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1 Introduction
A Swedish mathematician Gosta Mittag-Leffler introduced a function in the form of a
power series [1]

Eα(t) =
∞∑

l=0

tl

�(αl + 1)
,

where t,α ∈ C and �(α) > 0. This function is called the Mittag-Leffler function. It plays a
vital role in the representation of solutions of fractional differential equations. Many re-
searchers have given its various generalizations and extensions, which are used to formu-
late solutions of real-world problems in different fields of science and engineering [2, 3].
The Mittag-Leffler function is also used to introduce new generalized fractional integral
operators. These integral operators are frequently used for extensions and generalizations
of well-known classical integral inequalities. For a detailed study of the Mittag-Leffler
function, we refer the readers to [4–8].

In [9] a generalization of the Mittag-Leffler function is given in the form of Q-function.
In [6] the extended generalized Mittag-Leffler function and its related fractional integral
operator are described along with their applications to generalizing classical Opial-type
inequalities. In [10] a unified form of the Mittag-Leffler function, which generates a gener-
alized Q-function and the extended generalized Mittag-Leffler function, is studied; also, a
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fractional integral operator containing a unified Mittag-Leffler function is introduced, and
its boundedness is proved. For some recent related work, we refer the readers to [11–14].

In this paper, we present Minkowski-type inequalities by using the fractional integral op-
erator corresponding to the unified Mittag-Leffler function. The findings of this paper are
implicitly related with several Minkowski-type inequalities already studied for different
kinds of known fractional integral operators. Some particular cases of the main results
are explicitly given in the form of corollaries. First, we give the definition of the unified
Mittag-Leffler function and the associated fractional integral operator (see [10]).

Definition 1 Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn), where ai, bi, ci ∈
C, i = 1, . . . , n. Also, let α, β , γ , δ, μ, ν , λ, ρ , θ , t ∈ C, min{�(α),�(β),�(γ ),�(δ),�(λ),
�(θ )} > 0, and k ∈ (0, 1) ∪N. Let k + �(ρ) < �(δ + ν + α) with Im(ρ) = Im(δ + ν + α). Then
the unified Mittag-Leffler function is defined by

Mλ,ρ,θ ,k,n
α,β ,γ ,δ,μ,ν(t; a, b, c, p) =

∞∑

l=0

�n
i=1Bp(bi, ai)(λ)ρl(θ )kl

�n
i=1B(ci, ai)(γ )δl(μ)νl

tl

�(αl + β)
. (1.1)

If we put n = 1, b1 = c1 + lk, a1 = θ – λ, c1 = λ, ρ = ν = 0, and δ > 0 in (1.1), then we get the
extended generalized Mittag-Leffler function defined in [6]. Also, by substituting ai = l,
p = 0, and �(ρ) > 0 into (1.1) we get the generalized Q-function defined in [9].

Definition 2 Let f ∈ L1[a, b]. Then for ξ ∈ [a, b], the fractional integral operators corre-
sponding to (1.1) are defined by

Iω,λ,ρ,θ ,k,n
a+,α,β ,γ ,δ,μ,ν f (ξ ; a, b, c, p) =

∫ ξ

a
(ξ – t)β–1Mλ,ρ,θ ,k,n

α,β ,γ ,δ,μ,ν
(
ω(ξ – t)α ; a, b, c, p

)
f (t)dt, (1.2)

Iω,λ,ρ,θ ,k,n
b–,α,β ,γ ,δ,μ,ν f (ξ ; a, b, c, p) =

∫ b

ξ

(t – ξ )β–1Mλ,ρ,θ ,k,n
α,β ,γ ,δ,μ,ν

(
ω(t – ξ )α ; a, b, c, p

)
f (t)dt. (1.3)

By fixing n = 1, b1 = c1 + lk, a1 = θ – λ, c1 = λ, ρ = ν = 0, and δ > 0 we get the fractional
integral operator given in [6]. By taking ai = l, p = 0, and �(ρ) > 0 in (1.2) and (1.3) we
define the fractional integral operators corresponding to the generalized Q-function as
follows:

QIω,λ,ρ,θ ,k,n
a+,α,β ,γ ,δ,μ,ν f (ξ ; a, b) =

∫ ξ

a
(ξ – t)β–1Qλ,ρ,θ ,k,n

α,β ,γ ,δ,μ,ν
(
ω(ξ – t)α ; a, b

)
f (t)dt, (1.4)

