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Abstract
We consider a version of the pole placement problem for tempered one-sided linear
discrete-time time-varying linear systems. We prove a sufficient condition for
assignability of the nonuniform dichotomy spectrum by linear feedback. The main
result is that the nonuniform dichotomy spectrum is assignable if the system is
completely controllable and certain lower asymptotic bound for the controllability
Gramian holds.
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1 Introduction
The concept of exponential dichotomy is closely related to the problem of inferring the
stability of a nonlinear system based on its linear approximation. This problem was first
formulated by Lyapunov (see [1]), who showed that for the class of regular systems in-
troduced by him, the stability of the linear approximation implies the local stability of the
nonlinear system. In [2], Perron showed that this implication is also true for nonlinear sys-
tems, the linear approximation of which has the property that its inhomogeneous version
has a bounded solution to any bounded inhomogeneity. Perron thus introduced for the
first time a class of systems that we now call systems with an exponential dichotomy.

On the other hand, Maizel [3] extended the Persidskii criterion [4] to the case of con-
ditional stability and Malkin’s criterion [5] on the stability of the first approximation, and
thus defined two classes of linear differential systems for which the Lyapunov problem also
has a positive answer. It turned out [3] that these two classes coincide with each other and
with the class of systems defined by Perron—thus, the class of exponentially dichotomous
systems was characterized from three essentially different points of view.

The works of Perron and Maisel were preceded by the works of Hadamard [6] and Bohl
[7], which contained essentially the same key ideas that later led to the concept of expo-
nential dichotomy.

The class of exponentially dichotomic systems was singled out as an independent subject
of research with its own problems in a series of works [8, 9] by Massera and Schaeffer, who
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also coined the name “exponential dichotomy” and formulated the canonical definition of
exponentially dichotomous systems.

The final formulation of fundamentals of the theory of exponentially dichotomous sys-
tems was completed thanks to the monographs of Massera and Schaeffer [10] and Daleckii
and Krein [11], who summarized the earlier obtained results on exponentially dichoto-
mous systems and outlined the development paths of this theory by setting many new
problems and by formulating interesting and deep open questions.

Later, an equally important role in the development of the theory of dichotomy was
played by Coppel’s monograph [12], in which the results on finite-dimensional exponen-
tially dichotomous systems obtained before 1978 were collected and strengthened.

The effectiveness of the notion of exponential dichotomy both in the study of the asymp-
totic behavior of solutions of nonlinear systems, the first approximation of which is expo-
nentially dichotomous, and in its applications to dynamical systems, has caused various
generalizations of this notion both within the theory of linear differential systems itself
and beyond—in the theory of evolution operators and the theory of linear extensions of
dynamical systems. One of them is the concept of nonuniform exponential dichotomy,
which is defined in the literature in many nonequivalent ways (see [13–16]).

The concept of the dichotomy is closely related to the concept of the dichotomy spec-
trum, introduced by Sacker and Sell in [17]. In [17], the authors developed the Sacker–Sell
spectral theory, which is now also called dichotomy spectrum for nonautonomous differ-
ential equations [18]. Nowadays, the dichotomy spectrum is an important tool in the qual-
itative theory of dynamical systems. This is due to the following reasons. The dichotomy
spectrum, together with the associated spectral manifolds, completely describes the dy-
namical skeleton of a linear system. This spectrum depicts uniform exponential stability
as follows: if the dichotomy spectrum lies left of zero, then the uniform exponential stabil-
ity of nonlinearly perturbed systems is guaranteed [19]. More generally, this concept may
be used to discuss the existence and the smoothness of invariant manifolds for nonau-
tonomous differential equations, to obtain a version of the Grobman–Hartman theorem
for nonautonomous systems (in this context, the hyperbolicity is formulated as zero does
not belong to the dichotomy spectrum) [20], to characterize the existence of center mani-
folds [21] and in the theory of the Lyapunov regularity [22]. Using a resonance condition of
the dichotomy spectrum to study the normal forms of nonautonomous system, in [18], a
finite order normal form was obtained, and in [23], analytic normal forms of a class of ana-
lytic nonautonomous differential systems were presented. Finally, information on the fine
structure of the dichotomy spectrum allows classifying various types of nonautonomous
bifurcations [24]. In this paper, we consider nonuniform dichotomy spectrum as it was
defined in [25] (see also [26]).

In control theory, one of the most effective methods of designing control systems for
stationary systems is the pole placement method (see [27]). The most important result
here is the fact that the controllability of a linear time-invariant system is equivalent to
the fact that for each set of complex numbers whose cardinality is equal to the size of the
state vector and is symmetric about the real axis, there exists a stationary feedback such
that the poles of the closed-loop system form this set [28].

The generalization of this methodology to systems with time-varying coefficients en-
counters two main difficulties: there are many nonequivalent controllability concepts, and
for systems with variable coefficients, there are many numerical characteristics that play,
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to a certain extent, the role of the poles of stationary systems (e.g., the Lyapunov, Bohl and
Perron exponents or dichotomy spectra). The methods of assignability of the so-called
Lyapunov invariants through linear feedback for continuous systems are fully described
in the monographs of Makarov and Popova [29], and for discrete systems, the assignabil-
ity of the Lyapunov exponents is discussed in the series of papers [30, 31], and [32]. The
problem of assignability of the spectrum of uniform exponential dichotomy was discussed
in the works [33, 34], and [35], where it was shown that both for discrete and continuous
systems with bounded time-varying coefficients, considered both on the half-line and on
the whole line, the spectrum of uniform exponential dichotomy is assignable if and only if
the system is uniformly completely controllable.

Although a uniform dichotomy is a common phenomenon (see [10]), it may not be sat-
isfied in many important situations, for example, when the linear equation is a result of
linearization of certain nonlinear dynamics [36]. Moreover, as it was shown in this pa-
per, analysis of such dynamics can be successfully performed using the weaker concept
of nonuniform dichotomy. The corresponding spectrum of the nonuniform dichotomy
is a subset of the spectrum of the uniform dichotomy, but it contains all the Lyapunov
exponents as subsets, and therefore, on its basis, it is possible to infer exponential stabil-
ity. For this reason, among other things, in control systems, as the aim of control can be
considered, placement of the spectrum of nonuniform dichotomies in a given position, in
particular by selecting the position as a set of points, leads to the task of locating Lyapunov
exponents.

In this paper, we investigate the problem of the relationship between the assignability
of the nonuniform dichotomy spectrum and complete controllability for discrete linear
systems with not necessarily bounded time-varying coefficients.

In all previous works on the assignability of the Lyapunov exponents ([29–31], and [32])
and the dichotomy spectrum ([33, 34], and [35]), there is an assumption that the coef-
ficients are bounded, and this assumption plays an important role there. In the present
work, it was possible to significantly weaken this assumption and obtain results on the
assignability of the spectrum, assuming that the coefficients are tempered. Related to the
concept of a tempered sequence is the concept of tempered exponential dichotomy. In
[37], the authors characterize the concept of a tempered exponential dichotomy on a Ba-
nach space in terms of an admissibility property. Additionally, they show a new proof of the
robustness property of the notion of a tempered exponential dichotomy under sufficiently
small linear perturbations for continuous-time dynamical systems. For discrete-time dy-
namical systems, the characterization of tempered exponential dichotomy on a Banach
space is presented in [38]. As a result, the authors show that the concept of an exponential
dichotomy under sufficiently small parameterized perturbations perseveres and that their
stable and unstable spaces are as regular as the perturbation.

For the consideration of the systems with not necessarily bounded coefficients, it was
compulsory to create new methods that allowed developing the key for the main result of
Theorem 12 about transforming the system through linear feedback to an upper triangular
form with predetermined elements on the main diagonal. The diagonal significance of
nonuniform dichotomy, i.e., the property that the spectrum of an upper triangular system
is the union of spectra of one dimensional systems corresponding to the elements of the
main diagonal, shown in Theorems 6 and 7, also plays an important role in proving the
main result and is interesting for the theory of dichotomy itself. For the purpose of this
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result, we adapted to discrete systems the idea of the linking operator proposed in [39]
for continuous systems. Finally, it should be noted that as shown in [34] and [35], the
assignability of the spectrum of a uniform dichotomy requires the assumption of one of
the strongest types of controllability, i.e., uniform complete controllability, while in our
work, we consider a significantly weaker assumption about complete controllability.

The paper is organized as follows. In the next section, we present the basic definition,
formulation of the problem, and the main result. In the third section, we discuss properties
of nonuniform dichotomy for upper triangular systems. The fourth section is devoted to
properties of complete controllability. The proof of the main results is presented in the fifth
section. Section six contains an example. We formulate conclusions in the last section.

Denote by N the set of natural numbers. We denote the s-dimensional Euclidean space
with Euclidean norm ‖ · ‖ and the set of matrices of size s by t with real entries by R

s

and R
s×t , respectively. For a matrix X ∈ R

s×t , ‖A‖ denotes the operator norm generated
by the Euclidean norm. GLs(R) is the subset of Rs×s consisting of invertible matrices. If
X, Y ∈R

s×s are symmetric, then X ≥ Y , (X > Y ) means that the matrix X –Y is nonnegative
definite (positive definite). For a sequence A : N → GLs(R), A = (A(k))k∈N, we denote by
A–1 the sequence (A(k)–1)k∈N, which we will also write as (A–1(k))k∈N. The identity matrix
of size s by s is denoted by Is. The set of all sequences X : N →R

s×t , X = (X(k))k∈N such that

lim sup
k→∞

1
k

ln
∥
∥X(k)

∥
∥≤ 0

is denoted by Ltem(N,Rs×t), and its elements are called tempered sequences.

2 Preliminaries and statements of main results
For a sequence A : N → GLs(R), A = (A(k))k∈N, let �A(·, ·) denote the evolution operator
generated by A, i.e.,

�A(k, l) :=

⎧

⎪⎪⎨

⎪⎪⎩

A(k – 1) · · ·A(l), if k > l,

id, if k = l,

�–1
A (l, k), if k < l.

Consider a discrete time-varying linear system

x(k + 1) = A(k)x(k), k ∈N, (1)

where A := (A(k))k∈N, A(k) ∈ GLs(R). If (xA(k, k0, x0))k∈N denotes the solution of (1), satis-
fying the condition xA(k0, k0, x0) = x0, then

xA(k, k0, x0) = �A(k, k0)x0, k ∈ N.

A matrix P̃ ∈ R
s×s is called projector if P̃2 = P̃. An invariant projector of (1) is defined to

be a function P : N →R
s×s of projections P(k), k ∈N, such that

P(k)�A(k, l) = �A(k, l)P(l), k, l ∈N.

In this paper, we consider the following definition of nonuniform exponential dichotomy
(NED) and nonuniform exponential dichotomy spectrum (NEDS) introduced in [25].
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Definition 1 (Nonuniform exponential dichotomy) We say that (1) admits a NED if there
exists an invariant projector (P(m))m∈N of (1), a constant α > 0, and for each ε > 0 a con-
stant D(ε) > 0 such that for k, l ∈N

∥
∥�A(k, l)P(l)

∥
∥≤ D(ε)e–α(k–l)+εl, k ≥ l, (2)

∥
∥�A(k, l)

(

Is – P(l)
)∥
∥≤ D(ε)e–α(l–k)+εl, k ≤ l. (3)

Definition 2 (Nonuniform exponential dichotomy spectrum) The nonuniform exponen-
tial dichotomy spectrum (NEDS) of (1) is defined by

�(A) :=
{

γ ∈R : x(k + 1) = e–γ A(k)x(k) has no NED
}

.

The structure of the NEDS is given by the following theorem from [25].

Theorem 1 (Spectral theorem) For system (1), either �(A) = ∅, �(A) = R, or

�(A) = I1 ∪ [a2, b2] ∪ · · · ∪ [ap–1, bp–1] ∪ Ip, (4)

where I1 = [a1, b1] or I1 = (–∞, b1], and Ip = [ap, bp] or Ip = [ap, +∞), for some numbers
a1 ≤ b1 < a2 ≤ b2 < · · · < ap ≤ bp and p ≤ s.

