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Abstract

The aim of this paper is to examine the existence of at least two distinct nontrivial
solutions to a Schrödinger-type problem involving the nonlocal fractional
p(·)-Laplacian with concave…convex nonlinearities when, in general, the nonlinear
term does not satisfy the Ambrosetti…Rabinowitz condition. The main tools for
obtaining this result are the mountain pass theorem and a modi“ed version of
Ekeland•s variational principle for an energy functional with the compactness
condition of the Palais…Smale type, namely the Cerami condition. Also we discuss
several existence results of a sequence of in“nitely many solutions to our problem. To
achieve these results, we employ the fountain theorem and the dual fountain
theorem as main tools.
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1 Introduction
In the last years the study of problems involving di�erential equations and variational

problems associated with thep(·)-Laplacian operator has been paid to an increasing deal of

attention because they can be viewed as a model for many physical phenomena which arise

in several investigations related to elastic mechanics, electro-rheological ”uid (•smart ”u-

idsŽ), image processing,etc. We refer the reader to [6, 16, 21, 32, 43, 49] and the references

therein.

On the other hand, in the recent years the study of equations with nonstandard growth

and related nonlocal equations has gained an increasing deal of attention due to both

pure mathematical research aspects and real-world applications. This fact is justi“ed by

the occurrence of the aforementioned problems in many di�erent applications such as

conservation laws, ultra-materials and water waves, phase transitions, thin obstacle prob-

lem, optimization, ”ames propagation, strati“ed materials, anomalous di�usion, ultra-

relativistic limits of quantum mechanics, crystal dislocation, soft thin “lms, minimal sur-

faces, semipermeable membranes and ”ame propagation, multiple scattering, mathemat-
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ical “nance, and so on. For a comprehensive introduction to the study of nonlocal prob-

lems, we refer to the work of Di Nezza, Palatucci, and Valdinoci [20], see [13,25,34,36,50]

and the references therein for more details.

Therefore, a natural question is to understand if some results can be recovered when

we change the localp(·)-Laplacian, de“ned as …div(|� u|p(x)…2� u), into the nonlocal frac-

tional p(·)-Laplacian. In this direction, several researchers have attempted to extend the

study of the classical exponent variable case to include the fractional case (see for instance

[4,7,8,26,27,31,38,58]). In particular, as far as we are aware, Kaumannet al.[31] de“ned

a new class of fractional Sobolev spaces with variable exponents that takes a fractional vari-

able exponent operator into consideration. In particular, in [8] the authors discussed sev-

eral fundamental properties related to the aforementioned function space and the related

nonlocal operator and, using a direct variational method, the authors showed an applica-

tion to a class of nonlocal fractional problems with several variable exponents. Precisely,

as applications, they proved the existence of at least one solution for equations driven by

the fractionalp(·)-Laplacian. Inspired by these recent works, further fundamental embed-

dings for the fractional Sobolev spaces with variable exponents and their applications„

such asa priori bounds and multiplicity of solutions of problems driven by the fractional

p(·)-Laplacian„have been provided by Ho and Kim [26]. Also they obtained the existence

of many solutions for a class of critical nonlocal problems with variable exponents; see

[27]. We refer the interested reader to [4, 5, 58] for the existence results to Kirchho�-type

problems driven by ap(·)-fractional operator.

This paper is devoted to the study of the existence of nontrivial solutions for the follow-

ing Schrödinger-type problem involving the nonlocal fractionalp(·)-Laplacian:

…LKz+ V(x)|z|p(x,x)…2z = λa(x)|z|r(x)…2z+ f (x,z) in R
N , (P)

whereN � 2,λ > 0 is a parameter,p :RN × R
N � (1,� ) is a continuous function satisfying

p(x) := p(x,x) for all x � R
N , r :RN � (1,� ) is continuous,V anda are suitable potential

functions in (0,� ), and f : RN × R � R satis“es a Carathéodory condition. Here,LK

stands for the following pointwise-de“ned nonlocal operator:

LKz(x) = 2
∫
RN

∣∣z(x) …z(y)
∣∣p(x,y)…2(

z(x) …z(y)
)
K(x,y)dy for all x � R

N ,

where p � C(RN × R
N ) is uniformly continuous such thatp is symmetric, i.e.,p(x,y) =

p(y,x) for all x,y � R
N ; 0 <s< 1; 1 <inf(x,y)� RN × RN p(x,y) � sup(x,y)� RN × RN p(x,y) < N

s ; and

K :RN × R
N � (0,+� ) is a kernel function such that the following conditions are ful“lled:

(K1) mK � L1(RN × R
N ), where m(x,y) = min{|x …y|p(x,y), 1};

(K2) There exists a constant θ0 > 0 such that K(x,y)|x …y|N+sp(x,y) � θ0 for almost all
(x,y) � R

N × R
N and x �= y;

(K3) K(x,y) = K(y,x) for all (x,y) � R
N × R

N .
With the choice K(x,y) = |x …y|…N…sp(x,y), the operatorLK becomes the fractionalp(·)-

Laplacian operator (…�)s
p(·) de“ned as

(…�)s
p(x)z(x) = P.V.

∫
RN

|z(x) …z(y)|p(x,y)…2(z(x) …z(y))
|x …y|N+sp(x,y)

dy, x � R
N .
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The “rst purpose of the present paper is to establish the existence of at least two dis-
tinct nontrivial solutions for Schrödinger-type problems involving the nonlocal fractional
p(·)-Laplacian in case where the nonlinear term is concave…convex. The primary tools
for obtaining this result are the mountain pass theorem (see [3]) and a variant of Eke-
land•s variational principle (see [6]) for an energy functional. We assume that this energy
functional satis“es a Palais…Smale-type compactness condition, namely the Cerami con-
dition. This kind of nonlinearity has been extensively studied since the seminal work of
Ambrosetti, Brezis, and Cerami [2]. For elliptic equations with the concave…convex non-
linearity, we refer the reader also to [12, 14, 15, 19, 28, 53…55] and the references therein.
Precisely, the existence of multiple solutions for an elliptic problem of a nonhomogeneous
fractionalp-Kirchho�-type, involving concave…convex nonlinearities, has been studied in
[55]. By means of variational techniques and Ekeland•s variational principle, the authors in
[28] obtained the existence of two nontrivial nonnegative solutions and in“nitely many so-
lutions for the following degeneratedp(x)-Laplacian equations involving concave…convex
type nonlinearities with two parameters:

⎧⎨
⎩

…div(w(x)|� z|p(x)…2� z) = λa(x)|z|r(x)…2z+ μb(x)|z|q(x)…2z in �,

z = 0 on ∂�,

where � 	 R
N is a bounded domain with a smooth boundary∂�,p,q,r � C(�, (1,� ))

with r(x) < p(x) < q(x) for all x � �, w, a,b are measurable functions on� that are positives
a.e. in�, andλ, μ are real parameters. Very recently, Biswas and Tiwari [11] investigated
an elliptic problem involving nonlocal operator with variable exponents and concave…
convex nonlinearity in a bounded domain with Dirichlet boundary condition. Biswas and
Tiwari assumed the condition by Ambrosetti and Rabinowitz [3] (see [1, 24] for elliptic
equations with variable exponents) and then employed the mountain pass theorem and
Ekeland•s variational principle to obtain the multiplicity result.

As we known, the condition of Ambrosetti…Rabinowitz type in [3], that is, there exists
a constantθ > p such that

0 <θF(x,τ ) � f (x,τ )τ ,

for all τ � R \ { 0} andx � R
N ,whereF(x,τ ) =

∫ τ

0
f (x,t)dt, (1.1)

is essential in securing the boundedness of the Palais…Smale sequence of an energy func-
tional. However, this condition is quite restrictive and removes several nonlinearities. For
this reason, during the last few decades there have been extensive studies which tried to
drop it; see [1, 16, 29, 30, 33, 34, 38…40, 42, 44].