QIω,λ,ρ,θ ,k,n
b–,α,β ,γ ,δ,μ,ν f (ξ ; a, b) =

∫ b

ξ

(t – ξ )β–1Qλ,ρ,θ ,k,n
α,β ,γ ,δ,μ,ν

(
ω(t – ξ )α ; a, b

)
f (t)dt. (1.5)

From (1.1) various generalized Mittag-Leffler functions given by Wiman [15], Prabhakar
[8], Shukla and Parajapati [4], Salim and Faraj [7], Rahman et al. [5], Andrić et al. [6], and
Bhatnagar and Pandey [9] can be easily deduced. Also, the fractional integral operators
associated with these Mittag-Leffler functions can be obtained. Before moving toward
our main results, we give the following Minkowski-type inequalities. First, we state the
integral version of the classical Minkowski inequality.



Zhou et al. Advances in Continuous and Discrete Models          (2022) 2022:9 Page 3 of 10

Theorem 1 Let φ, ψ ∈ Lr[d, e]. Then for r ≥ 1,

(∫ e

d

(
φ(ξ ) + ψ(ξ )

)rdξ

) 1
r
≤

(∫ e

d
φr(ξ )dξ

) 1
r

+
(∫ e

d
ψ r(ξ )dξ

) 1
r
. (1.6)

A reversed Minkowski-type inequality is given as follows.

Theorem 2 ([16]) Let φ, ψ ∈ Lr[d, e] be such that φ, ψ ∈ �+ and 0 ≤ k1 ≤ φ(ξ )
ψ(ξ ) ≤ k2 for all

ξ ∈ [d, e]. Then for r ≥ 1, we have

(∫ e

d
φr(ξ )dξ

) 1
r

+
(∫ e

d
ψ r(ξ )dξ

) 1
r
≤ k2(k1 + 1) + (k2 + 1)

(k1 + 1)(k2 + 1)
(1.7)

×
(∫ e

d

(
φ(ξ ) + ψ(ξ )

)rdξ

) 1
r
.

Another reversed Minkowski-type inequality is given as follows.

Theorem 3 ([17]) Under the assumptions of Theorem 2, we have the inequality

(∫ e

d
φr(ξ )dξ

) 2
r

+
(∫ e

d
ψ r(ξ )dξ

) 2
r

(1.8)

≥
(

(k1 + 1)(k2 + 1)
k2

– 2
)(∫ e

d
φr(ξ )dξ

) 2
r
(∫ e

d
ψ r(ξ )dξ

) 2
r
.

In the next section, we give some generalized versions of Minkowski-type integral in-
equalities using fractional integral operators containing the unified Mittag-Leffler func-
tion (1.1) defined in Definition 2. Also, the reversed Minkowski-type integral inequalities
for these fractional integral operators are proved.

We will use the following notations to make a smart representation of results of this
paper: Mλ,ρ,θ ,k,n

α,β ,γ ,δ,μ,ν = M, Iω,λ,ρ,θ ,k,n
a+,α,β ,γ ,δ,μ,ν = I, QIω,λ,ρ,θ ,k,n

a+,α,β ,γ ,δ,μ,ν = QI.

2 Generalized versions of Minkowski-type inequalities
In this section, we give generalized Minkowski-type integral inequalities for fractional
operators defined in (1.2) and (1.3).

Theorem 4 Let ω ∈ R, a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn), where
ai, bi, ci ∈ R, i = 1, . . . , n. Also, let μ,ν,ρ, t ∈ R, α,β ,γ , δ,λ, θ > 0, and k ∈ (0, 1) ∪ N. Let
k + ρ < δ + ν + α. Let r > 1 be such that 1

r + 1
s = 1, and let φ and ψ be positive and rth-power

integrable functions on [d, e]. If φ

ψ
is bounded above by k2 and bounded below by k1 with

k1 > 0, then we have

[
(Iφ)(ξ ; v)

] 1
r
[
(Iψ)(ξ ; v)

] 1
s ≤

(
k2

k1

) 1
rs [(

Iφ
1
r ψ

1
s
)
(ξ ; v)

]
. (2.1)

Proof Under the conditions on φ

ψ
, we have the inequalities

ψ(t) ≤ 1

k
1
r

1

φ
1
r (t)ψ

1
s (t),
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φ(t) ≤ k
1
s

2 φ
1
r (t)ψ

1
s (t).

