N = Z poeny t |Z|Wf€p("')(RN)’
where
— . 1 p(xY)
|z|sz(A,.)(RN) .—mf{)\>0./RN /I;N W|z(x) . z(y)|TPK(x y) dxdy < 1.
According to the basic idea in23], we obtain the following result.

Lemma 2.5 Denote

X(Z):f Ile(X)dx+/ / ]z(x)..z(y)]p(x’y)IC(x,y)dxdy foranyz WP (RN),
RN RN JRN
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Then we have

1) x@>1=L<))ifandonlyif z >1(=1; <1), respectively;

W}sép(.ll) (]RN)

o p .

@ If Z \ysocogny > then 2 wedEny X @ z WP @Ny’
p* P

3) If 2 st gy <L then 2 ey X @ =z WP Ny

Throughout this paper, we denoteY’ := W,%p("')(]RN), and letX be a dual space oft’.
Furthermore, -,- denotes the pairing oft’ and its dualX .

3 Mainresults
In this section, we show the multiplicity result of a weak solution to problenP) by em-
ploying the variational principle.

Definition 3.1 We say thatz X is a weak solution of problem) if
L 1209 200P* 00 . 20) (09 oA Oy dxay
+/ V (%)]2P% % dx
RN
= A/ ax)|z|"™ 2y dx+/ f(x,2)p dx
RN RN
foralle X.

Let us de“ne the functionalA: X R by

1 (xy) V(¥
Az:/ / ———|z(x) .. 2(0)[""Y K (x, y) dxd +f —2|7|PY dx.
@= [, L. pocy 209 -2 Ky dxay+ |
Then from [8, 31] it follows that A  C(X,R), and its Fréchet derivative is given by

@)= [ [ 1269200 a9 .2 (90 - oDy cxay

+/ V (X)|2]P%Zg dx.
RN

LetF(x,7) = forf(x,s)ds Let us assume that
H) p,gr CiRV)andl<r_ r,<p~ p"<q. g.<ps(X)forallx RN
(V) V. LL (RN), essinf, gn V(X) >0, and limyy ~ V(X) =+

loc
()

(A) 0 a LOOMRN) L (RV)with [{x RN :a(x)=0}| >0, where |A| denotes the
Lebesgue measure of a subset A of RN.

(F1) f:RN x R R satisfies the Carathéodory condition.

(F2) ThereexistsO b LY(RV) L (RV)such that

[f(x,7)|  bX)|7|%®-1 foralmostall (x,r) RN x R,

where g  C.+(RV) and q(x) <pg(x) forallx RN.
(E3) limy TT(—;}Q = uniformly for almostallx RN,



Lee et al Advances in Continuous and Discrete Models (2022) 2022:14 Page 8 of 25

()

(F4) There are . >p*, M >0, and a function ¢ 0 with ¢ LP('pj--F"“(Bl) on

Bi:={x RN:p(x)>p3}ande(X) o (constantfunction)on

Bo:={x RN :p(x)=p-}suchthat|{x RN:p(x)>0} =0and

f(X,7) .. uF(X, 1)  .oX)|T|P"..2(X)

forall (Xx,7) RN x Rwith|z] M andforsome¢ LYRN) L (RN)with

c(x) O.
(F5) F(x,7)=0o(z|P®)ast 0O uniformly for all x RN.
As mentioned in the introduction, assumption (F4) for the convex term is di erent

from that used in the works [, 16, 29, 30, 33, 34, 38..40, 42, 44]. Hence we give some
simple examples of functions that satisfy condition (F4).

Example3.2 Ifp(x)=2forallx RN and
f(x,7) = p(X)|7|(47% ... 2 cos7 ... 4inT),
wherep(x) LYRN) L (RN)andO<inf, gn p(X)  sup, gy p(X) <, then
4 . ,
F(x,t) = p(X) §|‘L'| ... 2|t|sint .
We setp :=inf, pn p(X) @and(X) :=2(u ... 2p(X) with 2< pu < 1745 forallx RN.Then
- 5 3 . 4 5 .
f(x,7)t .. uF(X, 1) —,o(X)<4|r| o &|Pcost ... 4|t|sint ...gu|r| +2/u|r|s1nr)
4
= ,0(X)<4|‘1:|5 é,u,|‘L'|5 o PrPcosT+ (2u ... AT sint)

,O(X)(4|7.’|3 ...gu|r|3 o Pr|cosT .. (2 ... 4>r2

,O(X)(|r|3+ (3 ...g,u>|r|3 (2 ...4)

PRl (2 .. 4p()
~eltl? .2 (%)

for |t| r,wherer >1is chosen such that (3 .‘g‘u)r3 ...2 0.Hence (F4) is ful“lled.