In that sense, our “rst aim is to discuss the existence of two nontrivial distinct solutions
to problem (P) for the case of a combined e�ect of concave…convex nonlinearities when
the nonlinear growth f does not satisfy the condition of Ambrosetti…Rabinowitz type.
The main point in the present paper is to discuss the existence of multiple solutions to (P)
under a new and mild assumption for the convex termf that does not satisfy (1.1) and is
di�erent from those studied in [1, 16, 29, 30, 33, 34, 38…40, 42, 44]. In particular, we give
some examples to demonstrate that this condition is not arti“cial. The main di�culty for
obtaining the multiplicity result under this assumption on the convex termf is to verify
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the Cerami condition of the energy functional associated with (P). It is worth noting that

we overcome it from the coercivity of the potential functionV .

For recent developments in the context of concave…convex problems, we mention the

work of Papageorgiou…Scapellato [45] where the authors studied nonlinear Robin prob-

lems driven by thep-Laplacian plus and inde“nite potential in which the reaction exhibits

the competing e�ects of a parametric concave (that is, (p…1)-sublinear) term and of a con-

vex (that is, (p… 1)-superlinear) term. In [45] the authors did not require the Ambrosetti…

Rabinowitz condition and obtained a bifurcation-type theorem that describes the depen-

dence of a set of positive solutions on the parameterλ > 0. In line with the contents of

the paper [45], Papageorgiou and Scapellato [47] considered Robin problems driven by

the (p,q)-Laplacian plus an inde“nite potential term and did not require the Ambrosetti…

Rabinowitz condition for the reaction. We mention that in [45] there is no parameter and

the authors, in addition to constant sign solutions, produced nodal solutions. Finally, we

cite a variant of the classical concave…convex problem studied in [46]. Precisely, Papageor-

giou and Scapellato in [46] studied a nonlinear resonant boundary value problem where

there is no parameter, the convex term is replaced by a resonant (that is, (p … 1)-linear)

term, and the concave contribution comes from the boundary condition.

The second main aim of this paper is to obtain several existence results of a sequence of

in“nitely many solutions to problem (P). First we are to discuss that multiple large energy

solutions for problem (P) exist (see Theorem3.12). The second is to establish that problem

(P) possesses a sequence of in“nitely many small energy solutions (see Theorem3.16). The

strategy of the proof for these consequences is based on the applications of variational

tools such as the fountain theorem and the dual fountain theorem, which were initially

built by the papers [9] and [10], respectively. Our study on such multiplicity results for

nonlinear elliptic equations of variational type is particularly inspired by the contributions

in recent works [18, 30, 38, 41, 48, 51] and the references therein. However, in some sense

the proof of our consequence for multiple small energy solutions is di�erent from that

of the previous related works [10, 41, 51, 52]. To the best of our knowledge, while many

authors are interested in the study of elliptic problems in both local and nonlocal cases,

the present paper is the “rst endeavor to develop the existence results for the concave…

convex-type problems driven by nonlocal fractionalp(·)-Laplacian.

This paper•s outline is the following: we “rstly present some necessary preliminary

knowledge of function spaces. Next we give the variational framework associated with

problem (P), and then we establish the results about at least two distinct nontrivial so-

lutions to the nonlocal fractionalp(·)-Laplacian with concave…convex nonlinearities by

applying the mountain pass theorem and a variant of Ekeland•s variational principle for

an energy functional with the Cerami condition. Finally, under suitable conditions on the

convex termf , we carry out various existence results of in“nitely many nontrivial solutions

by employing the variational principle.

2 Preliminaries
In this section we present a natural functional framework associated with problem (P).

We brie”y recall some de“nitions and fundamental properties of the variable exponent

Lebesgue spaces and a Lebesgue…Sobolev space of fractional typeW s,q(·),p(·,·)(�) which

will be used throughout the paper. For further details on these spaces, we refer the reader

to [4, 7, 8, 26, 27, 31, 58].
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Set

C+(�) =
{
� � C(�) : min

x� �

�(x) > 1
}
.

For any� � C+(�), we de“ne

�+ = sup
x� �

�(x) and �…= inf
x� �

�(x).

Let M(�) be the vector space of all measurable functions from� into R. We identify two

such functions which di�er only on a Lebesgue-null set. Givenh � C+(�), the anisotropic

Lebesgue spaceLh(·)(�) is de“ned by

Lh(·)(�) =
{

z � M(�) :
∫

�

|z|h(x) dx < �
}

.

We equip this space with the so-calledLuxemburg normde“ned by


 z
 Lh(·)(�) = inf

[
ϑ > 0 :

∫
�

∣∣∣∣z(x)
ϑ

∣∣∣∣
h(x)

dx � 1
]
.

In the anisotropic Lebesgue spaces the following Hölder inequality holds.

Lemma 2.1 ([23, 35]) The space Lh(·)(RN ) is a separable, uniformly convex Banach space,

and its conjugate space is Lh�(·)(RN ) where1/h(x) + 1/h�(x) = 1. For any z� Lh(·)(RN ) and

ω � Lh�(·)(RN ), we have

∣∣∣∣
∫
RN

zω dx

∣∣∣∣ �
(

1
h…

+
1

(h�)…

)

 z
 Lh(·)(RN )
 ω
 Lh�(·)(RN ) � 2
 z
 Lh(·)(RN )
 ω
 Lh�(·)(RN ).

Lemma 2.2 ([23]) Let us consider the modular function

ψ(z) =
∫
RN

|z|h(x) dx for any z� Lh(·)(
R

N)
.

Then we have

(1) ψ(z) > 1 (= 1; < 1) if and only if 
 z
 Lh(·)(RN ) > 1 (= 1; < 1), respectively;
(2) If 
 z
 Lh(·)(RN ) > 1, then 
 z
 h…

Lh(·)(RN )
� ψ(z) � 
 z
 h+

Lh(·)(RN )
;

(3) If 
 z
 Lh(·)(RN ) < 1, then 
 z
 h+
Lh(·)(RN )

� ψ(z) � 
 z
 h…
Lh(·)(RN )

.

Let � be a Lipschitz domain inRN . Let s� (0, 1) and letp � C(� × �, (1,� )) be such

that p(x,y) = p(y,x) for all x,y � � and

1 <p…:= inf
(x,y)� �× �

p(x,y) � p+ := sup
(x,y)� �× �

p(x,y) < +� .

For q � C+(RN ), de“ne

W s,q(·),p(·,·)(
R

N)
:=

{
z � Lq(·)(

R
N)

:
∫
RN

∫
RN

|z(x) …z(y)|p(x,y)

|x …y|N+sp(x,y)
dx dy< +�

}
,
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and we set

[z]s,p(·,·)
(
R

N)
:= inf

{
λ > 0 :

∫
RN

∫
RN

|z(x) …z(y)|p(x,y)

λp(x,y)|x …y|N+sp(x,y)
dx dy< 1

}
.

Then W s,q(·),p(·,·)(RN ) endowed with the norm


 z
 s,q,p := 
 z
 Lq(·)(RN ) + [z]s,p(·,·)
(
R

N)

is a separable re”exive Banach space (see [7, 8, 31]).

Lemma 2.3 ([26]) Let � be a bounded Lipschitz domain, and let p, q, and s be as above.
Assume furthermore that

sp+ < N and q(x) � p(x) for all x � �.

Then the following embedding holds:

W s,q(·),p(·,·)(�) ↪� ↪� Lr(·)(�)

for any r � C+(�) such that r(x) < p�
s(x) := Np(x,x)

N…sp(x,x) for all x � �.

For the sake of brevity, we writep(x) in place of p(x,x) for some cases, and hence
p � C+(RN ). In addition, we write W s,p(·,·)(RN ) in place ofW s,p(·),p(·,·)(RN ). We recall the
following embeddings (see [26, Theorem 3.5]).

Lemma 2.4 Let s� (0, 1).Let p� C+(RN × R
N ) be a uniformly continuous and symmetric

function with sp+ < N. Then it holds that
(i) W s,p(·,·)(RN) ↪� Lr(·)(RN ) for any uniform continuous function r � C+(RN ) fulfilling

p(x,x) � r(x) for all x � R
N and infx� RN (p�

s(x) …r(x)) > 0;
(ii) W s,p(·,·)(RN) ↪� ↪� Lr(·)

loc(RN ) for any r � C+(RN) with r(x) < p�
s(x) for all x � R

N .