Multiplying both sides of these inequalities by (ξ – t)β–1M(ω(ξ – t)α ; v) and integrating
over [d, ξ ], we get

(Iψ)(ξ ; v) ≤ 1

k
1
r

1

(
Iφ

1
r ψ

1
s
)
(ξ ; v),

(Iφ)(ξ ; v) ≤ k
1
s

2
(
Iφ

1
r ψ

1
s
)
(ξ ; v).

These two inequalities further take the following forms

[
(Iψ)(ξ ; v)

] 1
s ≤ 1

k
1
rs

1

[(
Iφ

1
r ψ

1
s
)
(ξ ; v)

] 1
s , (2.2)

[
(Iφ)(ξ ; v)

] 1
r ≤ k

1
rs

2
[(

Iφ
1
r ψ

1
s
)
(ξ ; v)

] 1
r . (2.3)

Now multiplying inequalities (2.2) and (2.3), we get required result. �

Corollary 1 Under the assumptions of Theorem 4, together with ai = l, p = 0, and ρ > 0 in
(2.1), we get

[
(QIφ)(ξ ; v)

] 1
r
[
(QIψ)(ξ ; v)

] 1
s ≤

(
k2

k1

) 1
rs [(

QIφ
1
r ψ

1
s
)
(ξ ; v)

]
.

Remark 1 The Minkowski-type inequality containing the extended Mittag-Leffler func-
tion introduced by Andrić et al. [18] can be deduced from the theorem by setting n = 1,
α,β ,γ , δ,μ,λ, θ , k > 0, θ > λ, 0 < k ≤ δ + α, b1 = c1 + lk, a1 = θ – λ, c1 = λ, and ρ = 0 = ν .

Before moving toward the proof of our next result, we state a particular case
of the GM-AM inequality for x, y ≥ 0 with r, s > 1 satisfying r–1 + s–1 = 1,

xy ≤ r–1xr + s–1ys,

and also the elementary inequality

(x + y)r ≤ 2r–1(xr + yr), x, y ≥ 0, r > 1. (2.4)

Theorem 5 Let ω ∈ R, a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn), where
ai, bi, ci ∈ R, i = 1, . . . , n. Also, let α, β , γ , δ, μ, ν , λ, ρ , θ , t ∈ R, k ∈ (0, 1) ∪ N, and
min{α,β ,γ , δ,λ, θ} > 0. Let k + ρ < δ + ν + α. Let r, s ≥ 1 be such that 1

r + 1
s = 1, and let φ

and ψ be positive rth-power integrable functions on [d, e] such that their ratio is bounded
above by k2 and bounded below by k1 with k1, k2 > 0. Then we have the following inequality:

(
I(φψ)

)
(ξ , v) ≤ r–12r–1

(
k2

k2 + 1

)r(
I
(
φr + ψ r))(ξ , v) (2.5)

+ s–12s–1
(

1
k1 + 1

)s(
I
(
φs + ψ s))(ξ , v).



Zhou et al. Advances in Continuous and Discrete Models          (2022) 2022:9 Page 5 of 10

Proof Under the conditions on φ

ψ
given in the theorem, we have the following inequalities:

(k1 + 1)sψ s(t) ≤ (
φ(t) + ψ(t)

)s,

(k2 + 1)rφr(t) ≤ kr
2
(
ψ(t) + φ(t)

)r .

Multiplying both sides of the above inequalities by (ξ – t)β–1M(ω(ξ – t)α , v) and integrating
on [d, ξ ], these inequalities take the following form

s–1(Iψ s)(ξ , v) ≤ 1
(k1 + 1)s s–1(I(ψ + φ)s)(ξ , v). (2.6)

r–1(Iφr)(ξ , v) ≤ r–1 kr
2

(k2 + 1)r

(
I(ψ + φ)r)(ξ , v). (2.7)

By a particular case of the GM-AM inequality we have

φ(t)ψ(t) ≤ r–1φr(t) + s–1ψ r(t).

Multiplying both sides of this inequality by (ξ – t)β–1M(ω(ξ – t)α ; v) and integrating on
[d, ξ ], we have

(
I(φψ)

)
(ξ ; v) ≤ r–1(Iφr)(ξ ; v) + s–1(Iψ s)(ξ ; v). (2.8)

Applying (2.8) to the sum of (2.6) and (2.7), we get the inequality

(
I(φψ)

)
(ξ ; v) ≤ r–1

(
k2

k2 + 1

)r(
I
(
ψ(t) + φ(t)

)r)(ξ ; v) (2.9)

+ s–1
(

1
k1 + 1

)s(
I
(
ψ(t) + φ(t)

)s)(ξ ; v).