Example3.3 Ifp(x)=p>1forallx RN and

f(x,7) = p(X)(|r|p“'21: + g sin r),

where p comes from the previous example, then

1 2 2
F(x,t) = p(X —‘L'p...—COST+—>.
(x,7) = o )(p|| Scost 2
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We seto := (i ... 13up, pn p(X) and ¢ (x) := %p(x) with p<p forallx RN.Then

2 2 2
f(x,7)r .. uF(X, 1) :p(x)[|r|p+ BT sint ...%|1:|p+ Fucosr —M:|

p
p(x)[(l --%)Irlp ---glrl 4?“}

:p(x)[(l Sl + “(pT'“l?ﬂp ..%m] ...%“p(x)
(L 1) [P ..%“p(x)
eltP .2

forall || r, wherer >1ischosensuchthat(p... 1)?...2 0. Hence (F4) is ful“lled.

Example3.4 Ifp C.(RV)and

f(x,7) = p(Q)|7[P® %[ (p(x) + 3)72 ... Zp(x) + 2)|7| + (p(x) + 1)],
wherep(x) LYRN) L (RV), then

F(x,7) = p( (|7 [P0"3 .. e |POO2 4 |7 |P*L),
We seto(X) := p(x) =: ¢(x) andp_+ 1 <u <p(x) + 2 forallx RN.Then

f(X,7)t .. uF(X,7)
= p(Q[(PO) +3 .. 2)[T|PO*3 L 2p(X) + 2 .. ) [P 2 + (p(x) + 1 .. )| 7| PO
POI[(PO)+3 o) |72 ... Zp() +2 .. pt) 2] + (p+ 1 .. 1) |2 PO
=pM[I7P+ (PO +2 . ) (I7]? ... &) + (pr+ L. ) ]| [POO*2
p[Iel? (e oo Yl P
LoMNTlP . £ (x)

for |z| r,wherer>1+,/(u..p~...1)is chosen suchthat...2 0. Hence (F4) is ful-
“lled.

Let us de“ne the functional¥, : X R by

‘p*(z)”fR @|z|f<X>o|x+f]RN F(x,2) dx.

N r(X)

Itis easy to check that;, CY(X,R) and its Fréchet derivative is

(\IJX(Z),(p):)L/ a(x)|z|r(x)“'%godx+/ f(x,2)¢ dx
RN RN
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foranyz,¢ X.Nextwe de“ne the functionalZ, : X R by
L(2=A@ ..v.(2).

Then the functionalZ, C'(X,R) and its Fréchet derivative is
E@)= [, [ 1209260 e .2) (009 o) Klx ) ey
RN JRN
p(X)... r(x)...
+/RN V (¥)|z] %godx..A/RN a()|z| %q)dx.../RN f(x,2)p dx

foranyz,¢p X.
Under assumption (V), we can give the compact embedding.

Lemma 3.5 If the potential function V satis“es assumptio(V), then
(1) the embedding from X < LPO(RN) is continuous and compact;
(2) for any measurable function € : RN R with p(X) < £(X) for all x RN, thereisa
compact embedding X < L‘ORN) ifinf, gn (ps(X) ..£(X)) > 0.

Proof In order to prove this lemma, we can adapt the proof of Lemma 2.6 ith][ For the
case that the potential functiorV is coercive, we obtain a similar result involving variable
exponents of fractional type using Lemma.4. So, we omit the details of the proof. O

Next we give the following useful lemmas which are essential in obtaining the existence
of at least two distinct nontrivial solutions to problem P).

Definition 3.6 Let E be a real Banach space with dual spaEe, Z CXE,RN). We say
that 7 satis“es the Cerami condition (C)-condition, for short) in E if any (C)-sequence
{z.} E, i.e.,{Z(z\)}is bounded and Z(z,) e 1+ z, g) Oasn , has a con-
vergent subsequence ie. We say thatZ satis“es the Cerami condition at levet ((C)c-

condition, for short) in E if any (C).-sequence{z,} E,i.e.,Z(z7) casn and

Z(z) e(1+ z,g) Oasn , has a convergent subsequencekn

Lemma 3.7 Assume thatH), (V), (A),and (F1)..(F4)hold. Then the functionalZ, satis“es
the (C)-condition for anya > 0.