In the following, let 0 <s< 1 and letp � C+(RN × R
N ) be a uniformly continuous and

symmetric function such thatsp+ < N. Suppose thatK :RN × R
N � (0,� ) is a function

with conditions (K1)…(K3). Let us denote withW s,p(·,·)
K (RN ) the completion of C�

0 (RN )
with respect to the norm


 z

Ws,p(·,·)

K (RN )
:= 
 z
 Lp(·)(RN ) + |z|

Ws,p(·,·)
K (RN )

,

where

|z|
Ws,p(·,·)

K (RN )
:= inf

{
λ > 0 :

∫
RN

∫
RN

1
λp(x,y)

∣∣z(x) …z(y)
∣∣p(x,y)K(x,y)dx dy< 1

}
.

According to the basic idea in [23], we obtain the following result.

Lemma 2.5 Denote

χ(z) =
∫
RN

|z|p(x) dx +
∫
RN

∫
RN

∣∣z(x) …z(y)
∣∣p(x,y)K(x,y)dx dy for any z� W s,p(·,·)

K
(
R

N)
.
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Then we have
(1) χ(z) > 1 (= 1; < 1) if and only if 
 z


Ws,p(·,·)
K (RN )

> 1 (= 1; < 1), respectively;

(2) If 
 z

Ws,p(·,·)

K (RN )
> 1, then 
 z
 p…

Ws,p(·,·)
K (RN )

� χ(z) � 
 z
 p+

Ws,p(·,·)
K (RN )

;

(3) If 
 z

Ws,p(·,·)

K (RN )
< 1, then 
 z
 p+

Ws,p(·,·)
K (RN )

� χ(z) � 
 z
 p…

Ws,p(·,·)
K (RN )

.

Throughout this paper, we denoteX := W s,p(·,·)
K (RN ), and letX � be a dual space ofX .

Furthermore,
· , ·� denotes the pairing ofX and its dualX � .

3 Main results
In this section, we show the multiplicity result of a weak solution to problem (P) by em-

ploying the variational principle.

Definition 3.1 We say thatz � X is a weak solution of problem (P) if

∫
RN

∫
RN

∣∣z(x) …z(y)
∣∣p(x,y)…2(

z(x) …z(y)
)(

ϕ(x) …ϕ(y)
)
K(x,y)dx dy

+
∫
RN

V(x)|z|p(x)…2zϕ dx

= λ

∫
RN

a(x)|z|r(x)…2zϕ dx +
∫
RN

f (x,z)ϕ dx

for all ϕ � X .

Let us de“ne the functionalA :X � R by

A(z) =
∫
RN

∫
RN

1
p(x,y)

∣∣z(x) …z(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)
p(x)

|z|p(x) dx.

Then from [8, 31] it follows that A � C1(X ,R), and its Fréchet derivative is given by

〈
A�(z),ϕ

〉
=

∫
RN

∫
RN

∣∣z(x) …z(y)
∣∣p(x,y)…2(

z(x) …z(y)
)(

ϕ(x) …ϕ(y)
)
K(x,y)dx dy

+
∫
RN

V(x)|z|p(x)…2zϕ dx.

Let F(x,τ ) =
∫ τ

0 f (x,s)ds. Let us assume that
(H) p,q,r � C+(RN ) and 1 <r…� r+ < p…� p+ < q…� q+ < p�

s(x) for all x � R
N .

(V) V � L1
loc(R

N ), ess infx� RN V(x) > 0, and lim|x|�� V (x) = +� .

(A) 0 � a � L
p(·)

p(·)…r(·) (RN ) � L� (RN ) with |{x � R
N : a(x) �= 0}| > 0, where |A| denotes the

Lebesgue measure of a subset A of RN .
(F1) f :RN × R � R satisfies the Carathéodory condition.
(F2) There exists 0 � b � L1(RN ) � L� (RN ) such that

∣∣f (x,τ )
∣∣ � b(x)|τ |q(x)…1 for almost all (x,τ ) � R

N × R,

where q � C+(RN ) and q(x) < p�
s(x) for all x � R

N .
(F3) lim|τ |��

F(x,τ )
|τ |p+ = � uniformly for almost all x � R

N .
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(F4) There are μ > p+, M > 0, and a function � � 0 with � � L
p(·)

p(·)…p…(B1) on
B1 := {x � R

N : p(x) > p…} and �(x) � � � (constant function) on
B2 := {x � R

N : p(x) = p…} such that |{x � R
N : �(x) > 0}| �= 0 and

τ f (x,τ ) …μF(x,τ ) � …�(x)|τ |p
…

…ζ (x)

for all (x,τ ) � R
N × R with |τ | � M and for some ζ � L1(RN ) � L� (RN ) with

ζ (x) � 0.
(F5) F(x,τ ) = o(|τ |p(x)) as τ � 0 uniformly for all x � R

N .
As mentioned in the introduction, assumption (F4) for the convex termf is di�erent

from that used in the works [1, 16, 29, 30, 33, 34, 38…40, 42, 44]. Hence we give some

simple examples of functions that satisfy condition (F4).

Example3.2 If p(x) = 2 for all x � R
N and

f (x,τ ) = ρ(x)|τ |
(
4τ 3 … 2τ cos τ … 4sin τ

)
,

whereρ(x) � L1(RN ) � L� (RN ) and 0 <infx� RN ρ(x) � supx� RN ρ(x) < � , then

F(x,τ ) = ρ(x)
(

4
5

|τ |5 … 2τ |τ | sin τ

)
.

We set �� := infx� RN ρ(x) andζ (x) := 2(μ … 2)ρ(x) with 2 < μ < 15
4 for all x � R

N . Then

f (x,τ )τ …μF(x,τ ) = ρ(x)
(

4|τ |5 … 2|τ |3 cos τ … 4τ |τ | sin τ …
4
5
μ|τ |5 + 2μτ |τ | sin τ

)

= ρ(x)
(

4|τ |5 …
4
5
μ|τ |5 … 2|τ |3 cos τ + (2μ … 4)τ |τ | sin τ

)

� ρ(x)
(

4|τ |3 …
4
5
μ|τ |3 … 2|τ | cos τ … (2μ … 4)

)
τ 2

� ρ(x)
(

|τ |3 +
(

3 …
4
5
μ

)
|τ |3 … 2|τ | … (2μ … 4)

)

� ρ(x)|τ |2 … (2μ … 4)ρ(x)

� …��|τ |2 …ζ (x)

for |τ | � r , wherer > 1 is chosen such that (3 …45μ)r3 … 2r � 0. Hence (F4) is ful“lled.

Example3.3 If p(x) = p > 1 for all x � R
N and

f (x,τ ) = ρ(x)
(

|τ |p…2τ +
2
p

sin τ

)
,

whereρ comes from the previous example, then

F(x,τ ) = ρ(x)
(

1
p

|τ |p …
2
p

cos τ +
2
p

)
.
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We set �� := (μ … 1)supx� RN ρ(x) andζ (x) := 4μ

p ρ(x) with p < μ for all x � R
N . Then

f (x,τ )τ …μF(x,τ ) = ρ(x)
[
|τ |p +

2
p
τ sin τ …

μ

p
|τ |p +

2μ

p
cos τ …

2μ

p

]

� ρ(x)
[(

1 …
μ

p

)
|τ |p …

2
p

|τ | …
4μ

p

]

= ρ(x)
[
(1 …μ)|τ |p +

μ(p … 1)
p

|τ |p …
2
p

|τ |
]

…
4μ

p
ρ(x)

� ρ(x)(1 …μ)|τ |p …
4μ

p
ρ(x)

� …��|τ |p …ζ (x)

for all |τ | � r , wherer > 1 is chosen such thatμ(p … 1)rp … 2r � 0. Hence (F4) is ful“lled.

Example3.4 If p � C+(RN ) and

f (x,τ ) = ρ(x)|τ |p(x)…1τ
[(

p(x) + 3
)
τ 2 … 2

(
p(x) + 2

)
|τ | +

(
p(x) + 1

)]
,

whereρ(x) � L1(RN ) � L� (RN ), then

F(x,τ ) = ρ(x)
(
|τ |p(x)+3 … 2|τ |p(x)+2 + |τ |p(x)+1).