Consider now a discrete linear time-varying system with control

x(k + 1) = A(k)x(k) + B(k)u(k), (5)

where A = (A(k))k∈N, A(k) ∈ GLs(R), B : N →R
s×t , B = (B(k))k∈N, and the control sequence

u = (u(k))k∈N is t-dimensional.
The (forward) solution of (5) corresponding to the control u and initial condition x(k0) =

x0, where k0 ∈N and x0 ∈R
s, is denoted by

(

x(k, k0, x0, u)
)

k≥k0

and is given by the following formula

x(k, k0, x0, u) = �A(k, k0)x0 +
k–1
∑

j=k0

�A(k, j + 1)B(j)u(j), k ≥ k0. (6)

If we have a sequence U : N → R
t×s, U = (U(k))k∈N, then we may define a so-called feed-

back control u = (u(k))k∈N by

u(k) = U(k)x(k), k ∈N.

With this control, system (5) takes the following closed-loop form

x(k + 1) =
(

A(k) + B(k)U(k)
)

x(k). (7)

Our main result will be formulated under the assumption that A, A–1 ∈Ltem(N,Rs×s) and
B ∈Ltem(N,Rs×t); therefore the following class of feedback is important.
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Definition 3 (Admissible feedback) Suppose that A, A–1 ∈ Ltem(N,Rs×s), B ∈ Ltem(N,
R

s×t). A sequence U : N →R
t×s, U = (U(k))k∈N, which satisfies

lim sup
n→∞

1
n

ln
∥
∥U(n)

∥
∥ = 0, (8)

is called an admissible feedback for (5) if A + BU := (A(k) + B(k)U(k))k∈N is such that A(k) +
B(k)U(k) ∈ GLs(R) for all k ∈N and A + BU , (A + BU)–1 ∈Ltem(N,Rs×s).

Remark 1 (Tempered sequences are not exponentially growing) For a tempered sequence
X = (X(k))k∈N ∈Ltem(N,Rs×t), there exists for all ε > 0 a D(ε) > 0 such that

∥
∥X(k)

∥
∥≤ D(ε)eεk , k ∈ N.

The next definition contains the precise statement of the main objective of this paper.

Definition 4 (Assignability of spectrum) The NEDS of (7) is called assignable if for arbi-
trary 1 ≤ p ≤ s and an arbitrary set � = ∅, R or of the form (4), there exists an admissible
feedback U such that �(A + BU) = �.

The main result of the paper, which contains sufficient conditions for assignability of
NEDS, is formulated in terms of complete controllability and the controllability Gramian.
The formal definitions are as follows.

Definition 5 (Complete controllability) System (5) is called K-completely controllable
(K ∈N) if for all (k0, ξ ) ∈N×R

s, there exists a control sequence u(�), � = k0, k0 + 1, . . . , k0 +
K – 1, such that x(k0 + K , k0, 0, u) = ξ . System (5) is called completely controllable if there
exists a K ∈N such that system (5) is K-completely controllable.

In the investigation of controllability, a crucial role is played by the following Kalman
controllability matrix

WA,B(k, l) =
l–1
∑

j=k

�A(k, j + 1)B(j)BT (j)�T
A(k, j + 1), k < l.

The next theorem (see [40, 41]) gives, in terms of the Kalman controllability matrix, nec-
essary and sufficient conditions for complete controllability.

Theorem 2 (Characterization of complete controllability) System (5) is completely con-
trollable if and only if there exists a natural number K such that

WA,B(k0, k0 + K) > 0

for all k0 ∈N.

For k, l ∈N and k < l, denote by αA,B(k, l) the smallest eigenvalue of WA,B(k, l).
The next theorem is the main result of the paper.



Babiarz et al. Advances in Continuous and Discrete Models         (2022) 2022:20 Page 7 of 44

Theorem 3 (Assignability theorem) Suppose that A, A–1 ∈Ltem(N,Rs×s) and B ∈Ltem(N,
R

s×t), system (5) is K-completely controllable and

lim inf
k→∞

1
k

lnαA,B
(

(k – 1)K , kK
)≥ 0. (9)

Then the NEDS of (5) is assignable.

3 Upper triangular sequences and dichotomy
In this section, we present results about the NEDS for upper triangular systems. The main
role is played by the linking operator introduced by Batteli and Palmer in [39]. Our main
Theorem 7 shows that the NEDS of a system with upper triangular coefficients is the union
of the NEDS of the scalar systems formed from the diagonal entries.

Suppose that A = (A(k))k∈N is an upper triangular sequence

A(k) =

[

Ā1(k) C(k)
0 Ā2(k)

]

, k ∈N, (10)

where Ā1 : N → GLs̄(R), Ā2 : N→ GLs–s̄(R), C : N →R
s̄×(s–s̄). Then for k, l ∈N, the matri-

ces �A(k, l) are upper triangular and

�A(k, l) =

[

�Ā1 (k, l) 	(k, l)
0 �Ā2 (k, l)

]

, (11)

where

	(k, l) =

⎧

⎪⎪⎨

⎪⎪⎩

∑k–1
j=l �Ā1 (k, j + 1)C(j)�Ā2 (j, l), if k > l,

0, if k = l,

–
∑l–1

j=k �Ā1 (k, j + 1)C(j)�Ā2 (j, l), if k < l.

Let us denote

V1 :=
{

x0 ∈R
s̄ :
(

xĀ1 (k, 0, x0)
)

k∈N is bounded
}

,

V2 any complement of V1 in R
s̄ i.e. Rs̄ = V1 ⊕ V2.

It is clear that V1 is nonempty (0 ∈ V1) and is a linear subspace of Rs̄; therefore, V2 is
well-defined. For a fixed x0 ∈R

s–s̄, consider the equation

x̄(k + 1) = Ā1(k)x̄(k) + C(k)�Ā2 (k, 0)x0, k ∈N, (12)

and denote its solution, satisfying x̄(0) = x̄0 ∈R
s̄ by (x̄(k, 0, x̄0))k∈N. By the variation of con-

stants, formula (see [42, pp. 83]), (x̄(k, 0, x̄0))k∈N is given by

x̄(k, 0, x̄0) = �Ā1 (k, 0)x̄0 +
k
∑

l=1

�Ā1 (k, l)C(l – 1)�Ā2 (l – 1, 0)x0. (13)
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Let us denote

W1 :=

⎧

⎪⎨

⎪⎩

x0 ∈R
s–s̄ :
(

xĀ2 (k, 0, x0)
)

k∈N is bounded, and
there exists x̄0 ∈R

s̄ such that
(

x̄(k, 0, x̄0)
)

k∈N
is bounded

⎫

⎪⎬

⎪⎭

,

W2 any complement of W1 in R
s–s̄ , i.e., Rs̄ = W1 ⊕ W2.

Observe that 0 ∈ W1, and from the superposition principle (see [42, pp. 49]), it follows
that W1 is a subspace of Rs–s̄; therefore, W2 is well-defined.

Remark 2 Suppose that (x̄(k, 0, x̄01))k∈N and (x̄(k, 0, x̄02))k∈N are solutions of (12) (with the
same x0) and suppose that (x̄(k, 0, x̄01))k∈N is bounded, then (x̄(k, 0, x̄02))k∈N is bounded if
and only if (x̄(k, 0, x̄01) – x̄(k, 0, x̄02))k∈N is a bounded solution of

x(k + 1) = Ā1(k)x(k), k ∈N, (14)

i.e., x̄01 – x̄02 ∈ V1.

Proof Suppose that (x̄(k, 0, x̄01))k∈N is a bounded solution of (12). If (x̄(k, 0, x̄02))k∈N is
bounded, then so is (x̄(k, 0, x̄01) – x̄(k, 0, x̄02))k∈N. The fact that (x̄(k, 0, x̄01) – x̄(k, 0, x̄02))k∈N
is a solution of (14) follows from the following calculation

x̄(k + 1, 0, x̄01) – x̄(k + 1, 0, x̄02)

= Ā(k)x̄(k, 0, x̄01) + C(k)�Ā2 (k, 0)x0 –
(

Ā(k)x̄(k, 0, x̄02) + C(k)�Ā2 (k, 0)x0
)

= Ā(k)
(

x̄(k, 0, x̄01) – x̄(k, 0, x̄02)
)

.

If (x̄(k, 0, x̄01) – x̄(k, 0, x̄02))k∈N is bounded (regardless if it is a solution of (14) or not), then
the boundedness of (x̄(k, 0, x̄01))k∈N implies boundedness of (x̄(k, 0, x̄02))k∈N. �

This simple observation leads to the following nontrivial fact.

Lemma 1 For each x0 ∈ W1, there exists exactly one x̄0 ∈ V2 such that the solution
(x̄(k, 0, x̄0))k∈N of (12) is bounded.

Proof First, we show that for each x0 ∈ W1, there exists x̄0 ∈ V2 such that the solu-
tion (x̄(k, 0, x̄0))k∈N of (12) is bounded. Since x0 ∈ W1, there exists x̃0 ∈ R

s̄ such that
(x̄(k, 0, x̃0))k∈N is bounded. Let us decompose

x̃0 = x̄01 + x̄02,

with x̄01 ∈ V1 and x̄02 ∈ V2. Then (x̄(k, 0, x̃0) – x̄(k, 0, x̄02))k∈N is solution of (14), and it
is bounded since x̃0 – x̄02 = x̄01 ∈ V1. By Remark 2, we conclude that (x̄(k, 0, x̄02))k∈N is
a bounded solution of (12).

Suppose that for a certain x0 ∈ W1, we have two bounded solutions (x̄(k, 0, x̄01))k∈N and
(x̄(k, 0, x̄02))k∈N of (12). Then by Remark 2, (x̄(k, 0, x̄01) – x̄(k, 0, x̄02))k∈N is a bounded solu-
tion of (14), and therefore, x̄01 – x̄02 ∈ V1. Since x̄01 – x̄02 ∈ V2, it follows that x̄01 = x̄02. �
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Using this Lemma, we may associate with system (10) a linear operator L : W1 → V2,
the so-called linking operator (see [39] and [43]), by the formula Lx0 = x̄0, where x̄0 is the
unique element in V2 such that the solution (x̄(k, 0, x̄0))k∈N of (12) is bounded. By Lemma 1,
this operator is well-defined, and its linearity is obvious.

Let P̄Ā1 : Rs̄ → R
s̄ and Q : Rs–s̄ → R

s–s̄ be the projections onto V1 and W1, respectively.
We consider the projection P : Rs → R

s given by

P =

[

P̄Ā1 LQ
0 Q

]

, (15)

and define P(m) : Rs →R
s for m ∈N by

P(m) = �A(m, 0)P�A(0, m),

and P̄Ā1 (m) : Rs̄ →R
s̄, Q(m) : Rs–s̄ →R

s–s̄ for m ∈N by

P̄Ā1 (m) = �Ā1 (m, 0)P̄Ā1�Ā1 (0, m), Q(m) = �Ā2 (m, 0)Q�Ā2 (0, m).

Observe that (P(m))m∈N, (P̄Ā1 (m))m∈N and (Q(m))m∈N satisfy the invariance properties

P(k)�A(k, m) = �A(k, m)P(m), m, k ∈N,

P̄Ā1 (k)�Ā1 (k, m) = �Ā1 (k, m)P̄Ā1 (m), m, k ∈N,

Q(k)�Ā2 (k, m) = �Ā2 (k, m)Q(m), m, k ∈N.

The following remark follows directly from Definition 1 of nonuniform exponential di-
chotomy.

Remark 3 (Alternative characterizations of NED) The following three statements are
equivalent:

(i) System (1) admits a NED.
(ii) There exists an invariant projector (P(m))m∈N, a constant α > 0, and for each ε > 0 a

constant D(ε) > 0 such that for k, l ∈ N and x ∈R
s

∥
∥�A(l, k)P(k)x

∥
∥≤ D(ε)e–α(l–k)+εk‖x‖, l ≥ k,

∥
∥�A(l, k)

(

Is – P(k)
)

x
∥
∥≤ D(ε)e–α(k–l)+εk‖x‖, l ≤ k.