Proof Let{z,} be a C)-sequence int for Z,, that is,
sup|Zo(za)| Mo and (Z,(zn).z0)= (1), 3.1
n N

whereo(1) 0 asn , and My is a positive constant. From Lemma 4.2 ir8] and

Lemma 3.3 in B3], it follows that A and ¥, are of type &:). Sinced’ is a re’exive Ba-
nach space, it is enough to ensure that the sequerag} is bounded inX'. We argue by
contradiction. Assume that the sequencgz,} is unbounded inX'. So then we may sup-

pose that z, y>1and z, y asn . Let us denote the sequencv,} with
Wn = 2Zn/ z, x. Then, clearly, we havdw,} X and w, y =1. Hence, up to a subse-
guence, still denoted byw,}, we inferw, — w in X asn and by Lemma3.5

Wh(x) o) ae inRN and w, o inL‘ORN)asn (3.2)
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for p(x)  £(x) with inf, pn(Pg(X) .. £(X)) > 0. Notice thatV(x) + as|x|

) (%) (x)
f ()(p(x) )'Z dx.. lem (120l + beolzo| ) dx

1/1 1
—(—+ —)/ V (X)|zn|P® dx .. M3,
2\p" wu/ Jpn

whereC,; and M; are positive constants. In fact we know that

p+

1 1
(—...—)/ V(x)|zn|p(x)dx...01/ |Z|P® + b(x)| zn| 9 dx
m/ JrN |zal M

1/1 1 / 1/1 1
(== V (¥)|z p(x)dx+—<—...—)/ V (%)|za|P™ dx
3o ) [ voomPoac S( L) [ veorad

...le |zn|p(x)+b(x)|zn|“(x)dx...C1/
|zn| 1 1

qza| M

12017+ () 20| ix

1/1 1 1/1 1
(== V(¥)|z p(")dx+—(—...—>/ V (X)]20|P® dx
3o ) [ voorpoac 5( L) [ voorad

LCi(1+ b (RN))/ |za|P¥ dx .. Cy,

lzn| 1

whereC; and C; are positive constants. Let us s& :={x RN : |z,(X)| > 1}. Since|Z| is
“nite (| - | is the Lebesgue measure iRN), = =¥ N where £ is a bounded set and\
RN such

is of measure zero. Without loss of generality, suppose that there exiBtf0)

, then

Page 11 of 25

that ¥ B;(0) whereB;(0) is the open ball centered at O with radius in the Euclidean

spaceRN. SinceV(x) + as|x| , there isrg > 0 such that|x|
V (X) we get
( ) V(x)|zn|P<X>dx...01/ [Z0]P% + b(X)]z| 9% dx
|zn|

1<i —> V(x)|zn|p<X>dx+1<i+ 1)/ V (X)) za|P™ dx
2\p* /N 2\p* w/ Jse B

1

LCi(1+ b (RN))/ZC |za|P¥ dx .. Cy

Brg

1
5(7 --—) V)IzalP¥dx..Co(1+ b (RN))/ .
¢ By ¢ B

ro

1/1 1 1/1 1
(== V(¥)|z p(")dx+—(—...—>/ V (X)]20|P® dx
3o ) [ voorPace 5( 5 2) [ Vool

.Ci(1+ b | @) /E . |zo[P® dx .. My

o

1<i 3)/ V (X)|za|P® dx .. My,
2\p* n/ Jgn

0

|2a|P% dx

ro >r implies
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where M, is a positive constant, as claimed. This fact, together with (F2) and (F4), leads

to

Mo +0(1)

T(z0) 1 (IA (Zn). Zn)

_ Pxy) VX o
L L gy 09 - 2o P ey axay [ Bz o

Y / 09 0 gy / F(x, 20) dx
R RN

N r(X)

1
- f f 12009 - 2P K (x,Y) dxdy .~ / V ()]2o[P dx
u JrN JRN M JRN

A 1
+—/ a(x)|zn|'(x)dx+—/ f (X, Zn)Zn dX
n JrN n JrN
1 1

(E ;) [RNXRN |Zn(X) "Zn(y)|p(x’y)lC(x,y) dXdy

+<i+1)f V(x)|zn|p(x)dx..}\<i...1)/ a(x)|zn|"™ dx
pT w/ JrN r.. un/JrN

/ F(x,zn)dx+£/ f(X,2,)z, dX
RN n JRN

1

(o ) [0 20y ety

(i—) V(x)|zn|P<X>dx..,\<i...1>/ a(x)|zn|"™ dx
p RN r 12 RN

+

+

(p %) /RN RN|zn(x)..zr1(y)|')()(’y)IC(x,y)dxdy

1/1 1 1 1
+_(—+...—)f V(x)|zn|p(x)dx..x<—...—)/ a(x)|zn]"™ dx
2\p" wu/ Jpn r.. w/Jgn

o [ (o0 + c00) .. My

%(i 3) ( /R o 2009 200 Py iy + /R N V<x>|zn|°<x>dx)

pt

1 1 1 1
..A(— —)/ a(x)|zn|r(x)dx...—/ o)z’ dX .. = ¢ Lagny . My
n/ JrN M JRN 1

r..