We set�(x) := ρ(x) =: ζ (x) andp…+ 1 <μ < p(x) + 2 for all x � R
N . Then

f (x,τ )τ …μF(x,τ )

= ρ(x)
[(

p(x) + 3 …μ
)
|τ |p(x)+3 … 2

(
p(x) + 2 …μ

)
|τ |p(x)+2 +

(
p(x) + 1 …μ

)
|τ |p(x)+1]

� ρ(x)
[(

p(x) + 3 …μ
)
|τ |2 … 2

(
p(x) + 2 …μ

)
|τ | +

(
p…+ 1 …μ

)]
|τ |p(x)+1

= ρ(x)
[
|τ |2 +

(
p(x) + 2 …μ

)(
|τ |2 … 2|τ |

)
+

(
p…+ 1 …μ

)]
|τ |p(x)+1

� ρ(x)
[
|τ |2 …

(
μ …p…… 1

)]
|τ |p

…

� …�(x)|τ |p
…

…ζ (x)

for |τ | � r , wherer > 1 +
√

(μ …p…… 1) is chosen such thatr2 … 2r � 0. Hence (F4) is ful-

“lled.

Let us de“ne the functional�λ :X � R by

�λ(z) = λ

∫
RN

a(x)
r(x)

|z|r(x) dx +
∫
RN

F(x,z)dx.

It is easy to check that�λ � C1(X ,R) and its Fréchet derivative is

〈
� �

λ(z),ϕ
〉
= λ

∫
RN

a(x)|z|r(x)…2zϕ dx +
∫
RN

f (x,z)ϕ dx
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for any z,ϕ � X . Next we de“ne the functionalIλ :X � R by

Iλ(z) = A(z) …�λ(z).

Then the functionalIλ � C1(X ,R) and its Fréchet derivative is

〈
I �

λ(z),ϕ
〉
=

∫
RN

∫
RN

∣∣z(x) …z(y)
∣∣p(x,y)…2(

z(x) …z(y)
)(

ϕ(x) …ϕ(y)
)
K(x,y)dx dy

+
∫
RN

V(x)|z|p(x)…2zϕ dx …λ

∫
RN

a(x)|z|r(x)…2zϕ dx …
∫
RN

f (x,z)ϕ dx

for any z,ϕ � X .
Under assumption (V), we can give the compact embedding.

Lemma 3.5 If the potential function V satis“es assumption(V), then
(1) the embedding from X ↪� Lp(·)(RN ) is continuous and compact;
(2) for any measurable function � :RN � R with p(x) < �(x) for all x � R

N , there is a
compact embedding X ↪� L�(·)(RN ) if infx� RN (p�

s(x) …�(x)) > 0.

Proof In order to prove this lemma, we can adapt the proof of Lemma 2.6 in [1]. For the
case that the potential functionV is coercive, we obtain a similar result involving variable
exponents of fractional type using Lemma2.4. So, we omit the details of the proof. �

Next we give the following useful lemmas which are essential in obtaining the existence
of at least two distinct nontrivial solutions to problem (P).

Definition 3.6 Let E be a real Banach space with dual spaceE� , I � C1(E,RN ). We say
that I satis“es the Cerami condition ((C)-condition, for short) in E if any (C)-sequence
{zn} 	 E, i.e., {I(zn)} is bounded and
 I �(zn)
 E� (1 + 
 zn
 E) � 0 asn � � , has a con-
vergent subsequence inE. We say thatI satis“es the Cerami condition at levelc ((C)c-
condition, for short) in E if any (C)c-sequence{zn} 	 E, i.e.,I(zn) � c asn � � and

 I �(zn)
 E� (1 + 
 zn
 E) � 0 asn � � , has a convergent subsequence inE.

Lemma 3.7 Assume that(H), (V), (A),and (F1)…(F4)hold.Then the functionalIλ satis“es
the (C)-condition for anyλ > 0.

Proof Let {zn} be a (C)-sequence inX for Iλ, that is,

sup
n� N

∣∣Iλ(zn)
∣∣ � M0 and

〈
I �

λ(zn),zn
〉
= o(1), (3.1)

where o(1) � 0 asn � � , andM0 is a positive constant. From Lemma 4.2 in [8] and
Lemma 3.3 in [33], it follows that A� and � �

λ are of type (S+). SinceX is a re”exive Ba-
nach space, it is enough to ensure that the sequence{zn} is bounded inX . We argue by
contradiction. Assume that the sequence{zn} is unbounded inX . So then we may sup-
pose that
 zn
 X > 1 and
 zn
 X � � asn � � . Let us denote the sequence{wn} with
wn = zn/
 zn
 X . Then, clearly, we have{wn} 	 X and 
 wn
 X = 1. Hence, up to a subse-
quence, still denoted by{wn}, we inferwn ⇀ ω in X asn � � and by Lemma3.5

wn(x) � ω(x) a.e. inRN and wn � ω in L�(·)(
R

N)
asn � � (3.2)
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for p(x) � �(x) with infx� RN (p�
s(x) …�(x)) > 0. Notice thatV(x) � +� as|x| � � , then

∫
RN

V(x)
(

1
p(x)

…
1
μ

)
|zn|p(x) dx …C1

∫
|zn|� M

(
|zn|p(x) + b(x)|zn|q(x))dx

�
1
2

(
1
p+

…
1
μ

)∫
RN

V(x)|zn|p(x) dx …M1,

whereC1 andM1 are positive constants. In fact we know that

(
1
p+

…
1
μ

)∫
RN

V(x)|zn|p(x) dx …C1

∫
|zn|� M

|zn|p(x) + b(x)|zn|q(x) dx

�
1
2

(
1
p+

…
1
μ

)∫
RN

V(x)|zn|p(x) dx +
1
2

(
1
p+

…
1
μ

)∫
|zn|� 1

V (x)|zn|p(x) dx

…C1

∫
|zn|� 1

|zn|p(x) + b(x)|zn|q(x) dx …C1

∫
1<|zn|� M

|zn|p(x) + b(x)|zn|q(x) dx

�
1
2

(
1
p+

…
1
μ

)∫
RN

V(x)|zn|p(x) dx +
1
2

(
1
p+

…
1
μ

)∫
|zn|� 1

V (x)|zn|p(x) dx

…C1
(
1 + 
 b
 L� (RN )

)∫
|zn|� 1

|zn|p(x) dx …̃C1,

whereC1 and C̃1 are positive constants. Let us set� := {x � R
N : |zn(x)| > 1}. Since|�| is

“nite ( | · | is the Lebesgue measure inRN ), � = �̃ � N where �̃ is a bounded set andN

is of measure zero. Without loss of generality, suppose that there existsBr(0) � R
N such

that � 	 Br (0) whereBr(0) is the open ball centered at 0 with radiusr in the Euclidean

spaceRN . SinceV(x) � +� as |x| � � , there is r0 > 0 such that|x| � r0 > r implies

V(x) � 2C1(1 + 
 σ 
 L� (RN ))
μp+

μ…p+ . Consequently, we get

(
1
p+

…
1
μ

)∫
RN

V(x)|zn|p(x) dx …C1

∫
|zn|� M

|zn|p(x) + b(x)|zn|q(x) dx

�
1
2

(
1
p+

…
1
μ

)∫
RN

V(x)|zn|p(x) dx +
1
2

(
1
p+

…
1
μ

)∫
�c� Bc

r0

V (x)|zn|p(x) dx

+
1
2

(
1
p+

…
1
μ

)∫
�c� Br0

V (x)|zn|p(x) dx …C1
(
1 + 
 b
 L� (RN )

)∫
�c� Bc

r0

|zn|p(x) dx

…C1
(
1 + 
 b
 L� (RN )

)∫
�c� Br0

|zn|p(x) dx …̃C1

�
1
2

(
1
p+

…
1
μ

)∫
RN

V(x)|zn|p(x) dx +
1
2

(
1
p+

…
1
μ

)∫
�c� Bc

r0

V (x)|zn|p(x) dx

…C1
(
1 + 
 b
 L� (RN )

)∫
�c� Bc

r0

|zn|p(x) dx …M1

�
1
2

(
1
p+

…
1
μ

)∫
RN

V(x)|zn|p(x) dx …M1,
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whereM1 is a positive constant, as claimed. This fact, together with (F2) and (F4), leads

to

M0 + o(1)