Applying (2.4) in (2.9), we obtain (2.5). �

Corollary 2 Under the assumptions of Theorem 5 with ai = l, p = 0, and ρ > 0 in (2.5), we
get the inequality

(
QI(φψ)

)
(ξ , v) ≤ r–12r–1

(
k2

k2 + 1

)r(
QI

(
φr + ψ r))(ξ , v)

+ s–12s–1
(

1
k1 + 1

)s(
QI

(
φs + ψ s))(ξ , v).

Remark 2 For n = 1, α,β ,γ , δ,μ,λ, θ , k > 0, θ > λ, 0 < k ≤ δ + α, b1 = c1 + lk, a1 = θ – λ,
c1 = λ and ρ = 0 = ν , (2.5) produces the result presented by Andrić et al. [18].

Theorem 6 Let ω ∈ R, a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn), where
ai, bi, ci ∈ R, i = 1, . . . , n. Also, let α, β , γ , δ, μ, ν , λ, ρ , θ , t ∈ R, k ∈ (0, 1) ∪ N, and
min{α,β ,γ , δ,λ, θ} > 0. Let k +ρ < δ +ν +α. Let r ≥ 1, and let φ and ψ be positive rth-power
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integrable functions on [d, e] such that their ratio is bounded above by k2 and bounded be-
low by k1 with k1, k2 > 0. Then we have the inequalities

k–1
2

(
I(φψ)

)
(ξ ; v) ≤ (k1 + 1)–1(k2 + 1)–1(I(φ + ψ)2)(ξ ; v) (2.10)

≤ k–1
1

(
I(φψ)

)
(ξ ; v).

Proof From the boundedness of the ratio of the functions φ and ψ we have

0 ≤ k1 ≤ φ(t)
ψ(t)

≤ k2, t ∈ [d, e].

Using the upper bound φ(t)
ψ(t) ≤ k2, we have

φ + ψ ≤ (k2 + 1)ψ , (2.11)

k–1
2 (k2 + 1)φ ≤ φ + ψ . (2.12)

Using the lower bound k1 ≤ φ(t)
ψ(t) , we have

φ + ψ ≥ (k1 + 1)ψ , (2.13)

k–1
1 (k1 + 1)φ ≥ φ + ψ . (2.14)

From inequalities (2.11) and (2.13) we obtain the inequality

(k1 + 1)ψ ≤ φ + ψ ≤ (k2 + 1)ψ . (2.15)

From inequalities (2.12) and (2.14) we obtain the inequality

k–1
2 (k2 + 1)φ ≤ φ + ψ ≤ k–1

1 (k1 + 1)φ. (2.16)

Now multiplying (ξ – t)β–1M(ω(ξ – t)α ; v) by the product of (2.15) and (2.16) and integrat-
ing on [d, ξ ], we get (2.10). �

Corollary 3 Under the assumptions of Theorem 6 along with ai = l, p = 0, and ρ > 0 in
(2.10), we have the inequality

k–1
2

(
QI(φψ)

)
(ξ ; v) ≤ (k1 + 1)–1(k2 + 1)–1(

QI(φ + ψ)2)(ξ ; v)

≤ k–1
1

(
QI(φψ)

)
(ξ ; v).

Remark 3 Inequality (2.10) is the generalization of the inequalities proved by Andrić et
al. [18]. By setting n = 1, α,β ,γ , δ,μ,λ, θ , k > 0, θ > λ, 0 < k ≤ δ + α, b1 = c1 + lk, a1 = θ – λ,
c1 = λ, and ρ = 0 = ν the result of [18] can be deduced.

Theorem 7 Let ω ∈ R, a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn), where
ai, bi, ci ∈ R, i = 1, . . . , n. Also, let α, β , γ , δ, μ, ν , λ, ρ , θ , t ∈ R, k ∈ (0, 1) ∪ N, and
min{α,β ,γ , δ,λ, θ} > 0. Let k + ρ < δ + ν + α. Let r ≥ 1, and let φ and ψ be positive and
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rth-power integrable functions on [d, e] such that their ratio is bounded above by k2 and
bounded below by k1 with k1, k2 > 0 and 0 < η < k1. Then we have the following inequalities:

k2 + 1
k2 – η

[(
I(φ – ηψ)

1
r
)
(ξ ; v)

] ≤ [(
Iφr)(ξ ; v)

] 1
r +

[(
Iψ r)(ξ ; v)

] 1
r (2.17)

≤ k1 + 1
k1 – η

[(
I(φ – ηψ)

1
r
)
(ξ ; v)

]
.