el 1N e (A2 )
2<p+ M) Zn 'y (ru)/]RN a(x)|zn|"™ dx

1 1
—( | otz ax+ [ otlzl dx) 28 g M
n\JB; B2 H

1/1 1 o (A A 0
(== = LE d
() 5 () Lo

1

1
=20 z P +Q/ |z |p"'dx) = T LNy My
M( LP(-pi--p---(Bl) " OBy B " u HED

/ ( f (X, Zn)Zn .. .F(x,zn)) dx..Cy / (12a]P® + b(x)|2n| %) dx
|zn|>M |zn] M
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1/1 1 (A A
§<F ;> z 5 (Tﬁ) /RN a(x)]za|"™ dx

1 1

2 p + p 1

/~’L(2 © LP(S{Z?J---(Bl) Zn Lp(')(RN) @ Zn Lp(')(BZ)) H { Ll(RN) “Ml
1/71 1 AA
Tl B ALV / a(x)|z|"® dx
2\p" u r.. u/Jen

1 1

—(2 () + z P : — ¢ agNy - Ma

M( € LFO-P (B1) 0) z LPOEN) 7, > LED)
101 1\ o (2 A\ - .
2\pr ) e\ L%(Rm)max{ N pOERNY AN Lp(')(]RN)}

1
(2 Q PO +Q) Zn Lp()(RN) C LL(RN) - My

for su ciently large n becausefy |z|”“dx Jan12a|P® dx. This fact implies

P'Ro o +0)
LPO)-P(By)

1 . o
> lll?lsup Wh LPOEN)
P20 0 +0)

LPO-P~ (1) p

w..p* © roeny (3:3)

Hence, from @.3), it follows that w = 0. However, to obtain the boundedness ¢%,}, we
should prove thatw(x) = 0 for almost allx RN. SetQ; ={x RN :w(x)=0}. By virtue of
relation (3.1), one has

V(X)
T p(x.y) +/ p(x)
= [ o y)| 209 - 20) Ky dxdy+ |z dx
ax) /
s S| Fzax
1 z B » a {z0 zy " ]
p* nx oy LP(")J-(:Z(') (RN)max N LpO@N)T N LPORN)
/ F(x,z,) dx. 3.4
]RN
SinceZ,(z,) Mpforalln Nand z, asn , we assert that
/ F(X, ) dx 1 Zn e Xg o) max{ zn Zn oy ) - Mo
N y p+ X r LBO-10 &N) LPOI(RN)? LPO(RN)
(3.5)
asn . In addition,
1 p(xy) / V(x)
T(zn) = —|za(X) .. 2 K(x,y)dxdy+ Zn|P™® dx
3 (2n) e p(xy)|n() a ()| (x,y) dxdy ()I I

a9 1
A/ ——|z,|"" dx .. A{N F(x, zy) dx

RN T(X)
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1
= Lo 209 20 Py dxay
+i/ V(x)|zn|P<X>dx.../ F(X, Z,) dx.
P JrN RN
Then
1 px.y) 1 (x)
— 1Za(¥) . za(Y)| G Y) dxdy+ — |V (x)]za|PY dx
P JRNx RN pJrN
/R . F(X,zn) dX + 7, (zn). (3.6)

In accordance with assumption (F3), there is a positive constagt> 1 such thatF(x, t) >
|r|p+ forall x RN and|z| > 7. From assumptions (F1) and (F2), it follows that there is
M >0suchthat|F(x,7)] Moforall(x,7) RN x [..rp,10]. Therefore, we can choose a
real number M3 such thatF(x,7) Mgzforall (x,7) RN x R, and thus

F(x,z,) .. M3
L onean 12000 - ZaIPODK(x,y) dx dy+ L fonr V ()]20[P dx

for all x RN and for all n N. By convergence 3.2, we know that |z,(X)| =
[Wn(X)| zn x asn forallx ;. Furthermore, from assumption (F3) it follows

thatfor all x €1 we have

li F(x,zn)
1m
" E foen 12000 - ZnO)POIKC(x,Y) dx dy+ 2 fon V (X)[2ol P dx
F(x,z,) . p F(x,z) ot
im —— = . 3.7
A A g M = 59

Hence we infer that|21| = 0. Indeed, if|21| = 0, then, from relations 8.5)...8.7) and in-
voking the Fatou lemma, it follows that

