
Nkombo et al. Advances in Difference Equations        (2021) 2021:509 
https://doi.org/10.1186/s13662-021-03668-3

R E S E A R C H Open Access

Existence and asymptotic behavior of Radon
measure-valued solutions for a class of
nonlinear parabolic equations
Quincy Stévène Nkombo1,2*, Fengquan Li1 and Christian Tathy2

*Correspondence:
quincysnk@yahoo.fr
1School of Mathematical Sciences,
Dalian University of Technology,
Dalian 116024, China
2Laboratoire de Mécanique,
Energétique et Ingénierie Ecole
Nationale Supérieure
Polytechnique, Université Marien
Ngouabi, BP 69, Brazzaville, Republic
of Congo

Abstract
In this paper we address the weak Radon measure-valued solutions associated with
the Young measure for a class of nonlinear parabolic equations with initial data as a
bounded Radon measure. This problem is described as follows:

⎧
⎪⎨

⎪⎩

ut = αuxx + β[ϕ(u)]xx + f (u) in Q :=� × (0, T ),

u = 0 on ∂� × (0, T ),

u(x, 0) = u0(x) in �,

where T > 0, � ⊂ R is a bounded interval, u0 is nonnegative bounded Radon
measure on �, and α,β ≥ 0, under suitable assumptions on ϕ and f . In this work we
prove the existence and the decay estimate of suitably defined Radon
measure-valued solutions for the problem mentioned above. In particular, we study
the asymptotic behavior of these Radon measure-valued solutions.
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1 Introduction
In this paper we address the existence, decay estimate, and the asymptotic behavior of
solutions for the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut = [ψ(u)]xx + f (u) in Q := � × (0, T),

u = 0 on ∂� × (0, T),

u(x, 0) = u0(x) in �,

(P)

where T > 0, � ⊂R is a bounded interval, u0 is nonnegative bounded Radon measure on
� under suitable assumptions on ψ and f expressed as follows:

ψ(s) = αs + βϕ(s) (1.1)
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for any (α,β) ∈R+ ×R+, where the function ϕ satisfies the following assumptions:

(H)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i) ϕ ∈ L∞(R+) ∩ C2(R+), ϕ(0) = 0, ϕ′ > 0 in R+,

(ii) ϕ′,ϕ′′ ∈ L∞(R+),

(iii) ϕ(s) → γ as s → +∞,

(iv) |ϕ′′|
ϕ′ ≤ m0 in R

∗
+ for some m0 ∈R

∗
+;

where R+ ≡ [0, +∞), R∗
+ ≡ (0, +∞), and γ ∈ (0, +∞). A typical example of the function ϕ

is given by

ϕ(s) = γ
[
1 – e1–(1+s)m]

and ϕ(s) =
∫ s

0
e–(1+z)m

dz, (1.2)

where 0 < m ≤ 1, s ≥ 0.
The function f verifies the following assumption:

(R)

⎧
⎨

⎩

(i) f ∈ L∞(R+) ∩ C1(R+), f (0) = 0,

(ii) f ′ ∈ L∞(R+) and f ′ > 0 in R+.

The example of the function f is

f (s) = C
[

1 –
1

(1 + s)m

]

and f (s) =
∫ s

0
e–zm

dz. (1.3)

The assumption of the function ψ in (1.1) and hypothesis (H) are summarized as follows:

(G)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i) ψ ,ψ ′,ψ ′′ ∈ C(R+), ψ(0) = 0, ψ ′ > 0 in R+,

(ii) ψ ′,ψ ′′ ∈ L∞(R+),

(iii) |ψ ′′|
ψ ′ ≤ m0 in R

∗
+, for some m0 ∈R

∗
+.

(iv) lims→+∞ ψ(s)
s = α ∈R+,

where ψ ′ and ψ ′′ are the first derivative and the second derivative of the function ψ re-
spectively. Similarly, hypothesis (G) is inferred from assumption (H) and the expression of
the function ψ given by (1.1). Since ψ(s) → +∞ as s → +∞, problem (P) is not degenerate
at infinity. However, problem (P) is degenerate at zero.

Remark 1.1 By assumption (R) and the mean-value theorem, it is worthy observing that

lim
s→+∞

f (s)
s

= f ′(+∞). (1.4)

Then, for every ε > 0, there exists M = M(ε) > 0 such that

–εs + f ′(+∞)s ≤ f (s) ≤ f ′(+∞)s + εs if s ≥ M. (1.5)

By the example of the function f in (1.2)–(1.3), it implies f ′(+∞) = 0. We notice that the
function f can also satisfy assumption (R) with f ′(+∞) �= 0.
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Throughout this paper, we consider the solutions of problem (P) as maps from (0, T) to
the cone of nonnegative bounded Radon measure on �, which verify (P) in the following
sense: for a suitable class of test function ξ , there holds

∫

Q

{
urξt + ψ∗ξxx

}
dx dt +

∫ T

0

〈
us(·, t), ξν(·, t)

〉

�
dt

+ f ′(+∞)
∫ T

0

〈
us(·, t), ξ (·, t)

〉

�
dt +

∫

Q
f ∗ξ dx dt =

〈
u0, ξ (·, 0)

〉

�
, (1.6)

where ξν = ξt + αξxx (see Definition 2.1). Here the measure u(·, t) is defined for a.e. t ∈
(0, T), ur ∈ L1(Q).

The one-dimensional degenerate parabolic equations with initial data have been inten-
sively investigated in several decades. Similarly, the nonlinear parabolic equation (P) has
been studied by many authors such as (see [2–4, 6, 32]). Within the type of problem (P),
we consider the problem studied in [2]:

⎧
⎪⎪⎨

⎪⎪⎩

ut = [φ̃(u(x, t))]xx + h(u(x, t)) x ∈ (–L, L), t > 0,

u(–L, t) = u(L, t) = 0,

u(x, 0) = u0(x) ≥ 0 x ∈ (–L, L),

(A.1)

where L > 0 and the functions φ̃ and h verify the suitable assumptions (see [2] for more
details). In [2], the authors studied the existence, uniqueness, and regularity of the solu-
tions to problem (A.1) when u0 ∈ L∞(–L, L). Meanwhile, the main purpose of the study of
problem (A.1) is the convergence of the solutions when t → +∞. The difference between
problem (A.1), the references [3, 4, 6, 32], and problem (P) is the assumptions which satisfy
the functions ψ , f and the initial data u0.

In the literature of one-dimensional nonlinear parabolic equations with initial data,
there are many studies of the kind of problem (P) without the source term (f (u) = 0) (for
instance, see [5, 11, 28, 29, 31, 33–40]). In [28], the authors studied the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut = [φ(u)]xx in Q := � × (0, T),

φ(u) = 0 on ∂� × (0, T),

u(x, 0) = u0(x) in �,

(A.2)

where T > 0, � ⊂ R is a bounded interval, u0 is nonnegative bounded Radon measure on
�, and the function φ is nonmonotone and satisfies the hypothesis including (H) (see [28]
for more details).