(iii) There exists a projection P, a constant α > 0, and for each ε > 0 a constant D(ε) > 0
such that for k, l ∈ N

∥
∥�A(l, 0)P�–1

A (k, 0)
∥
∥≤ D(ε)e–α(l–k)+εk , l ≥ k, (16)

∥
∥�A(l, 0)(Is – P)�–1

A (k, 0)
∥
∥≤ D(ε)e–α(k–l)+εk , l ≤ k. (17)

Remark 4 It is clear that if the inequalities (16) and (17) hold for all ε ∈ (0, ε′) for a certain
ε′ > 0, then they hold for all ε > 0. Therefore, to show that a system has a NED it is enough
to show that (16) and (17) hold for all sufficiently small ε > 0.
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Lemma 2 (Uniqueness of the image of the projector) Suppose that system (1) admits a
NED. Then for each k ∈N,

Im P(k) =
{

v ∈R
s : sup

m≥k

∥
∥�A(m, k)v

∥
∥ < ∞

}

,

and

Im P = Im P(0) =
{

v ∈ R
s : sup

m≥0

∥
∥�A(m, 0)v

∥
∥ < ∞

}

,

where P(k) are any projections from Definition 1, and P is any projection from Remark 3(iii).
In particular, the images of the projections P(k), k ∈ N, and P, satisfying Definition 1 and
Remark 3(iii), respectively, are unique.

Proof The equality

Im P(k) =
{

v ∈R
s : sup

m≥k

∥
∥�A(m, k)v

∥
∥ < ∞

}

, k ∈N,

is proved in [26, Proposition 1]. If P is any projection from Remark 3(iii), it is easy to show
that the projections

P(k) = �A(k, 0)P�–1
A (k, 0), k ∈N,

satisfy Definition 1, and therefore,

Im P(0) = Im P. �

Theorem 4 (NED for blocks of the upper triangular system) Suppose that (10) admits a
NED on N with invariant projections (P(m))m∈N and constant α > 0. Then both systems

x̄(k + 1) = Ā1(k)x̄(k) for k ∈ N, (18)

and

y(k + 1) = Ā2(k)y(k) for k ∈N, (19)

have a NED with constant α > 0. Moreover, the invariant projector (P(m))m∈N of the di-
chotomy for (10) can be taken in the block upper triangular form

P(m) = �A(m, 0)

[

P̄Ā1 LQ
0 Q

]

�–1
A (m, 0). (20)

Proof Observe that for any x̄ ∈R
s̄ and m ∈N, we have

P(m)

[

x̄
0

]

=

[

P̄Ā1 (m)x̄
0

]
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and

(

Is – P(m)
)

[

x̄
0

]

=

[

(Is̄ – P̄Ā1 (m))x̄
0

]

.

As a consequence

∥
∥P̄Ā(m)

∥
∥≤ ∥∥P(m)

∥
∥,

and for x̄ ∈R
s̄ and m ≥ k, we get for a fixed ε > 0

∥
∥�Ā(m, k)P̄Ā(k)x̄

∥
∥ =

∥
∥
∥
∥
∥
�A(m, k)

[

P̄Ā1 (k)x̄
0

]∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
�A(m, k)P(k)

[

x̄
0

]∥
∥
∥
∥
∥

≤ D(ε)e–α(m–k)+εk

∥
∥
∥
∥
∥

[

x̄
0

]∥
∥
∥
∥
∥

= D(ε)e–α(m–k)+εk‖x̄‖

and similarly for any x̄ ∈ R
s̄ and m ≤ k

∥
∥�Ā(m, k)

(

Is̄ – P̄Ā(m)
)

x̄
∥
∥ =

∥
∥
∥
∥
∥
�A(m, k)

[

(Is̄ – P̄Ā1 (m))x̄
0

]∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
�A(m, k)

(

Is – P(k)
)

[

x̄
0

]∥
∥
∥
∥
∥

≤ D(ε)e–α(k–m)+εk

∥
∥
∥
∥
∥

[

x̄
0

]∥
∥
∥
∥
∥

= D(ε)e–α(k–m)+εk‖x̄‖.

Using Remark 3, this completes the proof of NED of (18). The fact that (19) has a NED
can be proven by considering the system exactly as in step 2 of the proof of Theorem 1 in
[39]. �

From the above theorem and its proof, the following remark follows.

Remark 5 (NED projector rank for upper triangular system) If system (5) with coefficient
of the upper triangular form (10) admits a NED, then W1 = Im Q, V2 = (P̄Ā1 )⊥, and there-
fore,

rank P(0) = rank P̄Ā1 + rank Q.

Remark 6 (NED projector for the upper triangular systems) Suppose that system (5) with
the coefficient of the upper triangular form (10) admits a NED. By Theorem 4, the projec-
tor can be taken in the form (20). Using the definitions of P(m), P̄Ā1 (m), Q(m), and (11), it
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follows that

P(m) =

[

P̄Ā1 (m) R(m)
0 Q(m)

]

,

where

R(0) = LQ(0)

and

R(m + 1) = –Ā1(m)P̄Ā1 (m)Ā–1
1 (m)C(m)Ā–1

2 (m) +

+ Ā1(m)R(m)Ā–1
2 (m) + C(m)Q(m)Ā–1

2 (m). (21)

In fact, we have

P(m + 1) =

[

P̄Ā1 (m + 1) R(m + 1)
0 Q(m + 1)

]

= A(m)P(m)A–1(m)

=

[

Ā1(m) C(m)
0 Ā2(m)

][

P̄Ā1 (m) R(m)
0 Q(m)

][

Ā–1
1 (m) –Ā–1

1 (m)C(m)Ā–1
2 (m)

0 Ā–1
2 (m)

]

=

[

Ā1(m)P̄Ā1 (m) Ā1(m)R(m) + C(m)Q(m)
0 Ā2(m)Q(m)

]

×
[

Ā–1
1 (m) –Ā–1

1 (m)C(m)Ā–1
2 (m)

0 Ā–1
2 (m)

]

=

[

Ā1(m)P̄Ā1 (m)Ā–1
1 (m) E(m)

0 Ā2(m)Q(m)Ā–1
2 (m)

]

,

where

E(m) = –Ā1(m)P̄Ā1 (m)Ā–1
1 (m)C(m)Ā–1

2 (m)

+ Ā1(m)R(m)Ā–1
2 (m) + C(m)Q(m)Ā–1

2 (m).

By induction, it can be proven that the explicit solution of (21) is given by

R(m) = –
m–1
∑

j=0

�Ā1 (m, j + 1)P̄Ā1 (j + 1)C(j)
(

Is–s̄ – Q(j)
)

�Ā2 (j, m) –

–
∞
∑

j=m

�Ā1 (m, j + 1)
(

Is̄ – P̄Ā1 (j + 1)
)

C(j)Q(j)�Ā2 (j, m).

Now we will show that the opposite implication to this from Theorem 4 holds for tempered
sequences C.
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Theorem 5 (NED for the upper triangular tempered system) Suppose that (C(k))k∈N ∈
Ltem(N,Rs×(s–s)) and that the systems (18) and (19) admit a NED. Then also system (5)
with coefficient of the upper triangular form (10) admits a NED.

Proof We show that (10) has a NED with the projector

P(m) =

[

P̄Ā(m) R(m)
0 Q(m)

]

,

where (R(m))k∈N are given by (21). Let us fix ε > 0. First, we show that (A(k))k∈N satisfies
(16) for a certain D(ε) > 0. Observe that

�A(m, k)P(k) =

[

�Ā(m, k)P̄Ā(m) 	(m, k)Q(k) + �Ā(m, k)R(k)
0 �Ā2 (m, k)Q(k)

]

. (22)

We have

	(m, k)Q(k) =
m–1
∑

j=1

�A(m, j + 1)P̄Ā(j + 1)C(j)Q(j)�Ā2 (j, k)

+
m–1
∑

j=1

�A(m, j + 1)
(

Is̄ – P̄Ā(j + 1)
)

C(j)Q(j)�Ā2 (j, k),

and by (21), we also have

�Ā(m, k)R(k) = –
k–1
∑

j=0

�Ā(m, j + 1)P̄Ā(j + 1)C(j)
(

Is–s̄ – Q(j)
)

�Ā2 (j, k)

–
∞
∑

j=k

�Ā(m, j + 1)
(

Is̄ – P̄Ā(j + 1)
)

C(j)Q(j)�Ā2 (j, k).

Hence,

	(m, k)Q(k) + �Ā(m, k)R(k)

=
m–1
∑

j=k

�Ā(m, j + 1)P̄Ā(j + 1)C(j)Q(j)�Ā2 (j, k)

–
∞
∑

j=m

�Ā(m, j + 1)
(

Is̄ – P̄Ā(j + 1)
)

C(j)Q(j)�Ā2 (j, k)

–
k–1
∑

j=0

�Ā(m, j + 1)P̄Ā(j + 1)C(j)
(

Is–s̄ – Q(j)
)

�Ā2 (j, k).

Let D′(ε) > 0 and α > 0 be such that (by Remark 4, we may assume without loss of generality
that α > 2ε)

∥
∥�Ā(m, k)P̄Ā(k)

∥
∥≤ D′(ε)e–α(m–k)+εk , k, m ∈N, m ≥ k,
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∥
∥�Ā(m, k)

(

Is̄ – P̄Ā(k)
)∥
∥≤ D(ε)e–α(k–m)+εk , k, m ∈N, m ≤ k,

∥
∥�Ā2 (m, k)Q(k)

∥
∥≤ D′(ε)e–α(m–k)+εk , k, m ∈N, m ≥ k,

and

∥
∥�Ā2 (m, k)

(

Is–s̄ – Q(k)
)∥
∥≤ D(ε)e–α(k–m)+εk , k, m ∈N, m ≤ k.

Then for m ≥ k, we have

∥
∥	(m, k)Q(k) + �Ā(m, k)R(k)

∥
∥

≤ (D′(ε)
)2

m–1
∑

j=k

e–α(m–j–1)+ε(j+1)∥∥C(j)
∥
∥e–α(j–k)+εk

+
(

D′(ε)
)2

∞
∑

j=m

e–α(j+1–m)+ε(j+1)∥∥C(j)
∥
∥e–α(j–k)+εk

+
(

D′(ε)
)2

k–1
∑

j=0

e–α(m–j–1)+ε(j+1)∥∥C(j)
∥
∥e–α(k–j)+εk .

Since (C(k))k∈N is tempered; therefore, there exists d > 0 such that ‖C(k)‖ ≤ deεk , k ∈ N.
We get

∥
∥	(m, k)Q(k) + �Ā(m, k)R(k)

∥
∥

≤ d
(

D′(ε)
)2

m–1
∑

j=k

e–α(m–j–1)+ε(j+1)eεje–α(j–k)+εk

+ d
(

D′(ε)
)2

∞
∑

j=m

e–α(j+1–m)+εjeε(j+1)e–α(j–k)+εk

+ d
(

D′(ε)
)2

k–1
∑

j=0

e–α(m–j–1)+ε(j+1)eεje–α(k–j)+εk

= d
(

D′(ε)
)2e–αm+α+αk+εk+ε e2mε – e2kε

e2ε – 1

+ d
(

D′(ε)
)2eαm+αk+εk–α+ε e2mε–2mα

1 – e2(ε–α)

+ d
(

D′(ε)
)2e–αm–αk+εk+α+ε e2kα+2kε – 1

e2α+2ε – 1

= d
(

D′(ε)
)2 e–αm+α+αk+εk+ε+2mε – e–αm+α+αk+3εk+ε

e2ε – 1

+ d
(

D′(ε)
)2 e–αm+αk+εk–α+2mε+ε

1 – e2(ε–α)

+ d
(

D′(ε)
)2 e–αm+αk+εk+α+ε+2kε – e–αm–αk+εk+α+ε

e2α+2ε – 1
.
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Observe that for all ε > 0, we have e2ε – 1 < e2α+2ε – 1, and for sufficiently small ε > 0, we
have e2ε – 1 < 1 – e2(ε–α), and therefore,

∥
∥	(m, k)Q(k) + �Ā(m, k)R(k)

∥
∥

≤ d(D′(ε))2

e2ε – 1
(

e–αm+α+αk+εk+ε+2mε – e–αm+α+αk+3εk+ε

+ e–αm+αk+εk–α+2mε+ε + e–αm+αk+α+ε+3kε – e–αm–αk+εk+α+ε
)

=
d(D′(ε))2

e2ε – 1
(

e–αm+α+αk+εk+ε+2mε + e–αm+αk+εk–α+2mε+ε

– e–αm–αk+εk+α+ε
)

=
d(D′(ε))2eα+ε

e2ε – 1
e–α(m–k)+εk(e2mε + e–2α+2mε – e–2αk)

=
d(D′(ε))2eα+ε

e2ε – 1
e–α(m–k)+εk+2mε

(

1 + e–2α – e–2αk–2mε
)

=
d(D′(ε))2eα+ε

e2ε – 1
e(2ε–α)(m–k)+3εk(1 + e–2α – e–2αk–2mε

)

≤ 2d(D′(ε))2eα+ε

e2ε – 1
e(2ε–α)(m–k)+3εk

= D(ε)eα′(m–k)+3εk ,

where

D(ε) =
2d(D′(ε))2eα+ε

e2ε – 1
, α′ = –2ε + α.