Jrn F(x,2q) dx

1= hmmf
Jan F(X,Z0) dx + T, (zn)
liminf / c Fx.z0) c dx
n BN 5o Jen N [Z0(X) - ZaMIPEVIC(X, y) dxdy + 2= fon V (X)]2a] PO dx
liminf / Fix,zn) . dx
n 1 g Janxgn 12000 - Za@)PENIC(X,y) dxdy+ o fon V (X)]2a [P dx
..limsup/ Ms T dx
n 21 5 Janean 2000 - ZaW)PEVIC(x,y) dxdy+ o= fon V (X)|Za[PX dx
:1iminff F(x,z,) .. M3 dx
n 21 5o Jenxgn [Z0(X) - Za@)PENK(x, ) dxdy+ o= fon V (X)) 20| PO dx
/ lim inf Fx.20) .. Ms dx
2 " Sanxgn 2009 - ZaMIPENIC(x, V) dxdy+ o fon V (X)]2a [P0 dx
= / liminf F(x 20(9) dx
2 N Jensgn 1Za(X) - Za()PEVK(,y) dxdy + o fon V ()]2a]P00 dx
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/ lim sup 1 Ma T dx
o n - Jankgn 1Z0(X) - ZaMIPENKC(X,y) dxdy + = fon V (X)]2a [P dx

This is impossible. Thus we know;| = 0, and sow(x) = 0 for almost allx RN, as
claimed. Therefore we conclude thafz,} is bounded inX’. The proof is complete. O

Lemma 3.8 Assume conditiongH), (V), (A), (F1).(F3) and (F5). Furthermore suppose
that

(F6) F(x,7) Oforall(x,r) RNx R*
holds Then

(1) There is a positive constant ). such that for any . (0,1 ) we can choose some

constants R>0and 0<r <1thatT,(z2) R>O0forallz X with z x =r.
(2) Thereexistsz Cg (RN),z>0 suchthat T,(tz) ... ast +
(3) Thereexistsw C, (RN), w>0, such that T,(tw) <Qforallt 0.

Proof Statement (1) is proved in11, 37]. Thus, we “rst show statement (2). By assump-
tions (F2)...(F3) and (F5), for anyt > 0, there exist some constaniS; > 0 andC3(M) >0
such that

Fix,1) M|t|” ..Colt|P™ .. Ca(M)b(X) (3.8)

for all (x,r) RN x R whereb comes from (F2). Let us take C_ (RV). Then relation
(3.8 implies that

IA(tZ):fRNf ﬁhz(x) - 12(y)[P* (%, y) dxdy + /RN

( ) r(x)
)\/RN X )|tz| dax.. /]R F(x,tz) dx
V(x)

P (/RN e y)| 2(x) . Z(y)|p(xy)]c(x y)dxdy+/ o )|Z|p(x)d

..M/ P dx+C2/ |z|P<X>dx) +Cs
RN RN

V()
— 1tz p(x) dx
p0)

for t > 1 large enough and for a constar@s. If M is su ciently large, then we assert that
I,(tz) ... ast . Therefore the functionalZ, is unbounded from below.

Next, we have to show (3). Let us choose C. (RN) such thatw > 0. Fort >0 small
enough, from (A) and (F5), it follows that

Bw)= [ o )Py [ S o o
A /R ) f((x))u W] dx . fR F(x, tw) dx
LY e~

Sincer., <p-; it follows that Z; (tw) <0 ast ~ 0*. The proof is completed. O
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The following lemma is the variational principle of Ekeland type ir6[ 37], initially de-
veloped by C.-K. Zhong%6€].

Lemma 3.9 ([6, 37]) Let E be a Banach space and ke a “xed point of E Suppose that
g:E R {+} isalowersemicontinuous functigmot identically + , bounded from
below Then, for everye >0andy E such that

9y) <infg+e
and everya > 0,there exists some point zE such that

9@ 9, z.xe (1+ye(e.. .2

and

&

————————— X..Z forallx E.
A1+ zg) E

9x) 9@ .
With the help of Lemmas3.7, 3.8 and3.9, we are in a position to derive our “rst main
result.

Theorem 3.10 Assume thaiH), (V), (A),and (F1)..(F6)hold. Thenthere existd >0such
that, foranys (0,1 ), problem(P) admits at least two distinct nontrivial weak solutions

Proof By means of Lemmag8.7 and 3.8 there is a positive real numbek such thatZ,
ensures the mountain pass geometry and th€)-condition forany A (0,2 ). Thanks to
the mountain pass theorem in 17], we deduce thatZ, has a critical pointz, X with
7,(z0) =¢>0=1Z,(0). Thus problem P) possesses a nontrivial weak solutiag.