In [28], the authors dealt with the existence of the weak Radon measure-valued solutions
associated with the Young measure. The difference between problem (A.2) [5, 11, 29, 31,
33–40] and problem (P) remains the hypothesis on the function f given by (R).

In [14], the authors addressed the existence, uniqueness, and the qualitative properties
of the Radon measure-valued solutions associated with the Young measure to the first
order scalar conservation laws with Radon measure as initial data. The problem studied
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in [14] is

⎧
⎨

⎩

ut + [g(u)]x = 0 in R× (0, T),

u(x, 0) = u0(x) in R,
(A.3)

where u0 is nonnegative bounded Radon measure on � and the function g verifies hy-
pothesis (G).

Before we study the general problem of (P), we need to point out the particular cases of
such a problem and their results. For instance α = 0, problem (P) is nonlinear degenerate
parabolic equations, and this kind of nonlinear degenerate parabolic equations is similar
to

⎧
⎪⎪⎨

⎪⎪⎩

ut = div(A(x, t, u)∇u) + F(x, t, u) in Q := � × (0, T),

u = 0 on ∂� × (0, T),

u(x, 0) = u0(x) in �,

(A.4)

where T > 0, � ⊂R
N (N ≥ 2) is an open bounded domain with smooth boundary ∂� and

u0 is a finite Radon measure on �. The operator A(x, t, s) is weakly coercive and diffuse
and F(x, t, u) verifies the suitable hypothesis (see [1] for more details). In [1], the authors
proved the existence and qualitative properties of the Radon measure-valued solutions
associated with the Young measure. Another difference between problem (A.4) and (P) is
the assumption which fulfills the function F(x, t, u). Indeed, the hypothesis of the function
F(x, t, u) is different from assumption (R) (f (u) verifies hypothesis (R) of problem (P)). On
the other hand, the problems studied in the papers [44–46] are closely formulated as in
(A.4), where the expression for the source term F(x, t, u) is more regular and the diffusion-
term A(x, t, s) takes part on the modeling of real phenomena from mathematical biology
and physics. Furthermore, the authors in [44–46] dealt with the properties of weak and
classical solutions.

Assuming that β = 0, problem (P) is reduced to the semilinear heat equation with Radon
measure as initial data described as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ut = uxx + f (u) in Q := � × (0, T),

u = 0 on ∂� × (0, T),

u(x, 0) = u0(x) in �,

(A.5)

where α ≡ 1, T > 0, � ⊂R is a bounded interval, u0 is nonnegative bounded Radon mea-
sure on �. By [19, 20], problem (A.5) admits unique weak solutions which are not Radon
measure-valued associated with the Young measure. However, in [17] the authors showed
the existence, qualitative properties, and decay estimate of the Radon measure-valued so-
lutions to the Cauchy problem of (A.5). Throughout this paper, we consider the case α > 0
and β > 0, and we notice that the result of this paper is not true for α = 0.

The goal of this paper is threefold. Firstly, we study the existence of the Radon measure-
valued solutions associated with the Young measure introduced in [1] and the other tech-
nical tools stated in [14, 28].
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Secondly, we establish the decay estimate of the Radon measure-valued solutions to
problem (P). We note that the proof of the existence of the Radon measure-valued solu-
tions and the decay estimate of these weak solutions focus on the natural approximation
method.

Thirdly, we analyze the asymptotic behavior of the Radon measure-valued solutions.
To this purpose, we construct the pseudo-stationary solutions which are Radon measure-
valued solutions to the nonlinear elliptic equations. Then the result of the asymptotic be-
havior of solutions follows from the use of the natural approximation method.

The novelty of this paper is twofold. Firstly, we study the decay estimate of the Radon
measure-valued solutions of a class of nonlinear parabolic equations. Finally, we study the
asymptotic behavior of these Radon measure-valued solutions.

The plan of this paper is organized as follows. In the next section, we recall some pre-
liminaries about Radon measures and Young measures. Then, in Sect. 3, we state the main
results, while in Sects. 4–7 we prove the main results.

2 Preliminaries
2.1 Radon measures
Let M(�) be the space of bounded Radon measures on �, and M+(�) ⊂ M(�) be the
cone of nonnegative bounded Radon measure on � ⊆R

N (N ≥ 1). For any μ ∈M(�), we
set

‖μ‖M(�) := |μ|(�),

where |μ| stands for the total variation of μ.
The duality map 〈·, ·〉� between the space M(�) and Cc(�) is defined by

〈μ,ϕ〉� =
∫

�

ϕ dμ.

For any μ ∈ M(�) and any Borel set B ⊆ �, the restriction μ�B of μ to B is defined by
setting

(μ�B)(A) := μ(B ∩ A) for every Borel set A ⊆ �.

It is worth observing that (μ�B)(∅) = 0.
M+

s (�) denotes the set of nonnegative measures singular with respect to the Lebesgue
measure, namely

M+
s (�) :=

{
μ ∈M+(�)/∃ a Borel set B ⊆ � such that |B| = 0,μ = μ�B

}
,

| · | denotes the Lebesgue measure on R
N (N ≥ 1). Similarly, M+

ac(�) denotes the set of
nonnegative measures absolutely continuous with respect to the Lebesgue measure, namely

M+
ac(�) :=

{
μ ∈M+(�)/μ(B) = 0 for every Borel set B ⊆ � such that |B| = 0

}
.

Recall that M+
s (�) ∩ M+

ac(�) = {0}. Moreover, by the Lebesgue decomposition and
Radon–Nikodym theorem (see [9]), for any μ ∈M+(�):
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(i) There exists a unique couple μac ∈M+
ac(�), μs ∈M+

s (�) such that

μ = μac + μs. (2.1)

(ii) There exists a unique nonnegative function ur ∈ L1(�) called the density of measure
μac such that

μac(B) =
∫

B
ur dx for every Borel set B ⊆ �. (2.2)

Let Q = � × (0, T), T is a positive constant.
L∞((0, T),M+(�)) denotes the set of nonnegative Radon measures u ∈ M+(Q) which

satisfy the following property: For almost every t ∈ (0, T), there exists a measure u(·, t) ∈
M+(�) such that

(a) For every ξ ∈ C(Q), the map t �→ 〈u(·, t), ξ (·, t)〉� is Lebesgue measurable and there
holds

〈u, ξ 〉Q =
∫ T

0

〈
u(·, t), ξ (·, t)

〉

�
dt. (2.3)

(b) For every Borel set B ⊆ Q, the map t �→ u(·, t)(Bt) is Lebesgue measurable and there
holds

u(B) =
∫ T

0
u(·, t)

(
Bt)dt,

where Bt = {x ∈ �/(x, t) ∈ B}.
(c) There exists a constant C > 0 such that

ess sup
t∈(0,T)

∥
∥u(·, t)

∥
∥
M+(�) ≤ C.