In the last step, we used the fact that

1 + e–2α – e–2αk–2mε < 2.

Summarizing, we have proved that for each ε′ ∈ (0,α/6), there exists D(ε′) > 0 such that

∥
∥	(m, k)Q(k) + �Ā(m, k)R(k)

∥
∥≤ D

(

ε′)eα′(m–k)+ε′k , m > k.

This, together with the fact that the systems (18) and (19) admit a NED and (22), implies
(16). Suppose now that k > m. Using the identities

�A(m, k)
(

Is – P(k)
)

=

[

(Is̄ – P̄Ā(m))�Ā(m, k) (Is̄ – P̄Ā(m))	(m, k) – R(m)�Ā(m, k)
0 (Is–s̄ – Q(k))�Ā2 (m, k)

]

and

(

Is̄ – P̄Ā(m)
)

	(m, k) – R(m)�Ā(m, k)

=
∞
∑

j=k

�Ā(m, j + 1)
(

Is̄ – P̄Ā(j + 1)
)

C(j)Q(j)�Ā2 (j, k)
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–
m–1
∑

j=k

�Ā(m, j + 1)
(

Is̄ – P̄Ā(j + 1)
)

C(j)
(

Is–s̄ – Q(j)
)

�Ā2 (j, k)

+
m–1
∑

j=0

�Ā(m, j + 1)P̄Ā(j + 1)C(j)
(

Is–s̄ – Q(j)
)

�Ā2 (j, k),

we can show analogically, as in the case k < m, that (17) holds. �

Now, we will consider system (1) with A being in upper triangular form, i.e.,

A(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11(k) a12(k) a13(k) . . . a1s(k)
0 a22(k) a23(k) . . . a2s(k)
0 0 a33(k) . . . a3s(k)
...

...
...

. . .
...

0 0 0 . . . ass(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (23)

Denote

D(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11(k) a12(k) a13(k) . . . a1s–1(k)
0 a22(k) a23(k) . . . a2s–1(k)
0 0 a33(k) . . . a3s–1(k)
...

...
...

. . .
...

0 0 0 . . . as–1s–1(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

E(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1s(k)
a2s(k)
a3s(k)

...
as–1s(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and F(k) = ass(k).

Theorem 6 (Characterization of NED for the upper triangular tempered system) Suppose
that (A(k))k∈N, (A–1(k))k∈N ∈ Ltem(N,Rs×s) and that (A(k))k∈N is in the upper triangular
form (23). Then (1) admits a NED if and only if every scalar equation

xj(k + 1) = ajj(k)xj(k), j = 1, . . . , s, (24)

admits a NED.

Proof We prove the theorem by induction over j ∈ {1, . . . , s}. When j = 1, the conclusion
is obvious. When j = 2, the conclusion follows from Theorems 4 and 5. Suppose that the
result is true when the system is (s – 1)-dimensional. Since system (1) with A in the form
(23) has the form (10) with

Ā1(k) = D(k), C(k) = E(k) and Ā2(k) = F(k),

the conclusion of the theorem for s-dimensional systems follows from Theorems 4 and 5,
and the fact that if (A(k))k∈N is tempered, then, so are (D(k))k∈N, (E(k))k∈N, and (F(k))k∈N. �



Babiarz et al. Advances in Continuous and Discrete Models         (2022) 2022:20 Page 17 of 44

From Theorem 6, the following pivotal result follows.

Theorem 7 (NEDS for the upper triangular tempered systems) Suppose that the sequence
(A(k))k∈N in form (23) is tempered. Then

�(A) =
s
⋃

j=1

�(ajj),

where �(ajj) is the NEDS of (24).

4 Complete controllability
This paragraph contains some considerations about complete controllability, which led
to the main result formulated in Theorem 12. This theorem is a generalization of Theo-
rem 4.6 in [30] to systems with unbounded coefficients.

The proof of the following lemma is contained in the proof of Proposition 7 in [44].

Lemma 3 (Complete controllability persists under feedback) If system (5) is K-completely
controllable, then for any U : N →R

t×s, U = (U(k))k∈N, the system

x̄(k + 1) =
(

A(k) + B(k)U(k)
)

x̄(k) + B(k)ū(k) (25)

is K-completely controllable.

If D = (D(k))k∈N is a sequence of invertible s by s matrices, then with

y(k) = D(k)x(k), (26)

we get

y(k + 1) = D(k + 1)x(k + 1) = D(k + 1)
(

A(k)x(k) + B(k)u(k)
)

= D(k + 1)A(k)D–1(k)y(k) + D(k + 1)B(k)u(k).

In such a situation, we will say that D transforms system (5) into the system

y(k + 1) = Ā(k)y(k) + B̄(k)u(k), (27)

where

Ā(k) = D(k + 1)A(k)D–1(k), B̄(k) = D(k + 1)B(k). (28)

In our investigation, we will use the concept of weak equivalence. In the literature, one
can find various definitions of equivalence for different types of dynamical systems (e.g.,
see [45–48]).

Definition 6 (Weak equivalence) If there exists a sequence D such that D, D–1 ∈ Ltem(N,
R

s×s), which transforms system (5) into (27), then systems (5) and (27) are called weakly
equivalent.
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Lemma 4 (Weak equivalence preserves complete controllability) Suppose that (5) is com-
pletely controllable and a transformation D = (D(k))k∈N, D, D–1 ∈Ltem(N,Rsxs) transforms
system (5) into system (27). Then (27) is completely controllable. Moreover, if

∥
∥D–1(k)

∥
∥≤ Ceμk , (29)

then

αĀ,B̄(k0, k0 + K) ≥ C–2e–2μk0αA,B(k0, k0 + K). (30)

Proof Formula (28) implies that

WĀ,B̄(k0, k0 + K) = D(k0)WA,B(k0, k0 + K)DT (k0), (31)

and therefore, by Theorem 2, complete controllability (5) is equivalent to complete con-
trollability of (27). Since for any symmetric matrix V ∈ R

s×s and any matrix D ∈ R
s×s, we

have

min
x∈Rs ,x 
=0

xT Vx
xT x

= λmin(V ), (32)

and

λmin(V ) = λ–1
max

(

V –1),‖D‖2 = λmax
(

DDT) = λmax
(

DT D
)

(33)

(see [49]), where λmin(V ) and λmax(V ) are the smallest and the greatest eigenvalue of V ,
respectively. Then using (32) with V = WA,B(k0, k0 + K), we get

αA,B(k0, k0 + K) ≤ xT D–1(k0)WA,B(k0, k0 + K)D–T (k0)x
xT x

.

Denoting y = D–T (k0)x and having in mind that D–T (k0) is invertible, we have

αA,B(k0, k0 + K) ≤ yT WA,B(k0, k0 + K)y
yT D(k0)DT (k0)y

(34)

for any y ∈R
s, y 
= 0. Using (32) with V = D(k0)DT (k0) and (33) with D = D(k0), we get

yT D(k0)DT (k0)y ≥ λmin
(

D(k0)DT (k0)
)

yT y

= λ–1
max

(

D–T (k0)D–1(k0)
)

=
∥
∥D–1(k0)

∥
∥

–2.

Using the last inequality in (34), we obtain

αA,B(k0, k0 + K) ≤ yT WA,B(k0, k0 + K)y
yT y

∥
∥D–1(k0)

∥
∥

2

and taking into account (29), we have

αA,B(k0, k0 + K) ≤ yT WA,B(k0, k0 + K)y
yT y

C2e2μk0 .
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Taking the infimum over y ∈R
s, y 
= 0 and using (32), we get

αA,B(k0, k0 + K) ≤ αĀ,B̄(k0, k0 + K)C2e2μk0 .

The last inequality implies (30). �

Denote

F(n, m) = �A(n, m + 1)B(m). (35)

Theorem 8 For any K , k0 ∈N and ξ ∈R
s, ‖ξ‖ = 1, there exist ν ∈R

t , ‖ν‖ = 1 and kv ∈ N,
k0 ≤ kv ≤ k0 + K – 1, such that

∣
∣ξT F(k0, kv)ν

∣
∣≥
√

1
tK

αA,B(k0, k0 + K). (36)

Proof First, we show that for any k0, K ∈N and ξ ∈R
s, ‖ξ‖ = 1, there exists ν ∈R

t , ‖ν‖ = 1
such that

k0+K–1
∑

j=k0

(

ξT F(k0, j)ν
)2 ≥ 1

t
αA,B(k0, k0 + K). (37)

Since,

WA,B(k0, k0 + K) ≥ αA,B(k0, k0 + K)Is,

using the notation (35), we get

ξT WA,B(k0, k0 + K)ξ =
k0+K–1
∑

j=k0

∥
∥ξT F(k0, j)

∥
∥

2 ≥ αA,B(k0, k0 + K)

for any k0, K ∈N and any ξ ∈R
s, ‖ξ‖ = 1.

Let us fix ξ ∈ R
s, ‖ξ‖ = 1, and define as ν as one of the vectors of the standard basis ei,

i ∈ {1, . . . , t}, of Rt for which the expression

k0+K–1
∑

j=k0

(

ξT F(k0, j)ei
)2

achieves its maximum. Then we have

t
k0+K–1
∑

j=k0

(

ξT F(k0, j)ν
)2 ≥

t
∑

i=1

k0+K–1
∑

j=k0

(

ξT F(k0, j)ei
)2

=
k0+K–1
∑

j=k0

∥
∥ξT F(k0, j)

∥
∥

2 ≥ αA,B(k0, k0 + K).

The last inequality implies (37). From (37), the inequality (36) follows immediately. �
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For an s by s matrix H = [hij]i,j=1,...,s, denote by (H)k the kth leading minor, i.e.,

(H)1 = h11, (H)2 =

[

h11 h12

h21 h22

]

, . . . , (H)s = H .

For 0 < δ ≤ 1 and r ≥ 0, denote

H(r, δ) =
{

H ∈ R
s×s : ‖H – Is‖ < r, det(H)j ≥ δ, j = 1, . . . , s

}

,

and by H the set of all s by s matrices with leading minors with positive determinants. The
proof of the next lemma may be found in [29].

Lemma 5 A matrix H belongs to H if and only if H = LG, where L and G are lower and
upper triangular matrices with positive diagonal elements, respectively.

Let us introduce the following notation

a(k0, K) = max
{

max
{∥
∥A–1(l)

∥
∥, 1
}

: l = k0, . . . , k0 + K – 1
}

and

b(k0, K) = max
{∥
∥B(l)

∥
∥ : l = k0, . . . , k0 + K – 1

}

.

In our further considerations, we will use the following lemma.

Lemma 6 Suppose that system (5) is K-completely controllable. Then for any k0 ∈N, there
exist ηi ∈ R

t , ‖ηi‖ = 1, and mi ∈ N, i = 1, . . . , s, such that k0 ≤ m1 ≤ · · · ≤ ms ≤ k0 + K – 1
and the matrix

F(k0) =
[

F(k0, m1)η1, . . . , F(k0, ms)ηs
]

(38)

is invertible, and

∥
∥F(k0)

∥
∥≤ √

sb(k0, K)
(

a(k0, K)
)K , (39)

∥
∥F–1(k0)

∥
∥≤ (

√
sb(k0, K)(a(k0, K))K )s–1

(
√

1
tK αA,B(k0, k0 + K))s

. (40)

Proof According to Theorem 8, for any k0 ∈N and ξ ∈R
s, ‖ξ‖ = 1, there exist ν ∈R

t , ‖ν‖ =
1 and kv ∈N, k0 ≤ kv ≤ k0 + K – 1 such that (36) holds. Let us fix k0 ∈ N. The construction
will be done by induction. In the first step, consider any ξ1 ∈ R

s, ‖ξ1‖ = 1. Then we find
ν1 ∈ R

t , ‖ν1‖ = 1 and k1 ∈N, k0 ≤ k1 ≤ k0 + K – 1, such that

∣
∣ξT

1 F(k0, k1)ν1
∣
∣≥
√

1
tK

αA,B(k0, k0 + K).
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Suppose that after the dth step, we have ξi ∈ R
s, ‖ξi‖ = 1, νi ∈ R

t , ‖νi‖ = 1 and ki ∈ N,
k0 ≤ ki ≤ k0 + K – 1, i = 1, 2, . . . , d such that

∣
∣ξT

i F(k0, ki)νi
∣
∣≥
√

1
tK

αA,B(k0, k0 + K). (41)

Denote by Md the orthogonal complement of

{ d
∑

i=1

αiF(k0, ki)νi : αi ∈R, i = 1, 2, . . . , d

}

in R
s. Since dim Md ≥ s – d, it follows that the set Md is not empty for d ≤ s – 1.