Next we show the existence of the second weak solution &)(Owing to Lemma3.§,
for “xed » (0,A ), there are positive constantR andr (0, 1) such thatZ,(z7 R>0
forallu & with z » =r.Letus denotec:=inf, 5 7,(2) whereB, :={z X: z x <r}
with a boundary dB;. Then, by Lemma3.83), we know ... <c<0. If we put 0 <¢ <
inf, 58, Z,(2) ..c, from Lemma3.9it follows that we can look forz, B, such that

IA(ZS)<C+8! (39)

Ti(z) L@+ gy 22 x forallz B, with z=z,.

This fact together with the estimateZ, (z.) <c+ ¢ <inf; »g, Z,(2) gives thatz, B;. Hence
it follows that z, is a local minimum ofT; (2) := Z;(2) + ﬁ z..z, x.Now, by taking

z=z +twforw B;andt>0 small enough, we deduce fronB(9) that

L@ +t) @) _Tz+to) L&),
t t 1+ z »

0

w x.
Therefore, lettingt 0", we get

(Z,(z),0) + w x O

1+ z »
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Changingw into ..w in the argument above, one has

&

AL @) )+

w x 0.
Thus, we have

1+ z 2)[L@) o) & o
foranyw B;. Hence we know

1+ z 2)|T@)], e (3.10)
Using (3.9 and (3.10, we can choose a sequen§g,} B; such that

I (z c asn ,
2.(2n) (3.11)
1+ z x) Z,(z) x 0 asn

Thus,{z,} is abounded C)-sequence in the re”exive Banach spaédé. By virtue of the fact
that Z, is of type S.) as mentioned in the proof of Lemma.7,{z,} has a subsequende,, }

such thatz, ~ z in X ask . This fact together with .11 leads toZ;(z;) =c<0
andZ, (z;) = 0. Hence there is a nontrivial solutiorz; which is di erent from z,. Therefore
we conclude that problem P) possesses at least two distinct nontrivial weak solutiors.

Next, by applying the fountain theorem and the dual fountain theorem as essential tools
which are originally provided by the paper®] and [10], we establish two existence results
of a sequence of in“nitely many solutions for problemR). Let E be a real re”exive and
separable Banach space, thenitis known (s28 57]) thatthere exist{e,} W and{f,}

E such that

E=span{e,:n=1,2,..}, E :span{fn:n:].,Z,..},
and

1 ifi=j,
f.g)=
i ) 0 ifi=j.

Let us denoteE, = span{e,}, Yk = @ﬁzl E,, andZy = P, En.

Lemma 3.11 (Fountain theorem P, 30, 52]) Let E be a Banach spagthe functionalZ
CY(E,R) satis“es the(C).-condition for any ¢> 0and Z is evenlf for each su ciently large
k N there existox > 8¢ > 0 such that the following properties hold

(1) by:=inf{Z(2):z Zx, z =6k} as kK ;

(2) ax=max{Z(2):z Yk, Ze=p} O
thenZ possesses an unbounded sequence of critical valigeghere is a sequende,} X
suchthatZ (z,)=0andZ(z,) + asn +
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With the aid of Lemma3.11, we are in a position to derive the existence of multiple large
energy solutions.

Theorem 3.12 Assume that(H), (V), (A), and (F1)..(F4) hold. If f (x, .t) = ..f(x,t) holds
for all (x,t) RN x R, then for anyA > 0 problem (P) possesses a sequence of nontrivial
weak solutiongz,} in X" such thatZ; (z,) asn

Proof Clearly, Z, is an even functional that ensures theQ).-condition. It is enough to
prove that there areox > 8¢ > 0 such that

(1) bx:=inf{Z;(2):z Zk, Z x =8} as k ;

() ax=max{Z;(2):z Y«, Zz x=p} O
for su ciently large k. Denote

oK = sup z LAC) (RN
z Zy,z x=1
Then we asserty, 0 ask . Indeed, suppose to the contrary that we can choose

g0>0,kg 0, and the sequencéz} in Zy such that
ze x=1, Z LlaORN) €0

forall k ko. From the boundedness of the sequenga} in X', we look forz X such
thatz — zin X asn and

forj=1,2,.... Hence we gat= 0. However, we obtain
&0 klim Ze LaO@RNY) = Z LaO®RN) =0,

that is a contradiction.
Foranyz Zy, supposethatz y >1. From (F2), Lemm&.1, and 3.4), it follows that

V()

1 (X.y) —
7 z:/ / 2(x) . 7 Dr]Cx, dxd +/ Z|P™® dx
2 BN JRN p(X,Y)| ®) (Y)| 0e) ’ RN PIX §
a(x) r(x) /

)‘/RN o1 x| | Fx2)dx

1 p )\. I+ r.