� Iλ(zn) …
1
μ

〈
I �

λ(zn),zn
〉

=
∫
RN

∫
RN

1
p(x,y)

∣∣zn(x) …zn(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)
p(x)

|zn|p(x) dx

…λ

∫
RN

a(x)
r(x)

|zn|r(x) dx …
∫
RN

F(x,zn)dx

…
1
μ

∫
RN

∫
RN

∣∣zn(x) …zn(y)
∣∣p(x,y)K(x,y)dx dy…

1
μ

∫
RN

V(x)|zn|p(x) dx

+
λ

μ

∫
RN

a(x)|zn|r(x) dx +
1
μ

∫
RN

f (x,zn)zn dx

�
(

1
p+

…
1
μ

)∫
RN × RN

∣∣zn(x) …zn(y)
∣∣p(x,y)K(x,y)dx dy

+
(

1
p+

…
1
μ

)∫
RN

V(x)|zn|p(x) dx …λ

(
1
r…

…
1
μ

)∫
RN

a(x)|zn|r(x) dx

…
∫
RN

F(x,zn)dx +
1
μ

∫
RN

f (x,zn)zn dx

�
(

1
p+

…
1
μ

)∫
RN × RN

∣∣zn(x) …zn(y)
∣∣p(x,y)K(x,y)dx dy

+
(

1
p+

…
1
μ

)∫
RN

V(x)|zn|p(x) dx …λ

(
1
r…

…
1
μ

)∫
RN

a(x)|zn|r(x) dx

+
∫

|zn|>M

(
1
μ

f (x,zn)zn …F(x,zn)
)

dx …C1

∫
|zn|� M

(
|zn|p(x) + b(x)|zn|q(x))dx

�
(

1
p+

…
1
μ

)∫
RN × RN

∣∣zn(x) …zn(y)
∣∣p(x,y)K(x,y)dx dy

+
1
2

(
1
p+

…
1
μ

)∫
RN

V(x)|zn|p(x) dx …λ

(
1
r…

…
1
μ

)∫
RN

a(x)|zn|r(x) dx

…
1
μ

∫
RN

(
�(x)|zn|p

…
+ ζ (x)

)
dx …M1

�
1
2

(
1
p+

…
1
μ

)(∫
RN × RN

∣∣zn(x) …zn(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)|zn|p(x) dx
)

…λ

(
1
r…

…
1
μ

)∫
RN

a(x)|zn|r(x) dx …
1
μ

∫
RN

�(x)|zn|p
…

dx …
1
μ


 ζ 
 L1(RN ) …M1

�
1
2

(
1
p+

…
1
μ

)

 zn
 p…

X …
(

λ

r…
…

λ

μ

)∫
RN

a(x)|zn|r(x) dx

…
1
μ

(∫
B1

�(x)|zn|p
…

dx +
∫
B2

�(x)|zn|p
…

dx
)

…
1
μ


 ζ 
 L1(RN ) …M1

�
1
2

(
1
p+

…
1
μ

)

 zn
 p…

X …
(

λ

r…
…

λ

μ

)∫
RN

a(x)|zn|r(x) dx

…
1
μ

(
2
 �


L
p(·)

p(·)…p…(B1)

 zn
 p…

Lp(·)(B1)
+ ��

∫
B2

|zn|p
…

dx
)

…
1
μ


 ζ 
 L1(RN ) …M1
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�
1
2

(
1
p+

…
1
μ

)

 zn
 p…

X …
(

λ

r…
…

λ

μ

)∫
RN

a(x)|zn|r(x) dx

…
1
μ

(
2
 �


L
p(·)

p(·)…p…(B1)

 zn
 p…

Lp(·)(RN )
+ ��
 zn
 p…

Lp(·)(B2)

)
…

1
μ


 ζ 
 L1(RN ) …M1

�
1
2

(
1
p+

…
1
μ

)

 zn
 p…

X …
(

λ

r…
…

λ

μ

)∫
RN

a(x)|zn|r(x) dx

…
1
μ

(
2
 �


L
p(·)

p(·)…p…(B1)
+ ��

)

 zn
 p…

Lp(·)(RN )
…

1
μ


 ζ 
 L1(RN ) …M1

�
1
2

(
1
p+

…
1
μ

)

 zn
 p…

X …
(

λ

r…
…

λ

μ

)

 a


L
p(·)

p(·)…r(·) (RN )
max

{

 zn
 r+

Lp(·)(RN )
, 
 zn
 r…

Lp(·)(RN )

}

…
1
μ

(
2
 �


L
p(·)

p(·)…p…(B1)
+ ��

)

 zn
 p…

Lp(·)(RN )
…

1
μ


 ζ 
 L1(RN ) …M1

for su�ciently large n because
∫
B2

|zn|p
…

dx �
∫
RN |zn|p(x) dx. This fact implies

1
2

�

p+(2
 �

L

p(·)
p(·)…p…(B1)

+ ��)

μ …p+
lim sup

n��

 wn
 p…

Lp(·)(RN )

=

p+(2
 �

L

p(·)
p(·)…p…(B1)

+ ��)

μ …p+

 ω
 p…

Lp(·)(RN )
. (3.3)

Hence, from (3.3), it follows that ω �= 0. However, to obtain the boundedness of{zn}, we

should prove thatω(x) = 0 for almost allx � R
N . Set�1 = {x � R

N : ω(x) �= 0}. By virtue of

relation (3.1), one has

Iλ(zn) =
∫
RN × RN

1
p(x,y)

∣∣zn(x) …zn(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)
p(x)

|zn|p(x) dx

…λ

∫
RN

a(x)
r(x)

|zn|r(x) dx …
∫
RN

F(x,zn)dx

�
1
p+


 zn
 p…

X …
λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
max

{

 zn
 r+

Lp(·)(RN )
, 
 zn
 r…

Lp(·)(RN )

}

…
∫
RN

F(x,zn)dx. (3.4)

SinceIλ(zn) � M0 for all n � N and 
 zn
 X � � asn � � , we assert that

∫
RN

F(x,zn)dx �
1
p+


 zn
 p…

X …
λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
max

{

 zn
 r+

Lp(·)(RN )
, 
 zn
 r…

Lp(·)(RN )

}
…M0

� � (3.5)

asn � � . In addition,

Iλ(zn) =
∫
RN × RN

1
p(x,y)

∣∣zn(x) …zn(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)
p(x)

|zn|p(x) dx

…λ

∫
RN

a(x)
r(x)

|zn|r(x) dx …
∫
RN

F(x,zn)dx
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�
1
p…

∫
RN × RN

∣∣zn(x) …zn(y)
∣∣p(x,y)K(x,y)dx dy

+
1
p…

∫
RN

V(x)|zn|p(x) dx …
∫
RN

F(x,zn)dx.

Then

1
p…

∫
RN × RN

∣∣zn(x) …zn(y)
∣∣p(x,y)K(x,y)dx dy+

1
p…

∫
RN

V(x)|zn|p(x) dx

�
∫
RN

F(x,zn)dx + Iλ(zn). (3.6)

In accordance with assumption (F3), there is a positive constantτ0 > 1 such thatF(x,τ ) >

|τ |p
+

for all x � R
N and |τ | > τ0. From assumptions (F1) and (F2), it follows that there is

M2 > 0 such that|F(x,τ )| � M2 for all (x,τ ) � R
N × […τ0,τ0]. Therefore, we can choose a

real numberM3 such thatF(x,τ ) � M3 for all (x,τ ) � R
N × R, and thus

F(x,zn) …M3
1

p…

∫
RN × RN |zn(x) …zn(y)|p(x,y)K(x,y)dx dy+ 1

p…

∫
RN V(x)|zn|p(x) dx

� 0,

for all x � R
N and for all n � N. By convergence (3.2), we know that |zn(x)| =

|wn(x)|
 zn
 X � � asn � � for all x � �1. Furthermore, from assumption (F3) it follows

that for all x � �1 we have

lim
n��

F(x,zn)
1

p…

∫
RN × RN |zn(x) …zn(y)|p(x,y)K(x,y)dx dy+ 1

p…

∫
RN V(x)|zn|p(x) dx

� lim
n��

F(x,zn)
1

p…
 zn
 p+

X
= lim

n��

p…F(x,zn)
|zn(x)|p+

∣∣wn(x)
∣∣p+

= � . (3.7)