In the (d + 1)-st step, we take any ξd+1 ∈ Md , ‖ξd+1‖ = 1, and for it, we define νd+1 ∈ R
t ,

‖νd+1‖ = 1 and kd+1 ∈N, k0 ≤ kd+1 ≤ k0 + K – 1 such that

∣
∣ξT

d+1F(k0, kd+1)νd+1
∣
∣≥
√

1
tK

αA,B(k0, k0 + K).

After s steps, we will have s vectors ξi, i = 1, . . . , s, such that the inequality (41) holds for all
i = 1, . . . , s and

ξT
i F(k0, kj)νj = 0

for all i > j. Denote

S = [ξ1, . . . , ξs], F̂(k0) =
[

F(k0, k1)ν1, . . . , F(k0, ks)νs
]

.

From the construction, it follows that the matrix P = ST F̂(k0) is upper triangular and the
diagonal elements pii satisfy

|pii| ≥
√

1
tK

αA,B(k0, k0 + K);

therefore,

|det P| ≥
(√

1
tK

αA,B(k0, k0 + K)
)s

> 0

and in particular det S 
= 0. Moreover, by Hadamard’s inequality (see [49, p. 477]), we have

|det S| ≤ ‖ξ1‖ · · · ‖ξs‖ = 1,

and consequently

∣
∣det F̂(k0)

∣
∣ =

|det P|
|det S| ≥

(√

1
tK

αA,B(k0, k0 + K)
)s

.

By [49, p. 313]

‖�‖ ≤
( s
∑

i=1

‖�ei‖2

)1/2
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for any matrix � ∈R
s×s, and we have

∥
∥F̂(k0)

∥
∥≤

( s
∑

i=1

∥
∥F̂(k0)ei

∥
∥

2
)1/2

≤ √
s max

i=1,...,s

∥
∥F̂(k0)ei

∥
∥≤ √

sb(k0, K)
(

a(k0, K)
)K ,

∥
∥F̂–1(k0)

∥
∥≤ ‖F̂(k0)‖s–1

|det F̂(k0)| ≤ (
√

sb(k0, K)(a(k0, K))K )s–1

(
√

1
tK αA,B(k0, k0 + K))s

.

Let us rearrange the sequence k1, k2, . . . , ks such that it forms a nondecreasing sequence.
The elements of the new sequence will be denoted by mi. So, we have

k0 ≤ m1 ≤ · · · ≤ ms ≤ k0 + K – 1, i = 1, 2, . . . , s.

In the same way, we rearrange the vectors ν1, . . . ,νs to obtain vectors η1, . . . ,ηs. Then the
matrix

F(k0) =
[

F(k0, m1)η1, . . . , F(k0, ms)ηs
]

,

which is obtained from F̂(k0) by swapping columns accordingly, satisfies (39) and (40). �

The next theorem shows that by a special choice of control, we may connect the transi-
tion matrices of (1) and (7) by a particular relation.

Theorem 9 Suppose that system (5) is K-completely controllable. Then for any k0 ∈ N,
there exists an invertible s by s matrix 	(k0) with the following property: for any 0 < δ ≤ 1
and r ≥ 0, there exist β1(r, δ, k0) > 0 and β2(r, δ, k0) > 0 such that for any H ∈ H(r, δ), there
exist a feedback control

U =
(

U(i)
)

i=k0,...,k0+K–1

such that

�A+BU (k0 + K , k0) = �A(k0 + K , k0)	(k0)H	–1(k0), (42)

where �A+BU is the transition matrix of the closed loop system (7) and

max
i=k0,...,k0+K–1

∥
∥U(i)

∥
∥≤ β1(r, δ, k0)‖H – Is‖,

max
i=k0,...,k0+K–1

∥
∥
(

A(i) + B(i)U(i)
)–1∥
∥≤ β2(r, δ, k0), (43)

where

β1(r, δ, k0) =
√

s(1 + rs)s–1

b(k0, K)δ

(√
sb(k0, K)(a(k0, K))K
√

1
tK αA,B(k0, k0 + K)

)2s

,
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β2(r, δ, k0) = ρ
(

a(k0, K)
)2K (1 + rs)

(√
sb(k0, K)(a(k0, K))K
√

1
tK αA,B(k0, k0 + K)

)s

,

ρ =
(√

sb(k0, K)(a(k0, K))K
√

1
tK αA,B(k0, k0 + K)

)s (1 + rs)s–1

δ
,

∥
∥	(k0)

∥
∥≤ √

sb(k0, K)
(

a(k0, K)
)K

and

∥
∥	–1(k0)

∥
∥≤ (

√
sb(k0, K)(a(k0, K))K )s–1

(
√

1
tK αA,B(k0, k0 + K))s

.

Proof Let us fix k0 ∈ N, and let ηi ∈ R
t , mi ∈ N, i = 1, . . . , s, and 	(k0) = F(k0) be as in

Lemma 6. Consider any 0 < δ ≤ 1, r ≥ 0, H ∈H(r, δ) and the matrix equations

Y (k + 1) = A(k)Y (k) + B(k)V (k), k = k0, k0 + 1, . . . , k0 + K – 1, (44)

where Y (k) is a s by s, and V (k) is a t by s matrix. We will consider this equation with initial
condition

Y (k0) = Is,

and we construct a sequence V (k), k = k0, k0 + 1, . . . , k0 + K – 1, such that

Y (k0 + K) = �A(k0 + K , k0)	(k0)H	–1(k0). (45)

The solution of equation (44), with the considered initial condition, is given by

Y (k) = �A(k, k0)

[

Is +
k–1
∑

j=k0

�A(k0, j + 1)B(j)V (j)

]

and the condition (45) will be satisfied if and only if

Is +
k0+K–1
∑

j=k0

�A(k0, j + 1)B(j)V (j) = 	(k0)H	–1(k0).

Denote

G(k) = Is +
k–1
∑

j=k0

�A(k0, j + 1)B(j)V (j) = Is +
k–1
∑

j=k0

F(k0, j)V (j),

Ij = {i ∈ N : mi = j}, and Ij = {i ∈N : mi ≤ j – 1}.

In the further calculation, we will consider sums of the form
∑

i∈Ij
and

∑

i∈Ij
. In the case

when Ij or Ij is empty, we define the sum as equal to zero.
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Set

ui = 	–T (k0)
(

HT – Is
)

ei, V (j) =
∑

i∈Ij

ηiuT
i ,

where ei, i = 1, . . . , s, is the standard basis of Rs, and ηi are defined in Lemma 6, equation
(38).

We have

sup
k0≤k≤k0+K–1

∥
∥V (k)

∥
∥≤ sup

k0≤k≤k0+K–1

∑

i∈Ik

‖ηi‖
∥
∥uT

i
∥
∥≤ s

∥
∥	(k0)–1∥∥‖H – Is‖

≤ s
(
√

sb(k0, K)(a(k0, K))K )s–1

(
√

1
tK αA,B(k0, k0 + K))s

‖H – Is‖,

where

γ = s
(
√

sb(k0, K)(a(k0, K))K )s–1

(
√

1
tK αA,B(k0, k0 + K))s

and

G(k) = Is +
k–1
∑

j=k0

F(k0, j)
∑

i∈Ij

ηiuT
i = Is +

∑

i∈Ik

F(k0)eiuT
i

= Is +
∑

i∈Ik

F(k0)eieT
i (H – Is)F–1(k0)

= F(k0)
(

Is +
∑

i∈Ik

eieT
i (H – Is)

)

F–1(k0) = 	(k0)Sk	
–1(k0),

where the step matrices Sk are defined as follows

Sk = Is +
∑

i∈Ik

eieT
i (H – Is)

and have the form

[

H
Is–q

] }

q rows
}

(s – q) rows

with q = max{i : mi ≤ k – 1}. Then

G–1(k) = 	(k0)S–1
k 	–1(k0)

and

∥
∥G–1(k)

∥
∥≤ ∥∥	(k0)

∥
∥
∥
∥	–1(k0)

∥
∥
∥
∥S–1

k
∥
∥
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≤ √
sb(k0, K)

(

a(k0, K)
)K (

√
sb(k0, K)(a(k0, K))K )s–1

(
√

1
tK αA,B(k0, k0 + K))s

∥
∥S–1

k
∥
∥

≤ (
√

sb(k0, K)(a(k0, K))K )s

(
√

1
tK αA,B(k0, k0 + K))s

‖Sk‖s–1

det Sk

≤
(√

sb(k0, K)(a(k0, K))K
√

1
tK αA,B(k0, k0 + K)

)s (1 + rs)s–1

δ
=: ρ.

Because of Lemma 6, we know that

det Sk = det Hq ≥ δ,

and therefore,

‖Sk‖ =
∥
∥
∥
∥

Is +
∑

i∈Ik

ejeT
j (H – Is)

∥
∥
∥
∥

≤ 1 + ‖H – Is‖
∑

i∈Ik

∥
∥ejeT

j
∥
∥≤ 1 + rs,

since H ∈H(r, δ).
We have constructed matrices V (k), k = k0, . . . , k0 + K – 1, such that the matrix

G(k) = Is +
k–1
∑

j=k0

�A(k0, j + 1)B(j)V (j)

is invertible for any k = k0, . . . , k0 + K – 1, and such that

∥
∥V (k)

∥
∥≤ γ ‖H – Is‖,

∥
∥G–1(k)

∥
∥≤ ρ,

where

γ = s
(
√

sb(k0, K)(a(k0, K))K )s–1

(
√

1
tK αA,B(k0, k0 + K))s

,

and

ρ =
(√

sb(k0, K)(a(k0, K))K
√

1
tK αA,B(k0, k0 + K)

)s (1 + rs)s–1

δ
.

From the construction of the control sequence, it follows that the matrix

Y (k) = �A(k0, k)G(k)

is invertible for any k = k0, . . . , k0 + K – 1, and

∥
∥Y –1(k)

∥
∥≤ ρ

(

a(k0, K)
)K .

Taking

U(k) = V (k)Y –1(k),
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we get

Y (k + 1) = A(k)Y (k) + B(k)V (k) =
(

A(k) + B(k)U(k)
)

Y (k)

and because Y (k0) = Is, the equality (42) holds. Moreover,

∥
∥U(k)

∥
∥≤ ∥∥V (k)

∥
∥
∥
∥Y –1(k)

∥
∥≤ β1(r, δ, k0)‖H – Is‖,

where

β1(r, δ, k0) = γρa(k0, K)K

= s
(
√

sb(k0, K)(a(k0, K))K )s–1

( 1
tK αA,B(k0, k0 + K))s

×
(√

sb(k0, K)(a(k0, K))K
√

1
tK αA,B(k0, k0 + K)

)s (1 + rs)s–1

δ
a(k0, K)K

=
s√

sb(k0, K)

(√
tKsb(k0, K)(a(k0, K))K
√

1
tK αA,B(k0, k0 + K)

)2s (1 + rs)s–1

δ
.

Observe that for any k ∈ {k0, k0 + 1, . . . , k0 + K – 1}, we have

(

A(k) + B(k)U(k)
)–1 = Y (k)Y –1(k + 1).