E V4 X r— a Lpp(g (RN)maX{ 4 Lp(')(]RN)’ z LP(')(RN)}

/ M|Z|Q(X)dx

RN 0(X)
1 p )\. r+ r.
E zZ X r— a Lpp(g (]RN)maX{ 4 Lp(')(RN)’ z Lp(')(RN)}

M/ 2|99 dx
q.. RN

©
+
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where C, and Cs are positive constants. Now, let us choosi = (g.Csey7q. )P4,
Sincep<g+ andax 0 ask , We asserdy ask . Hence, ifz 7y and
Z x =4, then we arrive at

1 1Y\ 4. A
7. i F i o3 o k
) (p* q+) ko T as ’

which implies condition (1).
Now we prove condition (2) arguing by contradiction. Then, let us assume that condition
(2) is not satis“ed for somek. Then we can “nd a sequencéz,} in Yy such that

Zn x asn and l,(z,) O. (3.12)

Letw, =z,/ z, x.Then,clearly, we havew, » =1.SincaedimYy< ,thereisanelement
win Y \{ 0} such that, up to a subsequence still denoted .},

Wh..W » 0 and wq(x) w(x)

foralmostallx RN asn . We claim thatw(x) = 0 for almost allx RN, If w(x) =0,
then [z,(X)| forallx RN asn . Hence, by means of assumption (F3) it follows
that
F(X, . F(x *
fim 220Dy FOGZ09) et (3.13)
n rA |zn (X)|P

forall x £,:={x RN :w(x)=0}. Proceeding as in the proof of Lemma.7, it can be
shown that there isM» R such thatF(x,t) M, forall (x,t) RN x R, and so

F(x,z,) ... M>

p

0

forallx RN andn N. Using 8.13 and the Fatou lemma, one has

F(x, F(x,z .
liminf/ (x20) dx liminf/ ( n+) dx..lim sup/ LZJ, dx
RN n Qo P Qo P

" Zn g; Zn y n Zn x
F(X,z,) ..
:hminf/ de
n Q2 Zn pX
F(x,zn) ..
/ imint -2 =Mz 4
Qo n Zn E\{
F(x,z . M
:/ liminf ( rl) dx...f lim sup 2+ dx.
2 " Zn E\g Q2 N Zn ?\g

Thus we infer

/ I:(L”(i())dx asn
RNz B
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We may assume thatz, x > 1. Therefore, we have
T p(xy),C dxdv+ / P g
@)= [ o lmt 7 caxeys [ 2 e oy

ax)
A/}R —1z,|"dx.. /RNF(x,zn)dx

N F(X)
1 Pt
— Zn / F(x,z,) dx
p- Q
Zn g_f(i / F(L”(i())dx) asn ,
P,z
which is a contradiction to 3.12). This completes the proof. O

Definition 3.13 Let E be areal separable and re”exive Banach space. We say Theatis-
“es the (C).-condition (with respect toY,) if any sequencédz,}, v Eforwhichz, Y,
foranyn N,

I(z)) ¢ and |(Zlv,) (@)|g (1+ ze) O asn :
has a subsequence converging to a critical pointBbf

Lemma 3.14 (Dual fountain theorem [L0, 30]) Assume that E is a Banach spac&
CYE,R)is an even functionallf there is ly > 0so that for each k ko, there existo, > 8 >0
such that the following properties hoid

(H1) inf{Z(w):0 Zx, w e=px} O

(H2) bx:=max{Z(w):®w Yk, @ =8} <0G

(H3) dy =inf{Z(w):w Zx, w ¢ px} Oask ;

(H4) Z satisfies the (C).-condition for every ¢ [dy,, 0),
thenZ has a sequence of negative critical valugd® satisfyingg 0asn

Lemma 3.15 Suppose tha(H), (V), (A), and (F1)..(F5) hold. Then the functionalZ, sat-
is“es the(C).-condition for anyx > 0.

Proof Since X’ is a re”exive Banach space, and and ¥, are of type &), the proof is
almost identical to that of Lemma 3.12 in30]. O

With the help of Lemmas3.14and 3.15we are ready to establish our “nal consequence.

Theorem 3.16 Assume that(H), (V), (A), and (F1)..(F5) hold. Then problem(P) admits
a sequence of nontrivial weak solutiofe,} in X’ such thatZ; (w,) Oasn for any
A>0.

Proof By means of (F4) and Lemma.15 we infer that the functionalZ, is even and en-
sures the C).-condition for all ¢ R. Now we will prove that properties (H1), (H2), and
(H3) of the dual fountain theorem hold.