Proof By the conditions on φ and ψ in the statement we have

0 < η < k1 ≤ φ(t)
ψ(t)

≤ k2, t ∈ [d, e], (2.18)

and the above inequality takes the form

(φ – ηψ)r

(k2 – η)r ≤ ψ r ≤ (φ – ηψ)r

(k1 – η)r .

Multiplying the last inequality by (ξ – t)β–1M(ω(ξ – t)α ; v) and integrating on [d, ξ ], we
obtain

[(I(φ – ηψ)r)(ξ ; v)] 1
r

k2 – η
≤ [(

Iψ r)(ξ ; v)
] 1

r ≤ [(I(φ – ηψ)r)(ξ ; v)]
k1 – η

1
r
. (2.19)

Inequality (2.18) can also be written as

1
k2

≤ ψ(t)
φ(t)

≤ 1
k1

,

and after certain steps, the above inequality takes the form

k2(φ – ηψ)
k2 – ηψ

≤ φ ≤ k1(φ – ηψ)
k1 – η

.

By multiplying with (ξ – t)β–1M(ω(ξ – t)α ; v) and integrating on [d, ξ ] the above inequality
becomes

(
k2

k2 – η

)r(
I(φ – ηψ)r)(ξ ; v) ≤ (

Iφr)(ξ ; v) ≤
(

k1

k1 – η

)r(
I(φ – ηψ)r)(ξ ; v),

(
k2

k2 – η

)[(
I(φ – ηψ)r)(ξ ; v)

] 1
r

≤ [(
Iφr)(ξ ; v)

] 1
r ≤

(
k1

k1 – η

)[(
I(φ – ηψ)r)(ξ ; v)

] 1
r .

(2.20)

Adding (2.19) and (2.20), we obtain (2.17). �
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Corollary 4 Under the assumptions of Theorem 7 with ai = l, p = 0, and ρ > 0 in (2.17), we
have the following inequality:

k2 + 1
k2 – η

[(
QI(φ – ηψ)

1
r
)
(ξ ; v)

] ≤ [(
QIφr)(ξ ; v)

] 1
r +

[(
QIψ r)(ξ ; v)

] 1
r

≤ k1 + 1
k1 – η

[(
QI(φ – ηψ)

1
r
)
(ξ ; v)

]
.

Remark 4 The above theorem reproduces the Minkowski-type inequality involving
the extended Mittag-Leffler function presented by Andrić et al. [18] by setting n = 1,
α,β ,γ , δ,μ,λ, θ , k > 0, θ > λ, 0 < k ≤ δ + α, b1 = c1 + lk, a1 = θ – λ, c1 = λ, and ρ = 0 = ν .

3 Fractional integral inequalities of reverse Minkowski type
In this section, we state and prove some reverse versions of Minkowski-type inequalities,
which are generalizations of (1.6) and (1.8).

Theorem 8 Let ω ∈ R, a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn), where
ai, bi, ci ∈ R, i = 1, . . . , n. Also, let α, β , γ , δ, μ, ν , λ, ρ , θ , t ∈ R, k ∈ (0, 1) ∪ N, and
min{α,β ,γ , δ,λ, θ} > 0. Let k + ρ < δ + ν + α. Let r ≥ 1, and let φ and ψ be positive and
rth-power integrable functions on [d, e] such that their ratio is bounded above by k2 and
bounded below by k1 with k1, k2 > 0. Then

[(
Iφr)(ξ ; v)

] 1
r +

[(
Iψ r)(ξ ; v)

] 1
r ≤ m

[(
I(φ + ψ)r)(ξ ; v)

] 1
r , (3.1)

where m = k2(k1+1)+(k2+1)
(k1+1)(k2+1) .

Proof Under the conditions of the theorem on φ

ψ
, we have the following inequalities:

(k1 + 1)rψ r(t) ≤ (
φ(t) + ψ(t)

)r ,

(k2 + 1)rφr(t) ≤ kr
2
(
ψ(t) + φ(t)

)r .