Hence we infer that|�1| = 0. Indeed, if|�1| �= 0, then, from relations (3.5)…(3.7) and in-

voking the Fatou lemma, it follows that

1 = lim inf
n��

∫
RN F(x,zn)dx∫

RN F(x,zn)dx + Iλ(zn)

� lim inf
n��

∫
RN

F(x,zn)
1

p…

∫
RN × RN |zn(x) …zn(y)|p(x,y)K(x,y)dx dy+ 1

p…

∫
RN V(x)|zn|p(x) dx

dx

� lim inf
n��

∫
�1

F(x,zn)
1

p…

∫
RN × RN |zn(x) …zn(y)|p(x,y)K(x,y)dx dy+ 1

p…

∫
RN V(x)|zn|p(x) dx

dx

…lim sup
n��

∫
�1

M3
1

p…

∫
RN × RN |zn(x) …zn(y)|p(x,y)K(x,y)dx dy+ 1

p…

∫
RN V(x)|zn|p(x) dx

dx

= lim inf
n��

∫
�1

F(x,zn) …M3
1

p…

∫
RN × RN |zn(x) …zn(y)|p(x,y)K(x,y)dx dy+ 1

p…

∫
RN V(x)|zn|p(x) dx

dx

�
∫

�1

lim inf
n��

F(x,zn) …M3
1

p…

∫
RN × RN |zn(x) …zn(y)|p(x,y)K(x,y)dx dy+ 1

p…

∫
RN V(x)|zn|p(x) dx

dx

=
∫

�1

lim inf
n��

F(x,zn(x))
1

p…

∫
RN × RN |zn(x) …zn(y)|p(x,y)K(x,y)dx dy+ 1

p…

∫
RN V(x)|zn|p(x) dx

dx
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…
∫

�1

lim sup
n��

M3
1

p…

∫
RN × RN |zn(x) …zn(y)|p(x,y)K(x,y)dx dy+ 1

p…

∫
RN V(x)|zn|p(x) dx

dx

= � .

This is impossible. Thus we know|�1| = 0, and soω(x) = 0 for almost all x � R
N , as

claimed. Therefore we conclude that{zn} is bounded inX . The proof is complete. �

Lemma 3.8 Assume conditions(H), (V), (A), (F1)…(F3) and (F5).Furthermore, suppose
that

(F6) F(x,τ ) � 0 for all (x,τ ) � R
N × R

+

holds. Then
(1) There is a positive constant λ� such that for any λ � (0,λ� ) we can choose some

constants R> 0 and 0 <r < 1 that Iλ(z) � R> 0 for all z � X with 
 z
 X = r .
(2) There exists z � C�

c (RN ), z > 0, such that Iλ(tz) � …� as t � +� .
(3) There exists w � C�

c (RN ), w > 0, such that Iλ(tw) < 0 for all t � 0+.

Proof Statement (1) is proved in [11, 37]. Thus, we “rst show statement (2). By assump-
tions (F2)…(F3) and (F5), for anyM > 0, there exist some constantsC2 > 0 andC3(M) > 0
such that

F(x,τ ) � M|τ |p
+

…C2|τ |p(x) …C3(M)b(x) (3.8)

for all (x,τ ) � R
N × R whereb comes from (F2). Let us takez � C�

c (RN ). Then relation
(3.8) implies that

Iλ(tz) =
∫
RN

∫
RN

1
p(x,y)

∣∣tz(x) …tz(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)
p(x)

|tz|p(x) dx

…λ

∫
RN

a(x)
r(x)

|tz|r(x) dx …
∫
RN

F(x,tz)dx

� tp+
(∫

RN × RN

1
p(x,y)

∣∣z(x) …z(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)
p(x)

|z|p(x) dx

…M
∫
RN

|z|p
+

dx + C2

∫
RN

|z|p(x) dx
)

+ C3

for t > 1 large enough and for a constantC3. If M is su�ciently large, then we assert that
Iλ(tz) � …� ast � � . Therefore the functionalIλ is unbounded from below.

Next, we have to show (3). Let us choosew � C�
c (RN ) such thatw > 0. Fort > 0 small

enough, from (A) and (F5), it follows that

Iλ(tw) =
∫
RN × RN

1
p(x,y)

∣∣tw(x) …tw(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)
p(x)

|tw|p(x) dx

…λ

∫
RN

a(x)
r(x)

|tw|r(x) dx …
∫
RN

F(x,tw)dx

� tp…
(∫

RN × RN

1
p(x,y)

∣∣w(x) …w(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)
p(x)

|w|p(x) dx
)

…
λt r+

r+

∫
RN

a(x)|w|r(x) dx.

Sincer+ < p…, it follows that Iλ(tw) < 0 ast � 0+. The proof is completed. �
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The following lemma is the variational principle of Ekeland type in [6, 37], initially de-

veloped by C.-K. Zhong [56].

Lemma 3.9 ([6, 37]) Let E be a Banach space and x0 be a “xed point of E. Suppose that

g : E � R � { +�} is a lower semicontinuous function, not identically +� , bounded from

below. Then, for everyε > 0 and y� E such that

g(y) < inf
E

g+ ε

and everyλ > 0,there exists some point z� E such that

g(z) � g(y), 
 z…x0
 E �
(
1 + 
 y
 E

)(
eλ … 1

)
,

and

g(x) � g(z) …
ε

λ(1 + 
 z
 E)

 x …z
 E for all x � E.

With the help of Lemmas3.7, 3.8, and3.9, we are in a position to derive our “rst main

result.

Theorem 3.10 Assume that(H), (V), (A),and (F1)…(F6)hold.Then there existsλ� > 0such

that, for anyλ � (0,λ� ), problem(P) admits at least two distinct nontrivial weak solutions.

Proof By means of Lemmas3.7 and 3.8, there is a positive real numberλ� such thatIλ

ensures the mountain pass geometry and the (C)-condition for any λ � (0,λ� ). Thanks to

the mountain pass theorem in [17], we deduce thatIλ has a critical pointz0 � X with

Iλ(z0) = c> 0 =Iλ(0). Thus problem (P) possesses a nontrivial weak solutionz0.

Next we show the existence of the second weak solution of (P). Owing to Lemma3.8,

for “xed λ � (0,λ� ), there are positive constantsR and r � (0, 1) such thatIλ(z) � R> 0

for all u � X with 
 z
 X = r. Let us denotec := infz� Br
Iλ(z) whereBr := {z � X : 
 z
 X < r}

with a boundary ∂Br . Then, by Lemma3.8(3), we know …� < c < 0. If we put 0 <ε <

infz� ∂Br Iλ(z) …c, from Lemma3.9it follows that we can look forzε � Br such that

⎧⎨
⎩
Iλ(zε) < c+ ε,

Iλ(zε) � Iλ(z) + ε
1+
 zε 
 X


 z…zε
 X for all z � Br with z �= zε.
(3.9)

This fact together with the estimateIλ(zε) < c+ ε < infz� ∂Br Iλ(z) gives thatzε � Br . Hence

it follows that zε is a local minimum of̃ Iλ(z) := Iλ(z) + ε
1+
 zε 
 X


 z …zε
 X . Now, by taking

z = zε + tω for ω � B1 and t > 0 small enough, we deduce from (3.9) that

0 �
Ĩλ(zε + tω) …̃Iλ(zε)

t
=
Iλ(zε + tω) …Iλ(zε)

t
+

ε

1 + 
 zε
 X

 ω
 X .

Therefore, lettingt � 0+, we get

〈
I �

λ(zε),ω
〉
+

ε

1 + 
 zε
 X

 ω
 X � 0.
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Changingω into …ω in the argument above, one has

…
〈
I �

λ(zε),ω
〉
+

ε

1 + 
 zε
 X

 ω
 X � 0.

Thus, we have

(
1 + 
 zε
 X

)∣∣〈I �
λ(zε),ω

〉∣∣ � ε
 ω
 X

for anyω � B1. Hence we know

(
1 + 
 zε
 X

)∥∥I �
λ(zε)

∥∥
X � � ε. (3.10)

Using (3.9) and (3.10), we can choose a sequence{zn} 	 Br such that

⎧⎨
⎩
Iλ(zn) � c asn � � ,

(1 + 
 zε
 X )
 I �
λ(zε)
 X � � 0 asn � � .