Set

‖u‖L∞((0,T),M+(�)) = ess sup
t∈(0,T)

∥
∥u(·, t)

∥
∥
M+(�). (2.4)

If u ∈ L∞((0, T),M+(�)), it is easily seen that uac, us ∈ L∞((0, T),M+(�)) as well and that
ur ∈ L∞((0, T), L1(�)).

Moreover, inequality (2.4) implies that, for every ξ ∈ C(Q),

〈uac, ξ 〉Q =
∫

Q
urξ dx dt and 〈us, ξ 〉Q =

∫ T

0

〈
us(·, t), ξ (·, t)

〉

�
dt

(see also [7, 8]).

2.2 Young measures
We denote by Cc(R) the space of continuous real functionals with compact support in R

and by M(R) the Banach space Radon measure on R endowed with the norm

‖μ‖M(R) := |μ|(R) for any μ ∈M(R).
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By M(R) we denote the cone of positive finite Radon measure, and by P(R) the convex
set of probability measure on R:

‖τ‖M(R) := τ (R) for any τ ∈P(R).

Clearly, P(R) ⊂M+(R) ⊂M(R).
By a bounded Caratheodory integrand on A × R we mean that any function ϕ : A ×

R
N →R is bounded and measurable, with ϕ(x, ·) continuous for almost everywhere x ∈ A.

The duality map 〈·, ·〉 between the spaces M(R) and Cc(R) is expressed as

〈μ,ρ〉R :=
∫

R

ρ dμ,

which can be extended to functions ρ ∈ Cc(R). Let A ⊂ R
N (N ≥ 1) be a bounded open

set. We use the above equality to define the quantity 〈μ,ρ〉R for any μ ∈M(R) and every
μ-integrable function ρ . Similar notation will be used for the space M(A × R) of finite
Radon-measures on A × R. By Y(A,R) we denote the set of Young measures on A × R

which are defined as follows (e.g. [15]).

Definition 2.1 A Young measure on A ×R is a positive Radon-measure τ on A ×R such
that

τ (E ×R) = |E| for any Borel set E ⊆ A. (2.5)

If f ∈ L1(A), the Young measure associated with f is the measure τ ∈ Y(A,R) such that

τ (E × F) =
∣
∣E ∩ f –1(F)

∣
∣ for any E ⊆ A, F ⊆R. (2.6)

For any bounded Caratheodory integrand, there holds

∫

A×R

ϕ dτ =
∫

A
ϕ
(
x, f (x)

)
dx. (2.7)

Let us recall the following result (e.g. [9, 10, 15]).

Proposition 2.1 Let τ ∈ Y(A,R). Then, for almost everywhere x ∈ A, there exists a proba-
bility measure τx ∈P(R) for any bounded Caratheodory integrand ϕ on A ×R:

(i) The map

x �→ 〈
τx,ϕ(x, ·)〉

R
=

∫

R

ϕ(x, ξ ) dτx(ξ ) (2.8)

is Lebesgue measurable;
(ii) There holds

∫

A×R

ϕ dτ =
∫

A

(∫

R

ϕ(x, ξ ) dτx(ξ )
)

dx. (2.9)
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More generally, Proposition 2.1 holds true for very ϕ : A × R → R measurable and non-
negative or τ -integrable, we shall identify and τ ∈ Y(A,R) with the associated family
{τx|x ∈ A} which is called disintegration of τ .

Remark 2.1 If τ is the Young measure associated with a function f ∈ L1(A), equalities
(2.8)–(2.9) imply that

ϕ
(
x, f (x)

)
=

〈
τx,ϕ(x, ·)〉

R
=

∫

R

ϕ(x, ξ ) dτx(ξ ) (2.10)

for almost every x ∈ A and for any bounded Caratheodory integrand ϕ on A ×R. There-
fore,

τx = δf (x) for almost every x ∈ A,

where δp denotes the Dirac mass concentrated in p ∈ R.

The notion of narrow convergence of Young measures is as follows.

Definition 2.2 Let τ n, τ ∈ Y(A,R). We say that τ n → τ narrowly in A × R if for any
bounded Caratheodory integrand ϕ : A ×R →R there holds

∫

A×R

ϕ dτ n →
∫

A×R

ϕ dτ . (2.11)

Remark 2.2 If the Young measures {τ n} are associated with a sequence of functions {fn} ⊆
L1(A), then {τ n} converge narrowly to τ if and only if

∫

A
ϕ
(
x, fn(x)

)
dx =

∫

A×R

ϕ dτ n →
∫

A×R

ϕ dτ

for any bounded Caratheodory integrand.
This convergence still holds when ϕ is a Caratheodory integrand with linear growth

with respect to ξ (i.e. |ϕ(x, ξ )| ≤ α(x) + |ξ |, where α ∈ L1(A) as soon as the sequence {fn} is
uniformly integrable.

If τ n and τ are the Young measures associated with the measurable functions fn and f
respectively, then τ n → τ narrowly if and only if fn → f in measure. In other words, fn → f
in measure if and only if the Young measure associated with fn is δf (x) (see [15, 16]).

Definition 2.3 A subset U ⊆ L1(A,R) is said to be uniformly integrable if
(i) There exists M > 0 such that

‖f ‖L1(A,R) :=
∫

A

∣
∣f (x)

∣
∣dx ≤ M for any f ∈ U .

(ii) For ε > 0, there exists β > 0 such that, for any f ∈ U ,

|E| < β ⇒
∫

E

∣
∣f (x)

∣
∣dx < ε.
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Notice that for any function f ∈ L1(A) is equi-integrable if the assumption of Defini-
tion 2.3-(ii) holds true.

The following proposition is a consequence of the more general Prokhorov’s theorem
(e.g. see [15]).

Proposition 2.2 Let {fn} be bounded in L1(A) and {τ n} be the sequence of associated Young
measures. Then

(i) There exist a sequence {fnk } ⊆ {fn} and a Young measure τ on A×R such that τ nk → τ

narrowly in A ×R;
(ii) For any h ∈ C(R) such that the sequence {h(fnk )} is bounded in L1(A) and is equi-

integrable, there hold

∫

A

(∫

R

∣
∣h(ξ )

∣
∣dτx(ξ )

)

dx < +∞ and h(fnk ) ⇀ h∗ in L1(A), (2.12)

where

h∗(x) =
∫

R

h(ξ ) dτx(ξ ) for a.e. x ∈ A,

τx is disintegration of the Young measure τ .
(iii) For any function ϕ : A × R → R measurable with ϕ(x, ·) continuous for a.e., x ∈ A

such that the sequence {ϕ(x, fnk )} is bounded in L1(A) and is equi-integrable, there holds

∫

A
ϕ
(
x, fnk (x)

)
dx →

∫

A×R

ϕ dτ . (2.13)

When equi-integrability of the sequence {fnk } fails, Proposition 2.2-(ii) cannot be directly
used with h(f ) = f . However, we can associate with {fnk } an equi-integrable subsequence by
removing sets of small measure, this is the content of the next coming proposition (e.g. see
[10, 15]).