(H1): In accordance with (F1), we have

b(x)

IF(x,7)| )|f|Q<X) x,7) RNxR.
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For convenience, we denote

01k = sup @ LpO)(RN)» B2k = sup @ Ld)(RN)-
o x=lo Zy o x=lo Zg
Then it is easy to verify thato:y 0 and 62y 0 ask (see BO)). Setvy =

max{01 x,02x}. Then it follows that

o) = 1 » () [P V(x) P
@)= [ [ s o090 dxys [ Dol dx

p(x.y) = PK)
a(x
A / Q|w|r<x>dx.../ F(x,w) dx
&N T(X) RN
1 A
p r r.
E Oy r_ a Lp-lj.(:g' (RN)maX{ @ O@Ny ¢ LP(~)(RN)}
b L (RN) q g+
max{ © LaO@N) @ LQ(')(RN)}
1 A b N
0 r re L ®Y) ga. =~
—wh .= a i @ o VoK @
o @ X LW(RN) 1k @ x q 2k @ x
1 {2 b N
— o h (— a _p +w>0&m © 3
p F.. LPO-O rN) q.

for k large enoughandw » 1. Choose

1

4 2b L (RN P B

Pk = [(— a  p 26 )>p+ﬁ;§"} :
r..  LPO-I0 RN) q.

Letw Zxwith o x =p>1forsuciently large k. Thenthereisky N such that

1 2\ b N
SR W NP YY) PR
p r..  LPO-IO (RN) qg..

forallk Nwith k ko, being

. 1 o
khm 2p+pk =

Therefore,
inf{Ix(a)):a) Ze, w X:pk} 0.

(H2): Observe that - | pogny, - ot ®N) and - y are equivalent onYy. Then we can
choose some constants; x > 0 and s, > 0 such that

 pO@N) Sk @ x and  ® xSk © ptRNy (3.14)
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foranyw Yi. From (F2)...(F3) and (F5), for auyt > 0, there are some constantSg > 0
and C;(M) > 0 such that

F(x, 1) M§§;|r|p+ .. Ce|7|PX .. C7(M)b(X) (3.15)

for almost all x,z) RN x R whereb comes from (H2). Then, from 8.14 and (3.15), it
follows that

1 p(xy)
T (w) /RN /RN p(x,y)’w(x) oY) (X, y) dx dy

V), e w
+/1;N o) |w| dx.../]RN F(X, w) dx

1 + +

— b ..Mg;k/ |w]P dx + c6/ |a)|p(x)+C7(/\/l)/ b(x) dx

p- RN RN RN

1 + + + . +

o @ oMo +Colshton) @ i +Ce

foranyo Yxwith o » 1and positive constanCs. Letf (t) = %_t’f ..Mtp++Ce(§f,:<+
gf‘i;')tp+ +Cg. If M islarge enough, theim;  f(t)=... ,andsothereigg (1, )such

thatf(t)<Oforallt [tg, ).HenceZ,(w)<Oforallw Ygwith o x =to. Choosing
Sk=tpforallk N, onehas

by ::max{jA(a)):a) Yk, @ X:8k}<0.

If necessary, we can chandg to a large value, so thapx > 8¢ >0 forallk  kp.
(H3): BecauseY, Zx= and 0 <6k <pk, we havedy, by <0 forallk ky. For any
w Zgwith o x=1andO0<t<p, one has
pe 2

1 r r+
7, (tw) E to % I’_ a Lp(ngz(l)(RN)max{ tw LPOEN Y tw LP(')(RN)}

q.. g+
max{ tw LAC)(RN)Y? tw Lq(-)(RN)}

+ b L (RN "
a P ﬂ;---...%plg 9%

2\ L &N
d¢« ..— a ) p“ﬁr qu"ﬁq
r Lp(F))..r(-) ®&N) k Tk k 7k
r+
22 4 2b L (RN P B f..r++fE":.fq+)r___
=..— a p() [p+<_ a ) + ( ))i| ﬁk—pﬁ—
r LPO-10) (RN) r LPO-£0) (RN) q
b L (RN) + 4\ 2b L (RN) pi?ﬁ ’q+;(p+a+)q
— P = a w0 +— O B .
q.. r LPO)-1() (RN) q
Sincep <, r+ +p~<20s, 1 .G +q.p~<29.0:, andd 0 ask , We arrive at

limk dk =0.
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Then, all the properties of Lemma3.14 are satis“ed. Consequently we conclude that
problem (P) admits a sequence of nontrivial weak solutiof&,} in X suchthatZ; (w,) O
asn foranya > 0. O

Remark3.17 In order to obtain aresult similar to Theoren3.16 the authorsin 10,41, 51,
52] have applied the dual fountain theorem whepy,de“ned in Lemma 3.14,converges
to 0 ask . For this reason, the proof of Theoren3.16is di erent from that of the
papers [L0, 41, 51, 52] because we get this result when ask
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