This implies

∥
∥
(

A(k) + B(k)U(k)
)–1∥
∥≤ ∥∥Y (k)

∥
∥
∥
∥Y –1(k + 1)

∥
∥

≤ ∥∥�A(k0, k)
∥
∥
∥
∥G(k)

∥
∥
∥
∥Y –1(k + 1)

∥
∥

≤ (a(k0, K)
)K∥∥	(k0)

∥
∥‖Sk‖

∥
∥	–1(k0)

∥
∥ρ
(

a(k0, K)
)K

≤ (a(k0, K)
)K√

sb(k0, K)
(

a(k0, K)
)K

× (1 + rs)
(
√

sb(k0, K)(a(k0, K))K )s–1

(
√

1
tK αA,B(k0, k0 + K))s

ρ
(

a(k0, K)
)K

= ρ
(

a(k0, K)
)2K (1 + rs)

(√
tKsb(k0, K)(a(k0, K))K
√

1
tK αA,B(k0, k0 + K)

)s

= β2(r, δ). �

Theorem 10 Suppose that system (5) is K-completely controllable, then there exists a se-
quence (T(k))k∈N, T(k) ∈ GLs(R), such that

∥
∥T(k)

∥
∥≤ √

sb
(

(k – 1)K , K
)(

a
(

(k – 1)K , K
))K , (46)

∥
∥T–1(k)

∥
∥≤ (

√
sb((k – 1)K , K)(a((k – 1)K , K))K )s–1

(
√

1
tK αA,B((k – 1)K , kK))s

, (47)
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and for each upper triangular sequence (L(k))k∈N, L(k) ∈ GLs(R) and each lower triangular
sequence (G(k))k∈N, G(k) ∈ GLs(R), of matrices with positive diagonal elements (both L
and G), there exists a feedback control U = (U(k))k∈N such that

�A+BU
(

kK , (k – 1)K
)

= �A
(

kK , (k – 1)K
)

T(k)L(k)G(k)T–1(k), (48)
∥
∥U(k)

∥
∥≤ (γ 2(k) + 1

)

β1
(

γ 2(k) + 1,γ –2s(k), (k – 1)K
)

(49)

and

∥
∥
(

A(k) + B(k)U(k)
)–1∥
∥≤ β2

(

γ 2(k) + 1,γ –2s(k), (k – 1)K
)

, (50)

where

γ (k) = max
{∥
∥L(k)

∥
∥,
∥
∥L–1(k)

∥
∥,
∥
∥G(k)

∥
∥,
∥
∥G–1(k)

∥
∥
}

.

Proof Consider sequences (L(k))k∈N and (G(k))k∈N as in the theorem. Then for the diago-
nal elements lii(k), i = 1, . . . , s, of the matrix L(k), we have

lii(k) =
∣
∣lii(k)

∣
∣ =
∣
∣eT

i L(k)ei
∣
∣≤ ∥∥L(k)

∥
∥≤ γ (k),

1/lii(k) =
∣
∣1/lii(k)

∣
∣ =
∣
∣eT

i L–1(k)ei
∣
∣≤ ∥∥L–1(k)

∥
∥≤ γ (k)

for all k ∈N. From the last two inequalities, we obtain

1
γ (k)

≤ lii(k) ≤ γ (k), i = 1, . . . , s, k ∈N.

The same estimates can be obtained for the diagonal elements gii(k), i = 1, . . . , s, of the
matrix G(k). Therefore,

det
(

L(k)
)

j =
j
∏

i=1

lii(k) ≥ γ –j(k), det
(

G(k)
)

j =
j
∏

i=1

gii(k) ≥ γ –j(k)

for all k ∈N and j = 1, . . . , s, where (H)j is the jth leading minor of the matrix H .
Let H(k) = L(k)G(k), k ∈N. From Lemma 5, we know that H(k) ∈H; moreover,

∥
∥H(k) – Is

∥
∥≤ ∥∥H(k)

∥
∥ + 1 ≤ ∥∥L(k)

∥
∥
∥
∥G(k)

∥
∥ + 1 ≤ γ 2(k) + 1,

det
(

H(k)
)

j = det
(

L(k)
)

j det
(

G(k)
)

j ≥ γ –2j(k) ≥ γ –2s(k), j = 1, . . . , s.

Therefore,

H(k) ∈H
(

γ 2(k) + 1,γ –2s(k)
)

.

From Theorem 9, we conclude that for each k ∈ N, there exist control sequences Uk(l),
l = (k – 1)K , . . . , kK – 1, and an invertible s by s matrix 	((k – 1)K) such that

max
l=(k–1)K ,...,kK–1

∥
∥Uk(l)

∥
∥≤ β

(

γ 2(k) + 1,γ –2s(k)
)∥
∥H(k) – Is

∥
∥
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and

�A+BUk

(

kK , (k – 1)K
)

= �A
(

kK , (k – 1)K
)

	
(

(k – 1)K
)

H(k)	–1((k – 1)K
)

.

It follows from the proof of Theorem 9 that 	((k – 1)K) = F((k – 1)K), where F is defined
by (38). Set

T(k) = F
(

(k – 1)K
)

, k ∈ N.

From (39) and (40), it is clear that (T(k))k∈N satisfies

∥
∥T(k)

∥
∥≤ √

sb
(

(k – 1)K , K
)(

a
(

(k – 1)K , K
))K ,

∥
∥T–1(k)

∥
∥≤ (

√
sb((k – 1)K , K)(a((k – 1)K , K))K )s–1

(
√

1
tK αA,B((k – 1)K , kK))s

.

Moreover,

�A+BUk

(

kK , (k – 1)K
)

= �A
(

kK , (k – 1)K
)

T(k)H(k)T–1(k).

Let us define

U(k) = Uk(k) for k = (k – 1)K , . . . , kK – 1,

then it is clear that

∥
∥U(k)

∥
∥≤ (γ 2(k) + 1

)

β1
(

γ 2(k) + 1,γ –2s(k), (k – 1)K
)

and (49) holds. Moreover, by (43), it follows that

∥
∥
(

A(k) + B(k)U(k)
)–1∥
∥≤ β2

(

γ 2(k) + 1,γ –2s(k), (k – 1)K
)

. �

Condition (51) in the following corollary to Theorem 10 ensures the existence of a tem-
pered transformation and a control in a specific situation. It will be useful to prove our
main result.

Corollary 1 Suppose that A, A–1 ∈ Ltem(N,Rs×s), B ∈ Ltem(N,Rs×t), system (5) is K-
completely controllable and

lim inf
k→∞

1
k

lnαA,B
(

(k – 1)K , kK
)≥ 0. (51)

Then there exists a sequence T = (T(k))k∈N, T , T–1 ∈ Ltem(N,Rs×s), T(k) ∈ GLs(R), k ∈ N

such that for each upper triangular sequence (L(k))k∈N, (L–1(k))k∈N ∈Ltem(N,Rs×s), L(k) ∈
GLs(R), k ∈ N and each lower triangular sequence (G(k))k∈N, (G–1(k))k∈N ∈ Ltem(N,Rs×s),
G(k) ∈ GLs(R), k ∈ N of matrices with positive diagonal elements (both L and G), there
exists an admissible control U = (U(k))k∈N such that

�A+BU
(

kK , (k – 1)K
)

= �A
(

kK , (k – 1)K
)

T(k)L(k)G(k)T–1(k). (52)
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Proof Let T = (T(k))k∈N be the sequence from Theorem 10. First, we will show that T and
T–1 are tempered. Since A, A–1 and B are tempered for each ε > 0, there exists C(ε) > 0
such that

∥
∥A–1(k)

∥
∥≤ C(ε)eεk ,

∥
∥B(k)

∥
∥≤ C(ε)eεk

and by (51)

αA,B
(

(k – 1)K , kK
)≥ 1

C(ε)
e–εk

for all k ∈N. This implies that

a
(

(k – 1)K , K
)≤ C(ε)eεk , b

(

(k – 1)K , K
)≤ C(ε)eεk (53)

and

1
αA,B((k – 1)K , kK)

≤ C(ε)eεk . (54)

From the last three inequalities, (46) and (47), we get

∥
∥T(k)

∥
∥≤ √

sb
(

(k – 1)K , K
)(

a
(

(k – 1)K , K
))K

≤ √
sC(ε)eεkCK (ε)eεkK = C1(ε1)eε1k (55)

and

∥
∥T–1(k)

∥
∥≤ (

√
sb((k – 1)K , K)(a((k – 1)K , K))K )s–1

(
√

1
tK αA,B((k – 1)K , kK))s

≤
√

s

(
√

1
tK )s

C(ε)eεk(C(ε)eεk)K (s–1)√C(ε)e
1
2 εk

≤
√

s

(
√

1
tK )s

C(ε)K (s–1)+1e(K (s–1)+ 3
2 )εk = C2(ε2)eε2k , (56)

where

ε1 = (K + 1)ε, C1(ε1) =
√

sC(ε)CK (ε),

ε2 =
(

K(s – 1) +
3
2

)

ε and C2(ε2) =
√

s

(
√

1
tK )s

CK (s–1)+1(ε).

From (55) and (56), it follows that T and T–1 are tempered since ε1 and ε2 tend to zero
when ε tends to zero. Let us fix L and G as in the assumptions of the theorem, and let
U = (U(k))k∈N be from Theorem 10. Then from Theorem 10, it follows that (52) holds,
and therefore, A(k) + B(k)U(k) ∈ GLs(R). Let us estimate (‖U(k)‖)k∈N. According to (49),
we have

∥
∥U(k)

∥
∥≤ (γ 2(k) + 1

)

β1
(

γ 2(k) + 1,γ –2s(k), (k – 1)K
)

. (57)
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Since L, L–1, G and G–1 are tempered for each ε > 0, there exists C(ε) > 0 such that

γ (k) ≤ C3(ε)eεk (58)

for all k ∈N, and therefore, by (53) and (54), we get

β1
(

γ 2(k) + 1,γ –2s(k), (k – 1)K
)

=
√

s(1 + (γ 2(k) + 1)s)s–1

b((k – 1)K , K)γ –2s(k)

(√
sb((k – 1)K , K)(a((k – 1)K , K))K
√

1
tK αA,B((k – 1)K , kK)

)2s

=
√

s(1 + (γ 2(k) + 1)s)s–1

b((k – 1)K , K)γ –2s(k)

(√
sb((k – 1)K , K)(a((k – 1)K , K))K
√

1
tK αA,B((k – 1)K , kK)

)2s

=
(
√

s)2s+1(1 + (γ 2(k) + 1)s)s–1γ 2s(k)

(
√

1
tK )2s

(b((k – 1)K , K))2s–1(a((k – 1)K , K))2sK

αs
A,B((k – 1)K , kK)

≤ (
√

s)2s+1(C2
3(ε)se2εk + s + 1)2s–1C2s

3 (ε)e2sεk

(
√

1
tK )2s

(

C(ε)eεk)2s–1(C(ε)eεk)2sK(C(ε)eεk)s

=
(
√

s)2s+1(C2
3(ε)se2εk + s + 1)2s–1C2s

3 (ε)

(
√

1
tK )2s

C3s+2sK–1(ε)eεk(5s+2sK–1). (59)

It is clear that there exists a constant C4(ε) > 0 such that

C2
3(ε)se2εk + s + 1 ≤ C4(ε)e2εk

for all k ∈N. Using the last inequality in (59), we get

β1
(

γ 2(k) + 1,γ –2s(k), (k – 1)K
)≤ C5(ε5)eε5k , (60)

where

C5(ε5) =
(
√

s)2s+1C2s–1
4 (ε)e2(2s–1)εkC2s

3 (ε)

(
√

1
tK )2s

C3s+2sK–1(ε)

and

ε5 = ε(9s + 2sK – 3).

Combining (57) with (58) and (60), we obtain

∥
∥U(k)

∥
∥≤ (γ 2(k) + 1

)

β1
(

γ 2(k) + 1,γ –2s(k), (k – 1)K
)

≤ (C2
3(ε)e2εk + 1

)

C5(ε5)eε5k .

It is clear that there exists a constant C6(ε) > 0 such that

C2
3(ε)se2εk + s + 1 ≤ C6(ε)e2εk
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and therefore,

∥
∥U(k)

∥
∥≤ C6(ε)C5(ε5)e(2ε+ε5)k .

The last inequality implies

lim sup
k→∞

1
k

ln
∥
∥U(k)

∥
∥ = 0,

since ε5 tends to zero when ε does so. �

Definition 7 (Global positive scalarizability) We say that the system (7) is globally posi-
tively scalarizable if for any sequence p = (p(k))k∈N, p–1 ∈Ltem(N,R), of positive real num-
bers, there exists an admissible control U = (U(k))k∈N such that (7) is weakly equivalent to
the system (1) with A(k) = p(k)Is.

Theorem 11 (Sufficient condition for global positive scalarizability) Suppose that A, A–1 ∈
Ltem(N,Rs×s), B ∈Ltem(N,Rs×t) and system (5) is K-completely controllable and

lim inf
k→∞

1
k

lnαA,B
(

(k – 1)K , kK
)≥ 0. (61)

Then system (7) is globally positively scalarizable.