Proposition 2.3 (Biting Young measure) Let {fn} be bounded in L1(A). Let τ ∈ Y(A,R)
and {fnk } be respectively the limiting Young measure and a subsequence given in Proposi-
tion 2.3 in correspondence with {fn}. Then there exist a subsequence {fnj} ≡ {fnkj

} ⊆ {fnk }
and a sequence of measurable sets {Aj}, Aj ⊂ A, Aj+1 ⊂ Aj for any j ∈N, |Aj| → 0 as j → ∞
such that the sequence {fnjχA\Aj} is equi-integrable. Moreover, the barycenter of the Young
measure disintegration τx,

fb(x) =
∫

RN
ξ dτx(ξ ) ∈ L1(A) and there holds {fnjχA\Aj} ⇀ fb in L1(A). (2.14)

3 Statement of main results
Throughout this paper, we consider the backward parabolic equation

(ν · α)

⎧
⎪⎪⎨

⎪⎪⎩

ξt + αξxx + f ′(+∞)ξ = ξν in Q,

ξ = 0 on ∂� × (0, T),

ξ (·, T) = 0 in � × {T},
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which has a unique solution ξ in C1,2(Q)∩C1(Q) for any ξν ∈ C(Q) (see [12, 13, 30]), where

C1,2(Q) =
{

ξ ∈ C(Q)/∃ξt ∈ C(Q),
∂ξ

∂xi
∈ C(Q),

∂2ξ

∂xi∂xj
∈ C(Q)

}

.

Definition 3.1 For any u0 ∈M+(�), a function u is called a weak Radon measure solution
of problem (P) if the couple (u, τ ) is such that

(i) u ∈ L∞((0, T),M+(�)), τ ∈ Y(Q,R)

ur(x, t) =
∫

[0,+∞)
λdτ(x,t)(λ) a.e. (x, t) ∈ Q; (3.1)

(ii) ψ(ur) ∈ L1((0, T), W 1,1
0 (�));

(iii) For almost everywhere (x, t) ∈ Q, there hold

τ(x,t) = δur (x,t) and supp τ(x,t) ⊆ [0, +∞) a.e. (x, t) ∈ Q, (3.2)

where we denote by δur (x,t) the Dirac mass concentrated at ur(x, t) and τ(x,t) ∈ P(R) is the
disintegration of τ .

(iv) For every ξ ∈ C1([0, T], C1
0(�)), ξ (·, T) = 0 in �, u satisfies the identity

∫

Q

{
urξt + ψ∗ξxx

}
dx dt +

∫ T

0

〈
us(·, t), ξν(·, t)

〉

�
dt

+ f ′(+∞)
∫ T

0

〈
us(·, t), ξ (·, t)

〉

�
dt +

∫

Q
f ∗ξ dx dt =

〈
u0, ξ (·, 0)

〉

�
, (3.3)

whenever ξν = ξt + αξxx and

f ∗(x, t) =
∫

[0,+∞)
f (λ) dτ(x,t)(λ),ψ∗(x, t) =

∫

[0,+∞)
ψ(λ) dτ(x,t)(λ) (3.4)

for a.e. (x, t) ∈ Q.

Remark 3.1 Since the class of test functions ξ ∈ C1([0, T], C1
0(�)) is a solution to the back-

ward parabolic equations (ν · α) such that ξν ∈ C(Q), then Eq. (3.3) is reduced as follows:

∫

Q

{
urξt + ψ∗ξxx

}
dx dt +

∫ T

0

〈
us(·, t), ξν(·, t)

〉

�
dt +

∫

Q
f ∗ξ dx dt =

〈
u0, ξ (·, 0)

〉

�
,

where ξν = ξt + αξxx + f ′(+∞)ξ in Q.

The existence solution to problem (P) is given by the following result.

Theorem 3.1 Suppose that (1.1), (1.4), (H), (R), (G), and u0 ∈ M+(�) are satisfied. Then
problem (P) has a solution (u, τ ) which is obtained as a limit point of the sequence {un} of
solutions to problem (Pn). Moreover, (u, τ ) is a solution of problem (P) in the sense of Young
measures.
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Let us consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

vt = [ψ(v)]xx + f (u) in Q := � × (0, T),

v = 0 on ∂� × (0, T),

v(x, 0) = 0 in �.

(Z)

In view of [12, 13], problem (Z) has a unique solution function v in L∞(Q) ∩ L2((0, T),
H1

0 (�)) ∩ C(Q). Moreover, from Theorem 3.1, problem (Z) possesses a weak solution
v(·, t) ∈M+(�) for a.e. t ∈ (0, T). The estimate decay is given by the following result.

Theorem 3.2 Suppose that (R), (G), and u0 ∈ M+(�) are verified. The functions u and v
are weak solutions to problems (P) and (Z) respectively in the sense of Theorem 3.1. Then
there holds

∥
∥u(·, t) – v(·, t)

∥
∥
M+(�) ≤ C

‖u0‖M+(�)

tα
(3.5)

for any α > 0 and C is a positive constant. Moreover, if we extend t ∈ (0, T) into (0, +∞),
then we obtain that the following statement

lim
t→+∞

∥
∥u(·, t) – v(·, t)

∥
∥
M+(�) = 0 (3.6)

holds true.

Regarding the study of the asymptotic behavior of the Radon measure-valued solutions
to the nonlinear parabolic equation (P), we construct the pseudo-stationary solutions to
problem (P). To this purpose, we consider the pseudo-stationary problem as follows:

⎧
⎨

⎩

–[ψ(w)]xx + w = u0(x) in �,

w = 0 on ∂�,
(S)

where u0 ∈ M+(�) and the function ψ verifies hypothesis (G). Notice that the nonlinear
elliptic equation (S) admits a nonnegative Radon measure-valued solution i.e. w ∈M+(�).

The main goal of the asymptotic behavior of the Radon measure-valued solutions to
problem (P) is given in the following theorem.

Theorem 3.3 Assume that hypotheses (1.1), (R), (G), and u0 ∈M+(�) are fulfilled. w is a
pseudo-stationary Radon measure-valued solution obtained from problem (S) and u is a
Radon measure-valued solution in the sense of Theorem 3.1 such that

lim sup
t→+∞

∥
∥u(·, t)

∥
∥
M+(�) < ∞. (3.7)

Then

u(·, t) → w in M+(�) as t → +∞. (3.8)
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Remark 3.2 Before we prove assertion (3.8), we shall ensure that statement (3.7) holds
true. Indeed, the function u is a Radon measure-valued solution to problem (P), then
u(·, t) ∈ M+(�) for a.e. t ∈ (0, T). By the extension of the solution to global solutions on
� × (0, +∞), we infer that ‖u(·, t)‖M+(�) ≤ C for a.e. t ∈ (0, +∞) so that (3.8) is obtained.