(3.11)

Thus,{zn} is a bounded (C)-sequence in the re”exive Banach spaceX . By virtue of the fact

that I �
λ is of type (S+) as mentioned in the proof of Lemma3.7, {zn} has a subsequence{znk }

such thatznk � z1 in X ask � � . This fact together with (3.11) leads toIλ(z1) = c < 0

andI �
λ(z1) = 0. Hence there is a nontrivial solutionz1 which is di�erent from z0. Therefore

we conclude that problem (P) possesses at least two distinct nontrivial weak solutions.�

Next, by applying the fountain theorem and the dual fountain theorem as essential tools

which are originally provided by the papers [9] and [10], we establish two existence results

of a sequence of in“nitely many solutions for problem (P). Let E be a real re”exive and

separable Banach space, then it is known (see [22,57]) that there exist{en} � W and{f �
n } �

E� such that

E= span{en : n = 1,2, . . .}, E� = span
{
f �
n : n = 1,2, . . .

}
,

and

〈
f �
i ,ej

〉
=

⎧⎨
⎩

1 if i = j,

0 if i �= j.

Let us denoteEn = span{en}, Yk =
⊕k

n=1 En, andZk =
⊕�

n=k En.

Lemma 3.11 (Fountain theorem [9, 30, 52]) Let E be a Banach space, the functionalI �

C1(E,R) satis“es the(C)c-condition for any c> 0and I is even. If for each su�ciently large

k � N there existρk > δk > 0 such that the following properties hold:

(1) bk := inf{I(z) : z � Zk,
 z
 E = δk} � � as k � � ;
(2) ak := max{I(z) : z � Yk,
 z
 E = ρk} � 0,

thenI possesses an unbounded sequence of critical values, i.e., there is a sequence{zn} 	 X

such thatI �(zn) = 0 and I(zn) � +� as n� +� .
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With the aid of Lemma3.11, we are in a position to derive the existence of multiple large
energy solutions.

Theorem 3.12 Assume that(H), (V), (A), and (F1)…(F4)hold. If f (x,…t) = …f (x,t) holds
for all (x,t) � R

N × R, then for anyλ > 0 problem(P) possesses a sequence of nontrivial
weak solutions{zn} in X such thatIλ(zn) � � as n� � .

Proof Clearly,Iλ is an even functional that ensures the (C)c-condition. It is enough to
prove that there areρk > δk > 0 such that

(1) bk := inf{Iλ(z) : z � Zk,
 z
 X = δk} � � as k � � ;
(2) ak := max{Iλ(z) : z � Yk,
 z
 X = ρk} � 0,

for su�ciently large k. Denote

αk := sup
z� Zk,
 z
 X =1


 z
 Lq(·)(RN ).

Then we assertαk � 0 ask � � . Indeed, suppose to the contrary that we can choose
ε0 > 0,k0 � 0, and the sequence{zk} in Zk such that


 zk
 X = 1, 
 z
 Lq(·)(RN ) � ε0

for all k � k0. From the boundedness of the sequence{zk} in X , we look for z � X such
that zk ⇀ z in X asn � � and

〈
f �
j ,z

〉
= lim

k��

〈
f �
j ,zk

〉
= 0

for j = 1,2, . . . . Hence we getz = 0. However, we obtain

ε0 � lim
k��


 zk
 Lq(·)(RN ) = 
 z
 Lq(·)(RN ) = 0,

that is a contradiction.
For anyz � Zk, suppose that
 z
 X > 1. From (F2), Lemma2.1, and (3.4), it follows that

Iλ(z) =
∫
RN

∫
RN

1
p(x,y)

∣∣z(x) …z(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)
p(x)

|z|p(x) dx

…λ

∫
RN

a(x)
r(x)

|z|r(x) dx …
∫
RN

F(x,z)dx

�
1
p+


 z
 p…

X …
λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
max

{

 z
 r+

Lp(·)(RN )
, 
 z
 r…

Lp(·)(RN )

}

…
∫
RN

|b(x)|
q(x)

|z|q(x) dx

�
1
p+


 z
 p…

X …
λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
max

{

 z
 r+

Lp(·)(RN )
, 
 z
 r…

Lp(·)(RN )

}

…

 b
 L� (RN )

q…

∫
RN

|z|q(x) dx

�
1
p+


 z
 p…

X …
λ

r…
C4
 z
 r+

X …
1
q…

α
q…
k C5
 z
 q+

X ,
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where C4 and C5 are positive constants. Now, let us chooseδk = (q+C5α
q…
k /q…)1/(p……q+).

Sincep…< q+ and αk � 0 ask � � , we assertδk � � ask � � . Hence, ifz � Zk and


 z
 X = δk, then we arrive at

Iλ(z) �
(

1
p+

…
1
q+

)
δ

p…

k …
λ

r…
C4δ

r+
k � � ask � � ,

which implies condition (1).

Now we prove condition (2) arguing by contradiction. Then, let us assume that condition

(2) is not satis“ed for somek. Then we can “nd a sequence{zn} in Yk such that


 zn
 X � � asn � � and Iλ(zn) � 0. (3.12)

Letwn = zn/
 zn
 X . Then, clearly, we have
 wn
 X = 1. Sincedim Yk < � , there is an element

w in Yk \ { 0} such that, up to a subsequence still denoted by{wn},


 wn …w
 X � 0 and wn(x) � w(x)

for almost all x � R
N asn � � . We claim thatw(x) = 0 for almost allx � R

N . If w(x) �= 0,

then |zn(x)| � � for all x � R
N asn � � . Hence, by means of assumption (F3) it follows

that

lim
n��

F(x,zn(x))


 zn
 p+

X
= lim

n��

F(x,zn(x))
|zn(x)|p+

∣∣wn(x)
∣∣p+

= � (3.13)

for all x � �2 := {x � R
N : w(x) �= 0}. Proceeding as in the proof of Lemma3.7, it can be

shown that there isM2 � R such thatF(x,t) � M2 for all (x,t) � R
N × R, and so

F(x,zn) …M2


 zn
 p+

X
� 0

for all x � R
N andn � N. Using (3.13) and the Fatou lemma, one has

lim inf
n��

∫
RN

F(x,zn)


 zn
 p+

X
dx � lim inf

n��

∫
�2

F(x,zn)


 zn
 p+

X
dx …lim sup

n��

∫
�2

M2


 zn
 p+

X
dx

= lim inf
n��

∫
�2

F(x,zn) …M2


 zn
 p+

X
dx

�
∫

�2

lim inf
n��

F(x,zn) …M2


 zn
 p+

X
dx

=
∫

�2

lim inf
n��

F(x,zn)


 zn
 p+

X
dx …

∫
�2

lim sup
n��

M2


 zn
 p+

X
dx.

Thus we infer

∫
RN

F(x,zn(x))


 zn
 p+

X
dx � � asn � � .
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We may assume that
 zn
 X > 1. Therefore, we have

Iλ(zn) =
∫
RN

∫
RN

1
p(x,y)

∣∣zn(x) …zn(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)
p(x)

|zn|p(x) dx

…λ

∫
RN

a(x)
r(x)

|zn|r(x) dx …
∫
RN

F(x,zn)dx

�
1
p…


 zn
 p+

X …
∫

�2

F(x,zn)dx

� 
 zn
 p+

X

(
1
p…

…
∫

�2

F(x,zn(x))


 zn
 p+

X
dx

)
� …� asn � � ,

which is a contradiction to (3.12). This completes the proof. �

Definition 3.13 Let E be a real separable and re”exive Banach space. We say thatI satis-
“es the (C)�

c-condition (with respect toYn) if any sequence{zn}n� N 	 E for which zn � Yn,
for any n � N,

I(zn) � c and
∥∥(I|Yn)�(zn)

∥∥
E�

(
1 + 
 zn
 E

)
� 0 asn � � ,

has a subsequence converging to a critical point ofI .