Proof Assume that system (5) is K-completely controllable. Let T = (T(k))k∈N be a se-
quence according to Corollary 1. By the QR factorization theorem (see [49, p. 112]) for
the invertible matrix T–1(k + 1)�A(kK , (k – 1)K)T(k), there is an orthogonal matrix Q(k)
and an upper triangular matrix R(k) with positive diagonal elements such that

T–1(k + 1)�A
(

kK , (k – 1)K
)

T(k) = Q(k)R(k),

and consequently,

�A
(

kK , (k – 1)K
)

T(k)R–1(k)T–1(k) = T(k + 1)Q(k)T–1(k).

Since

R(k) = Q–1(k)T–1(k + 1)�A
(

kK , (k – 1)K
)

T(k),

it follows that R = (R(k))k∈N is a tempered sequence. Consider any positive sequence p =
(p(k))k∈N such that p, p–1 ∈Ltem(N,R) and denote

ϕ(k, m) =
k–1
∏

i=m

p(i) for k > m,

ϕ(k, k) = 1

and

ϕ(m, k) = ϕ–1(k, m) for k > m.
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Note that

ϕ(k, m) = ϕ(k, k)ϕ(k, m)

for all k, m ∈N.
Let us fix ε > 0. Since A, A–1, B, T , T–1, R, R–1, p and p–1 are tempered sequences, there

exists a constant C(ε) > 0 such that

max
{

a
(

(k – 1)K , K
)

,
∥
∥R(k)

∥
∥,
∥
∥T–1(k)

∥
∥,
∥
∥T(k)

∥
∥, max

i=0,...,K–1
ϕ(kK , kK – i)

}

≤ C(ε)eεk .

For an upper triangular matrix

H(k) = R–1(k)ϕ
(

kK , (k – 1)K
)

with positive diagonal elements, we have

∥
∥H(k)

∥
∥ =
∥
∥R–1(k)

∥
∥ϕ
(

kK , (k – 1)K
)

≤ ∥∥Q(k)
∥
∥
∥
∥T(k + 1)

∥
∥
∥
∥�–1

A
(

kK , (k – 1)K
)∥
∥

× ∥∥T–1(k)
∥
∥ϕ
(

kK , (k – 1)K
)

≤ C4(ε)e4εk ,
∥
∥H–1(k)

∥
∥ =
∥
∥R(k)

∥
∥ϕ
(

(k – 1)K , kK
)≤ C4(ε)e4εk ;

therefore, (H(k))k∈N is a tempered sequence. According to the definition of T(k) and
Corollary 1, we know that there exists a feedback control U = (U(i))i∈N such that

�A+BU
(

kK , (k – 1)K
)

= �A
(

kK , (k – 1)K
)

T(k)H(k)T–1(k)

= �A
(

kK , (k – 1)K
)

T(k)R–1(k)T–1(k)ϕ
(

kK , (k – 1)K
)

= T(k + 1)Q(k)T–1(k)ϕ
(

kK , (k – 1)K
)

, k ∈N.

Multiplying these equalities, we get

�A+BU (kK , 0) = T(k + 1)Q̃(k)T–1(1)ϕ(kK , 0), k ∈ N,

where

Q̃(k) = Q(k)Q(k – 1) · · ·Q(1).

Note that Q̃(k) is orthogonal as a product of orthogonal matrices. As it follows from Corol-
lary 1, the sequences (A(k) + B(k)U(k))k∈N and ((A(k) + B(k)U(k))–1)k∈N are tempered and
(61) holds.

Let us define a sequence D = (D(i))i∈N as follows

D(i) = �A+BU (i, 0)ϕ(0, i), i ∈N.
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We will show that D is a tempered sequence. Let us fix i ∈ N. Then there exists exactly
one k ∈ N such that i ∈ [kK , (k + 1)K). By the properties of the transition matrix and the
function ϕ(m, k), we get

D(i) = �A+BU (i, 0)ϕ(0, i)

= �A+BU (i, kK)�A+BU (kK , 0)ϕ(0, kK)ϕ(kK , i)

= �A+BU (i, kK)T(k + 1)Q̃(k)T–1(1)ϕ(kK , i).

Since i – kK < K , it follows that

∥
∥D(i)

∥
∥≤ ∥∥�A+BU (i, kK)

∥
∥
∥
∥T(k + 1)

∥
∥
∥
∥Q̃(k)

∥
∥
∥
∥T–1(1)

∥
∥ϕ(kK , i)

≤ CK+3(ε)eKεk+3εk

and similarly

∥
∥D–1(i)

∥
∥≤ CK+3(ε)eKεk+3εk .

Observe that the sequence D establishes weak equivalence of the system (7) with the de-
fined control U and system (1) with

C(k) = p(k)Is.

In fact,

D–1(i + 1)
(

A(i) + B(i)U(i)
)

D(i)

= ϕ(i + 1, 0)�A+BU (0, i + 1)
(

A(i) + B(i)U(i)
)

�A+BU (i, 0)ϕ(0, i)

= ϕ(i + 1, i)�A+BU (0, i + 1)�A+BU (i + 1, 0)

= ϕ(i + 1, i)Is = p(i)Is, i ∈ N. �

From Theorem 6, we obtain the following corollary.

Corollary 2 Under the assumption of Theorem 11, there exists an admissible feedback
control U1 = (U1(k))k∈N such that (7) is weakly equivalent to

y(k + 1) = y(k). (62)

In our further considerations, we will use the following result.

Lemma 7 Suppose that A = (A(k))k∈N, C = (C(k))k∈N and A–1, C–1 are tempered sequences
and assume that

�C(kk+1, kk) = �A(kk+1, kk)
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for all k ∈N, where (kk)k∈N is a sequence of natural numbers such that 0 < kk+1 – kk ≤ c < ∞
for all k ∈N. Then the systems (1) and

x(k + 1) = C(k)x(k)

are weakly equivalent.

Proof Let us fix ε > 0 and consider M(ε) > 1 such that

∥
∥A(k)

∥
∥ +
∥
∥A–1(k)

∥
∥ +
∥
∥C(k)

∥
∥ +
∥
∥C–1(k)

∥
∥≤ M(ε)eεk for all k ∈N

and define

D(k) = �C(k, k1)�A(k1, k), k ∈N.

Let us fix k ∈ N. Then there exists a unique k ∈ N such that kk ≤ k < kk+1. Observe that
0 ≤ k – kk ≤ c. Moreover,

D(k) = �C(k, kk)�C(kk , k1)�A(k1, kk)�A(kk , k)

= �C(k, kk)�C(kk , kk–1) · · ·�C(k2, k1)�A(k1, k2) · · ·�A(kk–1, kk)�A(kk , k)

= �C(k, kk)�A(kk , k)

and

D–1(k) = �–1
A (kk , k)�–1

C (k, kk) = �A(k, kk)�C(kk , k).

From the last two equalities we get

∥
∥D(k)

∥
∥≤ M2|k–kk |(ε)eεk2|k–kk | ≤ M2c(ε)e2cεk ,

∥
∥D–1(k)

∥
∥≤ M2|k–kk |(ε)eεk2|k–kk | ≤ M2c(ε)e2cεk .

This implies that the sequence (D(k))k∈N is a tempered sequence. Finally,

D–1(k + 1)C(k)D(k) = �A(k + 1, k1)�C(k1, k + 1)C(k)�C(k, k1)�A(k1, k)

= �A(k + 1, k1)�C(k1, k + 1)�C(k + 1, k1)�A(k1, k)

= �A(k + 1, k1)�A(k1, k) = A(k). �

The following theorem plays a key role in obtaining our main results.

Theorem 12 Suppose that A, A–1 ∈ Ltem(N,Rs×s), B ∈ Ltem(N,Rs×t) and system (5) is K-
completely controllable and

lim inf
k→∞

1
k

lnαA,B
(

(k – 1)K , kK
)≥ 0. (63)
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Then for any positive sequences pi = (pi(k))k∈N, p–1
i ∈ Ltem(N,R), i = 1, . . . , s, there exists

an admissible feedback control U = (U(k))k∈N such that system (7) is weakly dynamically
equivalent to

z(k + 1) = C(k)z(k), (64)

where (C(k))k∈N is an upper triangular tempered sequence with pi(k), i = 1, . . . , s, on the
main diagonal for all k ∈N.

Proof Consider positive sequences pi = (pi(k))k∈N, p–1
i ∈Ltem(N,R), i = 1, . . . , s, and denote

γ (k) = max
i=1,...,s

{

sup
l=0,...,k

pi(l), sup
l=0,...,k

p–1
i (l)

}

.

According to Corollary 2, there exists a feedback control U1 = (U1(k))k∈N such that

lim sup
k→∞

1
k

ln
∥
∥U1(k)

∥
∥ = 0, (65)

and the system

x(k + 1) =
(

A(k) + B(k)U1(k)
)

x(k), k ∈N

is weakly dynamically equivalent to

y(k + 1) = y(k), k ∈N.

Let

y(k) = D(k)x(k)

be the transformation that establishes this equivalence. Then we have

Is = D(k + 1)
(

A(k) + B(k)U1(k)
)

D–1(k), k ∈N,

and consequently,

D–1(k + 1)D(k) = A(k) + B(k)U1(k), k ∈N.

Note that this sequence establishes also a weak dynamic equivalence of

x(k + 1) =
(

A(k) + B(k)U1(k)
)

x(k) + B(k)u(k) (66)

and

y(k + 1) = y(k) + D(k + 1)B(k)u(k). (67)
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By Lemma 3, we know that (66) is K-completely controllable. Since by Lemma 4, dy-
namic equivalence preserves K-complete controllability, it follows that system (66) is K-
completely controllable and satisfies (63).

According to Corollary 1, there exists a sequence T = (T(k))k∈N, T , T–1 ∈ Ltem(N,Rs×s)
such that for each upper triangular sequence (L(k))k∈N, (L–1(k))k∈N ∈Ltem(N,Rs×s), L(k) ∈
GLs(R) and each lower triangular sequence (G(k))k∈N, (G–1(k))k∈N ∈Ltem(N,Rs×s) of ma-
trices with positive diagonal elements (both L and G), there exists a control V = (V (k))k∈N
such that

lim sup
k→∞

1
k

ln
∥
∥V (k)

∥
∥ = 0 (68)

and

YV
(

kK , (k – 1)K
)

= T(k)L(k)G(k)T–1(k),

where YV is the transition matrix of

y(k + 1) =
(

Is + D(k + 1)B(k)V (k)
)

y(k). (69)

Denote

f (k) = max
{

sup
i=0,...,k

∥
∥T(i)

∥
∥, sup

i=0,...,k

∥
∥T–1(i)

∥
∥

}

.

Let us apply the QR factorization theorem to T(k) and let

T(k) = R(k)Q(k),

where R(k) and Q(k) are the upper triangular and orthogonal matrices, respectively. We
have

∥
∥R(k)

∥
∥ =
∥
∥T(k)Q–1(k)

∥
∥≤ f (k)

and

∥
∥R–1(k)

∥
∥ =
∥
∥Q(k)T–1(k)

∥
∥≤ f (k).

Denote

J(k) = diag

( kK–1
∏

j=(k–1)K

√

p1(j), . . . ,
kK–1
∏

j=(k–1)K

√

ps(j)

)

.

Applying the QR factorization theorem to J(k)Q(k), we have

J(k)Q(k) = Q̃(k)̃R(k),
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where R̃(k) is an upper triangular matrix, and Q̃(k) is an orthogonal matrix. Moreover,

∥
∥R̃(k)

∥
∥≤ ∥∥Q̃–1(k)J(k)Q(k)

∥
∥≤ ∥∥J(k)

∥
∥ = γ K/2(k)

and similarly,

∥
∥R̃–1(k)

∥
∥≤ γ K/2(k).

Corollary 1 implies that for the control V = (V (k))k∈N, we have

�V
(

kK , (k – 1)K
)

= T(k)
(

R̃(k)
)T R̃(k)T–1(k)

= T(k)
(

R̃(k)
)T(Q̃(k)

)T Q̃(k)̃R(k)T–1(k)

= T(k)QT (k)JT (k)J(k)Q(k)T–1(k)

= T(k)QT (k)J2(k)Q(k)T–1(k)

= R(k)Q(k)QT (k)J2(k)Q(k)Q–1(k)R–1(k)

= R(k)J2(k)R–1(k)

= R(k) diag

( kK–1
∏

j=(k–1)K

p1(j), . . . ,
kK–1
∏

j=(k–1)K

ps(j)

)

R–1(k).