4 Approximating problems
To prove the existence, decay estimate, and the asymptotic behavior of the solutions, we
consider the approximating problem Pn as follows:

⎧
⎪⎪⎨

⎪⎪⎩

unt = [ψn(un)]xx + f (un) in Q,

un = 0 on ∂� × (0, T),

un(x, 0) = u0n in �.

(Pn)

The approximating function ψn is such that

ψn(s) = ψ(s) +
1
n

. (4.1)

Since u0 ∈M+(�), then the approximation of the Radon measure u0 is given by [7, Lemma
4.1], such that {u0n} ⊆ C∞

0 (�) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

u0n
∗

⇀ u0 in M+(�),

u0n → u0r a.e. in �,

‖u0n‖L1(�) ≤ ‖u0‖M+(�).

(4.2)

Notice that the use of L1- norm of the initial data is a consequence of the above [7, Lemma
4.1].

The existence of a weak solution un in C((0, T), L1(�)) ∩ L2((0, T), H1
0 (�)) ∩ L∞(Q) of

problem (Pn) is ensured by [4, Theorem 5] and [21, Chapter V, Theorem 2.1 and 6.7].
Moreover, unt ∈ L2((0, T), H–1(�)) given by [22, Proposition 6.1] and un ∈ L∞(Q) is proved
in [23, Theorem 3.1]. Then a definition of the weak solution {un} ⊆ C∞(Q) of (Pn) satisfies
the following statement:

∫ T

0

〈
un(·, t), ξt(·, t)

〉

�
dt =

∫ T

0

〈[
ψ(un)

]

x, ξx
〉

�
dt –

∫

Q
f (un)ξ dx dt –

〈
u0n, ξ (·, 0)

〉

�
, (4.3)

for every ξ in C1(Q) such that ξ (·, T) = 0 and ξ = 0 on ∂� × (0, T).
Now we establish some technical estimates which will be used in the proof of the exis-

tence solution.

Proposition 4.1 Suppose that f ≥ 0 in R+ and (G) holds. Moreover, u0n ≥ 0 in �. Then
there holds

un ≥ 0 in Q. (4.4)
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Proof Since ψ(un) = αun +βϕ(un). Let us consider the nonlinear parabolic boundary value
problem

⎧
⎪⎪⎨

⎪⎪⎩

Lun ≡ unt – div((α + βϕ′(un))unx) = f (un) in Q,

un = 0 on ∂� × (0, T),

un(x, 0) = u0n in �.

(Pn)

According to [21, Chapter V, Theorem 2.1 and Theorem 6.7], problem Pn possesses a
unique solution un. Since u0n ≥ 0 in �, and f (un) ≥ 0 in Q, it follows that

⎧
⎪⎪⎨

⎪⎪⎩

Lun ≥ 0 in Q,

un = 0 on ∂� × (0, T),

un(x, 0) ≥ 0 in �.

(Pn)

By [25, Chap. 10, Theorem 10.1], the comparison maximum principle theorem, we obtain
un(x, t) ≥ 0 in Q, whence estimate (4.4) holds. �

Lemma 4.1 Assume that (R) and (G) are satisfied and u0 ∈ M+(�). For every t ∈ [0, T],
there holds

∥
∥un(·, t)

∥
∥

L1(�) ≤ eLt‖u0‖M+(�), (4.5)

where L := ‖f ′(un)‖L∞(R+) is a positive constant.

Proof Let us consider the boundary value problem

Pun ≡ [
ψ(un)

]

xx – unt + f (un) = 0 in Q. (4.6)

By Proposition 4.1, ψ(un) ≥ 0 in Q and ψ(un) = 0 on ∂� × (0, T). In view of [21, Chapter
V], the maximum principle theorem, then for arbitrary point (x0, t0) ∈ ∂� × (0, T), we
obtain

∂ψ(un)
∂ν

(x0, t0) ≤ 0, (4.7)

the normal outer derivative of ψ(un)(x0, t0) at ∂� × (0, T). Applying Green’s formula for
every (x, t) ∈ Q, there holds

∫

Q

[
ψ(un)

]

xx dx =
∫

∂�×(0,T)

∂ψ(un)
∂ν

dH ≤ 0,

whereH denotes the Hausdorff (N –1)-dimensional measure. Using the Eq. (4.6), assump-
tion (4.2), and the mean-value theorem, we deduce that

∫

�

un(·, t) dx ≤ ‖u0‖M+(�) +
∥
∥f ′(un)

∥
∥

L∞(R+)

∫ t

0

∫

�

un(x, s) dx ds.

By Gronwall’s inequality, estimate (4.5) is achieved. �
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Proposition 4.2 Assume that hypotheses (R) and (G) are satisfied. Let un be the solution
of (Pn). Then there hold

∥
∥ψ(un)

∥
∥

L1(Q) ≤ C. (4.8)
∥
∥
[
ψ(un)

]

x

∥
∥

L2(Q) ≤ C. (4.9)

The sequence
{[

ψ(un)
]

t

}
is bounded in L1((0, T), H–1(�)

)
+ L1(Q). (4.10)

∥
∥ψ(un)

∥
∥

L2((0,T),H1
0 (�)) ≤ C. (4.11)

Proof By the definition of ψ in (1.1), ψ(un) = αun + βϕ(un). By (4.5), un is bounded in
L1(Q), and assumption (G), it is obvious that there exists a constant C > 0 such that (4.8)
is achieved.

Since ψ(un) ≥ 0 in Q and ψ(un) = 0 on ∂� × (0, T). The fact that un = ψ(ψ–1(un)) ∈
C1([0, T], H1

0 (�)). Let us consider the function sign defined in the following manner:

sign(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if s > 0,

0 if s = 0,

–1 if s < 0.