Lemma 3.14 (Dual fountain theorem [10, 30]) Assume that E is a Banach space, I �
C1(E,R) is an even functional. If there is k0 > 0so that, for each k� k0, there existρk > δk > 0
such that the following properties hold:

(H1) inf{I(ω) :ω � Zk, 
 ω
 E = ρk} � 0;
(H2) bk := max{I(ω) :ω � Yk, 
 ω
 E = δk} < 0;
(H3) dk := inf{I(ω) :ω � Zk, 
 ω
 E � ρk} � 0 as k � � ;
(H4) I satisfies the (C)�

c-condition for every c � [dk0, 0),
thenI has a sequence of negative critical values cn < 0 satisfying cn � 0 as n� � .

Lemma 3.15 Suppose that(H), (V), (A), and (F1)…(F5)hold. Then the functionalIλ sat-
is“es the(C)�

c-condition for anyλ > 0.

Proof SinceX is a re”exive Banach space, andA� and � �
λ are of type (S+), the proof is

almost identical to that of Lemma 3.12 in [30]. �

With the help of Lemmas3.14and3.15we are ready to establish our “nal consequence.

Theorem 3.16 Assume that(H), (V), (A), and (F1)…(F5)hold. Then problem(P) admits
a sequence of nontrivial weak solutions{ωn} in X such thatIλ(ωn) � 0 as n� � for any
λ > 0.

Proof By means of (F4) and Lemma3.15, we infer that the functionalIλ is even and en-
sures the (C)�

c-condition for all c � R. Now we will prove that properties (H1), (H2), and
(H3) of the dual fountain theorem hold.

(H1): In accordance with (F1), we have

∣∣F(x,τ )
∣∣ �

b(x)
q(x)

|τ |q(x), (x,τ ) � R
N × R.
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For convenience, we denote

θ1,k = sup

 ω
 X =1,ω� Zk


 ω
 Lp(·)(RN ), θ2,k = sup

 ω
 X =1,ω� Zk


 ω
 Lq(·)(RN ).

Then it is easy to verify thatθ1,k � 0 and θ2,k � 0 as k � � (see [30]). Set ϑk =

max{θ1,k,θ2,k}. Then it follows that

Iλ(ω) =
∫
RN

∫
RN

1
p(x,y)

∣∣ω(x) …ω(y)
∣∣p(x,y)K(x,y)dx dy+

∫
RN

V(x)
p(x)

|ω|p(x) dx

…λ

∫
RN

a(x)
r(x)

|ω|r(x) dx …
∫
RN

F(x,ω)dx

�
1
p+


 ω
 p…

X …
λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
max

{

 ω
 r+

Lp(·)(RN )
, 
 ω
 r…

Lp(·)(RN )

}

…

 b
 L� (RN )

q…
max

{

 ω
 q…

Lq(·)(RN )
, 
 ω
 q+

Lq(·)(RN )

}

�
1
p+


 ω
 p…

X …
λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
ϑ

r…
1,k
 ω
 r+

X …

 b
 L� (RN )

q…
ϑ

q…
2,k
 ω
 q+

X

�
1
p+


 ω
 p…

X …
(

2λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
+


 b
 L� (RN )

q…

)
ϑ

r…
k 
 ω
 q+

X

for k large enough and
 ω
 X � 1. Choose

ρk =
[(

4λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
+

2
 b
 L� (RN )

q…

)
p+ϑ

r…
k

] 1
p……2q+

.

Let ω � Zk with 
 ω
 X = ρk > 1 for su�ciently large k. Then there isk0 � N such that

Iλ(ω) �
1
p+


 ω
 p…

X …
(

2λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
+


 b
 L� (RN )

q…

)
ϑ

r…
k 
 ω
 2q+

X

�
1

2p+
ρ

p…

k � 0

for all k � N with k � k0, being

lim
k��

1
2p+

ρ
p…

k = � .

Therefore,

inf
{
Iλ(ω) :ω � Zk, 
 ω
 X = ρk

}
� 0.

(H2): Observe that
 · 
 Lp(·)(RN ), 
 · 
 Lp+ (RN ) and
 · 
 X are equivalent onYk. Then we can

choose some constantsς1,k > 0 andς2,k > 0 such that


 ω
 Lp(·)(RN ) � ς1,k
 ω
 X and 
 ω
 X � ς2,k
 ω
 Lp+ (RN ) (3.14)
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for any ω � Yk. From (F2)…(F3) and (F5), for anyM > 0, there are some constantsC6 > 0

andC7(M) > 0 such that

F(x,τ ) � Mς
p+

2,k|τ |p
+

…C6|τ |p(x) …C7(M)b(x) (3.15)

for almost all (x,τ ) � R
N × R whereb comes from (H2). Then, from (3.14) and (3.15), it

follows that

Iλ(ω) �
∫
RN

∫
RN

1
p(x,y)

∣∣ω(x) …ω(y)
∣∣p(x,y)K(x,y)dx dy

+
∫
RN

V(x)
p(x)

|ω|p(x) dx …
∫
RN

F(x,ω)dx

�
1
p…


 ω
 p+

X …Mς
p+

2,k

∫
RN

|ω|p
+

dx + C6

∫
RN

|ω|p(x) + C7(M)
∫
RN

b(x)dx

�
1
p…


 ω
 p+

X …M
 ω
 p+

X + C6
(
ς

p+

1,k + ς
p…

1,k

)

 ω
 p+

X + C8

for anyω � Yk with 
 ω
 X � 1 and positive constantC8. Let f (t) = 1
p…tp+

…Mtp+
+ C6(ςp+

1,k +

ς
p…

1,k)tp+
+ C8. If M is large enough, thenlimt �� f (t) = …� , and so there ist0 � (1,� ) such

that f (t) < 0 for all t � [t0, � ). HenceIλ(ω) < 0 for all ω � Yk with 
 ω
 X = t0. Choosing

δk = t0 for all k � N, one has

bk := max
{
Jλ(ω) :ω � Yk, 
 ω
 X = δk

}
< 0.

If necessary, we can changek0 to a large value, so thatρk > δk > 0 for all k � k0.

(H3): BecauseYk � Zk �= � and 0 <δk < ρk, we havedk � bk < 0 for all k � k0. For any

ω � Zk with 
 ω
 X = 1 and 0 <t < ρk, one has

Iλ(tω) �
1
p+


 tω
 p…

X …
2λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
max

{

 tω
 r…

Lp(·)(RN )
, 
 tω
 r+

Lp(·)(RN )

}

…

 b
 L� (RN )

q…
max

{

 tω
 q…

Lq(·)(RN )
, 
 tω
 q+

Lq(·)(RN )

}

� …
2λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
ρ

r+
k ϑ

r…
k …


 b
 L� (RN )

q…
ρ

q+
k ϑ

q…
k

for large enoughk. Hence, from the de“nition ofρk, it follows that

dk � …
2λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
ρ

r+
k ϑ

r…
k …


 b
 L� (RN )

q…
ρ

q+
k ϑ

q…
k

= …
2λ

r…

 a


L
p(·)

p(·)…r(·) (RN )

[
p+

(
4λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
+

2
 b
 L� (RN )

q…

)] r+
p……2q+

ϑ
r…r++(p……2q+)r…

p……2q+
k

…

 b
 L� (RN )

q…

[
p+

(
4λ

r…

 a


L
p(·)

p(·)…r(·) (RN )
+

2
 b
 L� (RN )

q…

)] q+
p……2q+

ϑ
r…q++(p……2q+)q…

p……2q+
k .

Sincep…< q+, r+ + p…< 2q+, r…q+ + q…p…< 2q…q+, and ϑk � 0 ask � � , we arrive at

limk�� dk = 0.
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Then, all the properties of Lemma3.14are satis“ed. Consequently we conclude that
problem (P) admits a sequence of nontrivial weak solutions{ωn} in X such thatIλ(ωn) � 0
asn � � for anyλ > 0. �

Remark3.17 In order to obtain a result similar to Theorem3.16, the authors in [10,41,51,
52] have applied the dual fountain theorem whenρk„de“ned in Lemma 3.14„converges
to 0 ask � � . For this reason, the proof of Theorem3.16is di�erent from that of the
papers [10, 41, 51, 52] because we get this result whenρk � � ask � � .
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