By multiplying both sides of inequalities by (ξ – t)β–1M(ω(ξ – t)α ; v) and integrating on
[d, ξ ] the above inequalities become

(k1 + 1)r(Iψ r)(ξ ; v) ≤ (
I(ψ + φ)r)(ξ ; v), (3.2)

(
Iφr)(ξ ; v) ≤ kr

2
(k2 + 1)r

(
I(ψ + φ)r)(ξ ; v). (3.3)

The above inequalities further produce the following inequalities:

[(
Iψ r)(ξ ; v)

] 1
r ≤ 1

k1 + 1
[(

I(ψ + φ)r)(ξ ; v)
] 1

r , (3.4)

[(
Iφr)(ξ ; v)

] 1
r ≤ k2

k2 + 1
[(

I(ψ + φ)r)(ξ ; v)
] 1

r . (3.5)

The sum of (3.4) and (3.5) gives (3.1). �
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Corollary 5 Under the assumptions of Theorem 8 with ai = l, p = 0, and ρ > 0 in (3.1), we
obtain the following inequality:

[(
QIφr)(ξ ; v)

] 1
r +

[(
QIψ r)(ξ ; v)

] 1
r ≤ m

[(
QI(φ + ψ)r)(ξ ; v)

] 1
r ,

where m = k2(k1+1)+(k2+1)
(k1+1)(k2+1) .

Remark 5 The Minkowski-type fractional integral inequality containing the extended
Mittag-Leffler function introduced by Andrić et al. [18] turns out to be a particular case
of (3.1) by setting n = 1, α,β ,γ , δ,μ,λ, θ , k > 0, θ > λ, 0 < k ≤ δ + α, b1 = c1 + lk, a1 = θ – λ,
c1 = λ, and ρ = 0 = ν .

Theorem 9 Let ω ∈ R, a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn), where
ai, bi, ci ∈ R, i = 1, . . . , n. Also let α, β , γ , δ, μ, ν , λ, ρ , θ , t ∈ R, k ∈ (0, 1) ∪ N and
min{α,β ,γ , δ,λ, θ} > 0. Let k + ρ < δ + ν + α. Let r ≥ 1, and let φ and ψ be positive and
rth-power integrable functions on [d, e] such that their ratio is bounded above by k2 and
bounded below by k1 with k1, k2 > 0. Then we have the following inequality:

[(
Iφr)(ξ ; v)

] 2
p +

[(
Iψ r)(ξ ; v)

] 2
p ≥ M

[(
Iφr)(ξ ; v)

] 1
r
[(

Iψ r)(ξ ; v)
] 1

r , (3.6)

where M = k–1
2 (k2 + 1)(k1 + 1) – 2.

Proof From the preceding theorem we have the following integral inequalities:

[(
Iψ r)(ξ ; v)

] 1
r ≤ 1

k1 + 1
[(

I
(
ψ(t) + φ(t)

)r)(ξ ; v)
] 1

r ,

[(
Iφr)(ξ ; v)

] 1
r ≤ k2

k2 + 1
[(

I
(
ψ(t) + φ(t)

)r)(ξ ; v)
] 1

r .

Taking the product of these inequalities and using Minkowski’s inequality, we get

[(
Iψ r)(ξ ; v)

] 1
r
[(

Iφr)(ξ ; v)
] 1

r ≤ k2

(k2 + 1)(k1 + 1)

× [((
Iφr)(ξ ; v)

) 1
r +

((
Iψ r)(ξ ; v)

) 1
r
]2.

This inequality takes the following form by simplification:

M
[(

Iφr)(ξ ; v)
] 1

r
[(

Iψ r)(ξ ; v)
] 1

r ≤ [(
Iφr)(ξ ; v)

] 2
p +

[(
Iψ r)(ξ ; v)

] 2
p . �

Corollary 6 Under the assumptions of Theorem 9 and setting ai = l, p = 0, and ρ > 0 in
(3.6), we have the following inequality:

[(
QIφr)(ξ ; v)

] 2
p +

[(
QIψ r)(ξ ; v)

] 2
p ≥ M

[(
QIφr)(ξ ; v)

] 1
r
[(

QIψ r)(ξ ; v)
] 1

r ,

where M = k–1
2 (k2 + 1)(k1 + 1) – 2.

Remark 6 Putting n = 1, α,β ,γ , δ,μ,λ, θ , k > 0, θ > λ, 0 < k ≤ δ + α, b1 = c1 + lk, a1 = θ –
λ, c1 = λ and ρ = 0 = ν , the above theorem reproduces the Minkowski-type inequality
involving the extended Mittag-Leffler function presented by Andrić et al. [18].
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4 Conclusions
We have proved some generalized Minkowski-type integral inequalities using fractional
integral operators associated with unified Mittag-Leffler function. A number of such in-
equalities already studied for various types of known fractional integral operators can be
deduced from the results of this paper. The unified Mittag-Leffler function and associated
integral operators can be applied to extend and generalize the classical concepts.
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