Assume that, for every K > 0, TK ∈ C1(R+)∩L∞(R+) such that 1 ≤ T ′
K (s) ≤ 2 inR+, TK (0) =

0 and TK (s) → 3
2 sχ(1,1+ε)(s) as K → +∞ for every 0 < ε < 1, where χ(1,1+ε) is a characteristic

function on (1, 1 + ε).
For instance, let us consider {gK } ⊆ C1(R) such that gK (s) →sign(s) as K → +∞ for ev-

ery s �= 0 to be any sequence satisfying the following conditions: gK (0) = 0, |gK (s)| ≤ 1,
g ′

K (s) ≥ 0, |sgK (s)| ≤ 1 for every s ∈R, and g ′
K (s) = 0 if |s| ≥ 1

K . By recalling the sequence {gK }
constructed in [1], we can construct the sequence of the function {TK } ⊆ C1(R+)∩L∞(R+)
such that TK (s) = (1 + 1

2 gK (s))sχ(1,1+ε)(s).
Assume that TK (ψ(un)) is a test function to the approximation problem (Pn). Then we

get
∫

Q

∣
∣
[
ψ(un)

]

x

∣
∣2T ′

K
(
ψ(un)

)
dx dt

=
∫

�

(∫ u0n(x)

0
TK

(
ψ(s)

)
ds

)

dx

–
∫

�

(∫ un(x,T)

0
TK

(
ψ(s)

)
ds

)

dx +
∫

Q
f (un)TK

(
ψ(un)

)
dx dt. (4.12)

Since 1 ≤ T ′
K (ψ(un)) ≤ 2 and TK (ψ(un)), TK (ψ(s)) ∈ L∞(R+) for every K , then (4.12) yields

∫

Q

∣
∣
[
ψ(un)

]

x

∣
∣2 dx dt ≤ ∥

∥TK
(
ψ(un)

)∥
∥

L∞(R+)‖u0‖M+(�)

+
∥
∥TK

(
ψ(un)

)∥
∥

L∞(R+)

∥
∥f (un)

∥
∥

L∞(R+)|Q|.

Then there exists a positive constant C = C(‖u0‖M+(�),‖f (un)‖L∞(R+), |Q|) > 0 such that
∫

Q

∣
∣
[
ψ(un)

]

x

∣
∣2 dx dt ≤ C.
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Assume that ξψ ′(un) is a test function into the first equation of (Pn). Then we have
∫

Q
ψ(un)ξt dx dt = –

∫

Q

[
ψ(un)

]

x

[
ξψ ′(un)

]

x dx dt +
∫

Q
f (un)ψ ′(un)ξ dx dt (4.13)

for any ξ ∈ C1
c (Q). Let us estimate each term of the right-hand side of Eq. (4.13). To this

purpose, we consider its first term
∫

Q

[
ψ(un)

]

x

[
ξψ ′(un)

]

x dx dt =
∫

Q

[
ψ(un)

]

xψ
′(un)ξx dx dt

+
∫

Q

([
ψ(un)

]

x

)2
ψ ′′(un))ξ dx dt. (4.14)

By hypothesis (G), ψ ′(un), ψ ′′(un) ∈ L∞(R+), then we obtain
∫

Q

[
ψ(un)

]

x

[
ξψ ′(un)

]

x dx dt ≤ ∥
∥ψ ′(un)

∥
∥

L∞(R+)

∫

Q

[
ψ(un)

]

xξx dx dt

+
∥
∥ψ ′′(un)

∥
∥

L∞(R)

∫

Q

∣
∣
[
ψ(un)

]

x

∣
∣2

ξ dx dt. (4.15)

By (4.9) and applying Holder’s inequality, there exist two positive constants C0 and C1 such
that

∣
∣
∣
∣

∫

Q

[
ψ(un)

]

x

[
ξψ ′(un)

]

x dx dt
∣
∣
∣
∣ ≤ C0‖ξx‖L2(Q) + C1‖ξ‖L∞(Q). (4.16)

On the other hand, we consider the second term on the right-hand side of Eq. (4.13). From
assumptions (G) and (R), we deduce that

∣
∣
∣
∣

∫

Q
f (un)ψ ′(un)ξ dx dt

∣
∣
∣
∣ ≤ C2‖ξ‖L∞(Q), (4.17)

where C2 is a positive constant. Hence the boundedness of the sequence {[ψ(un)]t} in
L2((0, T), H–1(�)) + L1(Q) follows.

To end this proof, it remains to establish estimate (4.11), let us consider the function h
defined by

h(s) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if 0 ≤ s ≤ t1,

s – t1 if t1 ≤ s ≤ t2,

t2 – t1 if s ≥ t2,

for any t1, t2 ∈ (0, T) such that t1 + 1 < t2, and we observe that 0 ≤ h(s) < C, s ∈ (0, t2). By
assumption (G), it is easy to observe that for every n ∈ N [ψ(un)]s = 0 on ∂� × (0, T) for
the homogeneous Dirichlet condition. Multiplying the approximation problem (Pn) by the
test function h(s)[ψ(un)]s and integrating over � × (0, t2), we obtain

0 ≤
∫ t2

0
h′(s) ds

∫

�

ψ ′(un)(uns)2 dx

= –
1
2

h(t2)
∫

�

∣
∣
[
ψ(un)

]

x

∣
∣2(x, t2) dx
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+
1
2

∫ t2

0
h′(s) ds

∫

�

∣
∣
[
ψ(un)

]

x

∣
∣2(x, t2) dx +

∫ t2

0

∫

�

h(s)f (un)
[
ψ(un)

]

s ds dx.

It implies that

∫

�

∣
∣
[
ψ(un)

]

x

∣
∣2(x, t2) dx ≤

∫ t2

0

∫

�

∣
∣
[
ψ(un)

]

x

∣
∣2(x, t2) dx

+ 2
∫ t2

0

∫

�

h(s)f (un)
[
ψ(un)

]

s ds dx. (4.18)

In view of assumption (R), f (un) ∈ L∞(R+), and the fact that (4.10) is satisfied, the last term
on the right-hand side of the previous estimate (4.18) is bounded. Since (4.9) holds, there
is a positive constant C such that (4.11) is achieved. �

5 Existence result
Now we study the limit points of the sequences {un} and ψ(un) as n → ∞.

Proposition 5.1 Suppose that (1.1), (R), and (G) are satisfied. Let un be the solution
of the approximating problem (Pn). Then there exist a subsequence {unk } ⊆ {un}, v ∈
L2((0, T), H1

0 (�)) ∩ L∞((0, T), H1
0 (�)) ∩ L∞(Q) and vt ∈ L2(Q) such that

ψ(unk ) ⇀ v in L1(Q), (5.1)
[
ψ(unk )

]

x ⇀ vx in L2(Q), (5.2)
[
ψ(unk )

]

t ⇀ vt in L2(Q), (5.3)

ψ(unk ) → v a.e. in Q. (5.4)

Proof By using Holder’s inequality

∫

Q

∣
∣
[
ψ(un)

]

x

∣
∣dx dt ≤

[∫

Q

|[ψ(un)]x|2
(1 + ψ(un))2 dx dt

] 1
2
[∫

Q

(
1 + ψ(un)

)2 dx dt
] 1

2

≤ C
[∫

Q

∣
∣
[
ψ(un)

]

x

∣
∣2 dx dt

] 1
2

.

From estimate (4.9), there exists a positive constant C > 0 such that
∫

Q

∣
∣
[
ψ(un)

]

x

∣
∣dx dt ≤ C.