Consider the system (64) with

C(k) = R(l) diag
(

p1(k), . . . , ps(k)
)

R–1(l)

for

k ∈ [(l – 1)K , lK).

The matrices C(k) are upper triangular with pi(k), i = 1, . . . , s, on the main diagonal and

∥
∥C(k)

∥
∥≤ ∥∥R(l)

∥
∥
∥
∥diag

(

p1(k), . . . , ps(k)
)∥
∥
∥
∥R–1(l)

∥
∥≤ f (k)2γ (k), k ∈N,

∥
∥C–1(k)

∥
∥≤ ∥∥R–1(l)

∥
∥
∥
∥diag

(

p–1
1 (k), . . . , p–1

s (k)
)∥
∥
∥
∥R(l)

∥
∥≤ f 2(k)γ (k), k ∈N.

This implies that (C(k))k∈N and (C–1(k))k∈N are tempered sequences.
For the transition matrix �C of (64), we have

�C
(

lK , (l – 1)K
)

= C(lK – 1) · · ·C
(

(l – 1)K
)

= R(l) diag

( lK–1
∏

j=(l–1)K

p1(j), . . . ,
lK–1
∏

j=(l–1)K

ps(j)

)

R–1(l)

= �V
(

lK , (l – 1)K
)

, l ∈N.
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According to Lemma 7, the system (69) with the defined control V and the system (64)
are dynamically equivalent. Applying to (69) the inverse Lyapunov transformation

x(k) = D–1(k)y(k),

we get

x(k + 1) = D–1(k + 1)y(k + 1)

= D–1(k + 1)
(

Is + D(k + 1)B(k)V (k)
)

D(k)x(k)

=
(

D–1(k + 1)D(k) + B(k)V (k)D(k)
)

x(k)

=
(

A(k) + B(k)U1(k) + B(k)V (k)D(k)
)

x(k)

=
(

A(k) + B(k)U(k)
)

x(k),

where

U(k) = U1(k) + V (k)D(k), k ∈N. (70)

We see that the system (7) with the defined control U is dynamically equivalent to (64).
The fact that (A(k) + B(k)U(k))k∈N and ((A(k) + B(k)U(k))–1)k∈N are tempered follows from
the fact that (C(k))k∈N and (C–1(k))k∈N are tempered sequences and

A(k) + B(k)U(k) = D–1
1 (k + 1)C(k)D1(k), k ∈N,

where (D1(k))k∈N is the tempered sequence that establishes the dynamic equivalence of
(7) and (64). Finally, (8) follows from (65), (68), (70), and the fact that (D(k))k∈N and
(D–1(k))k∈N are tempered. �

5 Proof of Theorem 3
We will start with some facts about NEDS of one-dimensional systems.

Remark 7 Observe that for one-dimensional systems, the definition of NED means that
there exist constants α, η0 > 0 such that for all ε ∈ (0,η0), there exists K(ε) > 0 such that
either

l–1
∏

i=k

∣
∣c(i)

∣
∣≤ K(ε)e–α(l–k)+εk , k, l ∈N, l ≥ k, (71)

or

k–1
∏

i=l

∣
∣c(i)

∣
∣≥ 1

K(ε)
eα(k–l)–εk , k, l ∈N, l ≤ k. (72)

Remark 8 In particular, if a one-dimensional sequence (c(n))n∈N has a NED, then either
the Lyapunov exponent

λ(c) := lim sup
n→∞

1
n

n
∑

i=1

ln
∣
∣c(i)

∣
∣
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is negative and satisfies λ(c) ≤ –α < 0, or the Perron exponent

λ(c) := lim inf
n→∞

1
n

n
∑

i=1

ln
∣
∣c(i)

∣
∣

is positive and satisfies λ(c) > α > 0.

The next lemma shows that for one-dimensional systems the NEDS may have all the
forms described in Theorem 1.

Lemma 8 Let � be one of the sets ∅, R, [x,∞), (–∞, x] or [x, y] where x < y. Then there
exists a scalar sequence a such that the NEDS �(a) of a equals �.

Proof Consider first the case � = [x, y]. Let us take any sequence b = (b(n))k∈N such that
b(n) ∈ [x, y] and

lim sup
n→∞

1
n

n
∑

i=1

b(i) = y (73)

and

lim inf
n→∞

1
n

n
∑

i=1

b(i) = x (74)

and define the sequence a = (a(n))k∈N by

a(n) = exp
(

b(n) +
√

n + 1 cos(n + 1) –
√

n cos n
)

.

Observe that from the construction, it follows that we have

�a(m, n) = exp

(m–1
∑

i=n

b(i) +
√

m cos m –
√

n cos n

)

for m ≥ n.

We will show that �(a) = [x, y]. We will do this in three steps.
Step 1. For each γ > y, the system c = (e–γ a(n))k∈N satisfies condition (71). Since b(n) ≤ y,

�c(m, n) = exp

(m–1
∑

i=n

(

b(i) – γ
)

+
√

m cos m –
√

n cos n

)

≤ exp

(m–1
∑

i=n

(y – γ ) +
√

m cos m –
√

n cos n

)

≤ exp
(

(y – γ )(m – n) +
√

m +
√

n
)

for m ≥ n. Let us fix ε > 0. Since
√

n – ε
2 n → –∞, when n → ∞, there exists D(ε) > 0 such

that

e
√

n ≤ D(ε)e
ε
2 n for n ∈N. (75)
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Hence,

�c(m, n) ≤ exp
(

(y – γ )(m – n) +
√

m +
√

n
)

≤ D2(ε) exp

(

(y – γ )(m – n) +
ε

2
m +

ε

2
n
)

= D2(ε) exp

(

(y – γ )(m – n) +
ε

2
(m – n) + εn

)

= D2(ε) exp

(

–
(

–y + γ –
ε

2

)

(m – n) + εn
)

≤ K(ε)e–α(m–n)+εn,

where K(ε) = D2(ε), α = –y + γ , provided that ε ≤ 4γ . This proves (71), see Remark 7.
Step 2. For each γ < x, the system c = (e–γ a(n))k∈N satisfies condition (72). Since b(n) ≥ x,

�c(m, n) = exp

(m–1
∑

i=n

(

b(i) – γ
)

+
√

m cos m –
√

n cos n

)

≥ exp

(m–1
∑

i=n

(x – γ ) +
√

m cos m –
√

n cos n

)

≥ exp
(

(x – γ )(m – n) –
√

m –
√

n
)

.

For a fixed ε > 0, we conclude from (75) that

�c(m, n) ≥ exp
(

(x – γ )(m – n) –
√

m –
√

n
)

≥ D–2(ε) exp

(

(x – γ )(m – n) –
ε

2
m –

ε

2
n
)

= D–2(ε) exp

(

(x – γ )(m – n) –
ε

2
(m – n) – εn

)

= D–2(ε) exp

(

–
(

–x + γ +
ε

2

)

(m – n) – εn
)

≥ 1
K(ε)

eα(m–n)–εn,

where K(ε) = D2(ε), α = x – γ , provided that ε ≤ 4γ . This proves (72), see Remark 7.
Step 3. For each γ ∈ [x, y], the system c = (e–γ a(n))k∈N does not have a NED. Indeed,

from (74) and (73), we get

λ(c) = y – γ > 0

and

λ(c) = x – γ < 0.

In a very similar manner, we may construct a sequence a such that �(a) is R or (–∞, x]
or [x,∞). Finally, it is easy to check that for a(n) = n + 1, we have �(a) = ∅. �
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Proof of Theorem 3 Let � = ∅, � = R or � =
⋃q

i=1 Ii, where I1 = [a1, b1] or I1 = (–∞, b1],
Ii = [ai, bi], i = 2, . . . , q – 1, and Iq = [aq, bq] or Iq = [aq, +∞) for some numbers a1 ≤ b1 <
a2 ≤ b2 < · · · < aq ≤ bq and q ≤ s. Consider now the case when � =

⋃q
i=1 Ii. For 1 ≤ i ≤ q,

we construct a sequence pi = (pi(k))k∈N, p–1
i ∈ Ltem(N,R) of positive real numbers such

that �(pi) = Ii. This is possible by Lemma 8. For q +1 ≤ i ≤ s, let pi(k) = p1(k). According to
Theorem 12, there exists an admissible feedback control (U(k))k∈N and a sequence of up-
per triangular matrices (C(k))k∈N, (C–1(k))k∈N ∈Ltem(N,Rn×n), where C(k) = (cij(k))1≤i,j≤n

with cii(k) = pi(k) such that

x(k + 1) =
(

A(k) + B(k)U(k)
)

x(k), y(k + 1) = C(k)y(k)

are weakly equivalent. From the definition of weak equivalence, it is clear that weakly
equivalent systems have the same NEDS; therefore, using Theorem 7, we get

�(A + BU) = �(C) =
s
⋃

i=1

�(pi) =
q
⋃

i=1

[ai, bi].

In the case of � being ∅ or R, the proof is analogical. We put pi(k) = p(k) for all 1 ≤ i ≤
s, where (p(k))k∈N, p–1 ∈ Ltem(N,R) is any sequence of positive real numbers such that
�(p) = ∅ or �(p) = R. �

6 Example
Example 1 Let us consider the sequence a = (a(n))n∈N from the proof of Lemma 8 for x = 2
and y = 3. Consider the uncontrolled system (1) with

A(k) =
1
2

[

1 + a(k) 1 – a(k)
1 – a(k) 1 + a(k)

]

for k ∈N.

For this system we have �(A) = {1, [2, 3]} and in particular, the system is not stable. It is
also clear that A, A–1 ∈Ltem(N,R2×2). Consider now the controlled system (5) with

B(k) =
1
2

[ √
2

k+1 –
√

2√
2

k+1

√
2

]

.

It is clear that B ∈Ltem(N,R2×2) and for l > k, we have

WA,B(k, l) =
1
2

[

λ(k, l) + μ(k, l) λ(k, l) – μ(k, l)
λ(k, l) – μ(k, l) λ(k, l) + μ(k, l)

]

,

where

λ(k, l) =
l–1
∑

j=k

1
(j + 1)2 , μ(k, l) =

l–1
∑

j=k

exp

(

2
j
∑

i=k

b(i) + 2
√

j + 1 cos(j + 1) – 2
√

k cos k

)

.

Moreover, the numbers λ(k, l) > 0 and μ(k, l) > 0 are the eigenvalues of WA,B(k, l) and sat-
isfy

lim
k→∞

1
k

lnλ(k, k + 1) = lim
k→∞

1
k

lnμ(k, k + 1) = 0.
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Therefore, the assumption of Theorem 3 is satisfied, and the considered system has the
NEDS assignable. If we want to stabilize the system, we may try to construct an admissible
feedback U such that �(A + BU) = {–1}. In fact, if we define an admissible feedback as

U(k) =
1
2
√

2

[

–2k – 2 –2k – 2
a(k) + 1 –a(k) – 1

]

,

then

A(k) + B(k)U(k) =

[

–1 0
0 –1

]

.

Observe also that the coefficients of the controlled system (5) considered in this example
are unbounded, and therefore, the result of papers [30–34] can not be applied here to
stabilize this system.

7 Conclusion
In this paper, we investigated a problem of assignability of nonuniform dichotomy spec-
trum by time-varying linear feedback for linear discrete time-varying systems with tem-
pered coefficients. The main result is that the spectrum is assignable if the system is com-
pletely controllable and certain lower asymptotic bound for the controllability Gramian
holds (see (9)). To obtain this result, we generalize to the case of tempered and completely
controllable systems the Theorem 4.6 from [30], which makes it possible to bring the sys-
tem into an upper triangular form through linear feedback. The original theorem was
proved for uniformly completely controllable systems with bounded coefficients. To the
upper triangular system, we apply the idea of linking operator proposed by Batelli and
Palmer in [39], and we obtain the result that the nonuniform dichotomy spectrum of an
upper triangular system is the union of spectra of the one-dimensional systems from its
main diagonal. It has been recently shown (see [33, 34], and [35]) that for systems with
bounded coefficients, the assignability of uniform exponential dichotomy spectrum is
equivalent to uniform complete controllability. It is an open question whether our suffi-
cient conditions for assignability of the nonuniform dichotomy spectrum of systems with
tempered coefficients are also necessary.
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