According to Proposition 4.2, assumption (G), and (4.8), we infer that

∥
∥ψ(un)

∥
∥

BV (Q) =
∥
∥ψ(un)

∥
∥

L1(Q) +
∥
∥
[
ψ(un)

]

x

∥
∥

L1(Q) +
∥
∥
[
ψ(un)

]

t

∥
∥

L1(Q) ≤ C.

By [43, Chap. 3, Sect. 3.1, Theorem 3.23, and Theorem 3.9], convergence (5.1) holds. How-
ever, convergence (5.2) is the consequence of estimate (4.9). By Proposition 4.2, the se-
quence {[ψ(un)]t} is bounded in L2((0, T), H–1(�)) + L1(Q), then there exist a subsequence
denoted again {unk } ⊆ {un} and v∗ ∈ L2((0, T), H1

0 (�)) ∩ L∞(Q) such that

ψ(unk ) → v∗ a.e. in Q
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(see [26, Proposition 4.2]). Furthermore, by [7, Proposition 5.1] (5.3) holds true, and then
we have

ψ(unk ) → v a.e. in Q, (5.5)

with v = v∗, which leads to (5.4) being satisfied. �

Proposition 5.2 Assume that (1.1), (R), and (G) are satisfied. Let un be the weak solution
of problem (Pn). Then there exist a subsequence {unk } and u ∈ L∞((0, T),M+(�)) such that

unk

∗
⇀ u in M+(Q). (5.6)

Moreover, there exists a decreasing sequence {Ak} ⊂ Q of Lebesgue measurable sets with
|Ak| → 0 as k → ∞ such that

unk χQ\Ak ⇀ ub :=
∫

[0,+∞)
λdτ(x,t)(λ) in L1(Q), (5.7)

where τ ∈ Y(Q,R) is the Young measure associated with {unk } and

unk

∗
⇀ μ := u – ub in M+(Q). (5.8)

Proof By (4.5) and Proposition 4.2, we apply the compactness theorem given by [27], then
there exist u ∈ M+(Q) and a subsequence {unk } such that unk

∗
⇀ u in M+(Q). As argued

in [1, 10, 28], we obtain u ∈ L∞((0, T),M+(�)). Since (4.5) and the compactness result
implies that {unk } is bounded in L1(Q). By Proposition 2.2, there exist a sequence of {unk } ⊆
{un} and a Young measure τ ∈ Y(Q,R), and from Proposition 2.3 [Bitting Theorem], there
exists a sequence of measure sets Ak ⊆ Q, Ak ⊆ Ak+1 and |Ak| → 0 such that

unk χQ\Ak ⇀ ub :=
∫

[0,+∞)
λdτ(x,t)(λ) in L1(Q), (5.9)

where ub ∈ L1(Q), ub ≥ 0 is a barycenter of the limiting Young measure τ associated with
the subsequence {unk }. Moreover, repeating the same proof, we show that supp τ(x,t) ⊆
[0, +∞) and τ(x,t) = τ(x,t)�[0, +∞) for almost everywhere (x, t) ∈ Q, where τ(x,t) is the dis-
integration of the Young measure τ .

By (4.5) and the compactness result, the sequence {unk χQ\Ak } is uniformly bounded in
L1(Q). Therefore, there exists a Radon measure μ ∈M+(Q) such that unk

∗
⇀ μ in M+(Q).

Finally, the sequence unk is of unk = unk χAk + unk χQ\Ak

∗
⇀ μ + ub in M+(Q). Hence μ :=

u – ub in M+(Q) holds true. �

Proposition 5.3 Let unk , ub ∈ L∞((0, T), L1(�)) and μ ∈ L∞((0, T),M+(�)) be respec-
tively the subsequence, function, and the measure given in Proposition 5.2. Then there exist
a zero Lebesgue measure set N ⊂ (0, T) and the subsequence (denoted again {unk } such
that, for any t ∈ (0, T)\N , there holds

unk (·, t)
∗

⇀ μ(·, t) + ub(·, t) in M+(�). (5.10)
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Moreover, we get

unk (·, t)
∗

⇀ u(·, t) in M+(�), (5.11)

where u(·, t) = μ(·, t) + ub(·, t) for any t ∈ (0, T)\N .

Proof This proof is similar to [1, Proposition 7.4], we argue this proof in two steps:
Step 1. Assume that h ∈ C2(R+) is such that

⎧
⎨

⎩

h(s) ≥ 0 if s ≥ 0,

h(s) = s – ϕ(s) if s ≥ 1.

For every ρ ∈ C2
c (�), set

Uρ

h,k(t) :=
∫

�

h(unk )(x, t)ρ(x) dx.

Let us prove that

lim
k→∞

∫ T

0

∣
∣
∣
∣U

ρ

h,k(t) –
∫

�

h∗(x, t)ρ(x) dx –
〈
μ(·, t),ρ

〉

�

∣
∣
∣
∣dt = 0, (5.12)

where h∗ ∈ L∞((0, T), L1(�)) is defined by

h∗(x, t) =
∫

[0,+∞)
h(λ) dτ(x,t)(λ) a.e.(x, t) ∈ Q. (5.13)

By (4.5), we obtain that

∥
∥Uρ

h,k(t)
∥
∥

L∞(0,T) ≤ C‖ρ‖L∞(�)‖unk ‖L∞((0,T),L1(�)). (5.14)

The purpose of this step is to prove Uρ

h,k ∈ W 1,1(0, T) for every k.
In fact, the weak derivative of Uρ

h,k is given by

d
dt

Uρ

h,k(t) = –
∫

�

[
ψ(unk )

]

x

[
ρ(x)h′(unk )

]

x dx +
∫

�

f (unk )h′(unk )ρ(x) dx.

Hence, there holds

∫ T

0

∣
∣
∣
∣

d
dt

Uρ

h,k(t)
∣
∣
∣
∣dt ≤

∫ T

0

∣
∣
∣
∣

∫

�

[
ψ(unk )

]

x

[
ρ(x)h′(unk )

]

x dx
∣
∣
∣
∣dt

+
∫ T

0

∣
∣
∣
∣

∫

�

f (unk )h′(unk )ρ(x) dx
∣
∣
∣
∣dt. (5.15)

Since h′ is bounded and h′′ is compactly supported in R+, by (4.8), (4.9), (4.11), and as-
sumption (G), we may estimate each term of (5.15), then one has

∫ T

0

∣
∣
∣
∣

∫

�

[
ψ(unk )

]

x

[
ρ(x)h′(unk )

]

x dx
∣
∣
∣
∣dt ≤

∫

Q

∣
∣
[
ψ(unk )

]

x

∣
∣
∣
∣h′(unk )

∣
∣
∣
∣ρ ′(x)

∣
∣dx dt

+
∫

Q

∣
∣
[
ψ(unk )

]

x

∣
∣2 h′′(unk )

ψ ′(unk )
dx dt.
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It follows that

∫ T

0

∣
∣
∣
∣

∫

�

[
ψ(unk )

]

x

[
ρ(x)h′(unk )

]

x dx
∣
∣
∣
∣dt

≤ ∥
∥h′(unk )

∥
∥

L∞(R+)

∫

Q

∣
∣
[
ψ(unk )

]

x

∣
∣
∣
∣ρ ′(x)

∣
∣dx dt

+ C(β)
∫

Q

∣
∣
[
ψ(unk )

]

x

∣
∣2 |ψ ′′(unk )|

ψ ′(unk )
dx dt. (5.16)

By assumption (G)-(iii) and (4.9), there exists a positive constant Cρ = C(ρ) such that

∫ T

0

∣
∣
∣
∣

∫

�

[
ψ(unk )

]

x

[
ρ(x)h′(unk )

]

x dx
∣
∣
∣
∣dt ≤ Cρ . (5.17)

On the other hand, we have

∫ T

0

∣
∣
∣
∣

∫

�

f (unk )h′(unk )ρ(x) dx
∣
∣
∣
∣dt ≤ L‖ρ‖L∞(�)

∥
∥h′(unk )

∥
∥

L∞(R+)

∫

Q
unk dx dt.

Accordingly, there exists a positive constant C̃ρ = C̃(ρ) such that

∫ T

0

∣
∣
∣
∣

∫

�

f (unk )h′(unk )ρ(x) dx
∣
∣
∣
∣dt ≤ C̃ρ . (5.18)

In view of (5.15)–(5.18), the sequence {Uρ

h,k} is uniformly bounded in W 1,1(0, T), whence
relatively compact in L1(0, T). In particular, there exists a subsequence {Uρ

h,kj
} depending

on ρ and h, where a function Uρ

h ∈ L1(0, T) is such that

Uρ

h,kj
→ Uρ

h in L1(0, T) as j → ∞. (5.19)

Since we have

ϕ(s) = s – h(s) (s ∈R+), (5.20)

where ϕ ∈ C(R+) ∩ L∞(R+) (see assumption (H)). By Proposition 2.2, we have

ϕ(unk )
∗

⇀ ϕ∗ in L∞(Q), (5.21)

where ϕ∗ is defined by

ϕ∗(x, t) =
∫

[0,+∞)
ϕ(λ) dτ(x,t)(λ)

(
a.e. (x, t) ∈ Q

)
. (5.22)

In particular, combining (5.21) with (5.8), one has

h(unk ) = unk – ϕ(unk )
∗

⇀ (ub + μ) – ϕ∗ in M+(Q),
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where ub ∈ L∞((0, T), L1(�)) and μ ∈ L∞((0, T),M+(�)) are respectively the function and
measure in Proposition 5.2, and so

ub – ϕ∗ =
∫

[0,+∞)

(
λ – ϕ(λ)

)
dτ(x,t)(λ) =

∫

[0,+∞)
h(λ) dτ(x,t)(λ) = h∗(x, t) a.e. (x, t) ∈ Q.

Moreover, we obtain

lim
k→∞

∫ T

0
ξ (t)Uρ

h,k(t) dt = lim
k→∞

∫

Q
h(unk )ρ(x)ξ (t) dx dt

=
∫

Q
h∗(x, t)ρ(x)ξ (t) dx dt + 〈μ,ρξ 〉Q

=
∫ T

0
ξ (t)

(∫

�

h∗(x, t)ρ(x) dx +
〈
μ(·, t),ρ

〉

�

)

dt,

whence by (5.19) there holds

Uρ

h (t) =
∫

�

h∗(x, t)ρ(x) dx +
〈
μ(·, t),ρ

〉

�
(5.23)

for every t ∈ (0, T)\N .
Step 2: Assume that, for every ρ ∈ C2

c (�), set

Uρ

k (t) =
∫

�

unk (x, t)ρ(x) dx a.e. t ∈ (0, T). (5.24)

For h given in (5.20), we infer that

Uρ

k (t) = Uρ

h,k(t) + Uρ

ϕ,k(t), (5.25)

where Uρ

h,k and Uρ

ϕ,k are defined in (5.11) and

Uρ

ϕ,k(t) :=
∫

�

ϕ(unk )(x, t)ρ(x) dx a.e. t ∈ (0, T). (5.26)

Based on Proposition 5.2 with (5.25), we will show the following convergence:

Uρ

k → Uρ in L1(0, T), (5.27)

where

Uρ(t) =
∫

�

(
h∗(x, t) + ϕ∗(x, t)

)
ρ(x) dx +

〈
μ(·, t),ρ

〉

�
.

From (5.20), there holds

h∗(x, t) + ϕ∗(x, t) =
∫

[0,+∞)

(
h(λ) + ϕ(λ)

)
dτ(x,t)(λ) =

∫

[0,+∞)
λdτ(x,t)(λ) = ub(x, t)

for a.e.(x, t) ∈ Q.
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To prove (5.27), we consider for every ρ ∈ Cc(�) and {ρk} ⊆ C2
c (�) be any sequence such

that ρk → ρ uniformly in �, then we get

∫ T

0

∣
∣Uρ

k (t) – Uρ(t)
∣
∣dt ≤

∫ T

0

∣
∣Uρ

k (t) – Uρj
k (t)

∣
∣dt +

∫ T

0

∣
∣Uρj

k (t) – Uρj (t)
∣
∣dt

+
∫ T

0

∣
∣Uρj (t) – Uρ(t)

∣
∣dt.

By Step 1, one has

∫ T

0

∣
∣Uρj (t) – Uρ(t)

∣
∣dt ≤ ‖ρ – ρj‖C(�)

∫ T

0
μ(·, t)(�) dt + ‖ρ – ρj‖C(�)

∫

Q
ub(x, t) dx dt.

Therefore, we obtain

∫ T

0

∣
∣Uρ

k (t) – Uρ(t)
∣
∣dt

≤ ‖ρ – ρj‖C(�)

∫

Q
unk (x, t) dx dt + ‖ρ – ρj‖C(�)

∫ T

0
μ(·, t)(�) dt

+
∫ T

0

∣
∣Uρj

k (t) – Uρj (t)
∣
∣dt + ‖ρ – ρj‖C(�)

∫

Q
ub(x, t) dx dt. (5.28)

By (4.5) and (5.28), one has

lim sup
k→∞

∫ T

0

∣
∣Uρ

k (t) – Uρ(t)
∣
∣dt ≤ C‖ρ – ρj‖C(�) + ‖ρ – ρj‖C(�)

∫

Q
ub(x, t) dx dt

+ ‖ρ – ρj‖C(�)

∫ T

0
μ(·, t)(�) dt.

By letting j → ∞ in the above inequality, assertion (5.27) holds true. Therefore, for every
ρ , there exist a subsequence denoted again by {unk } and a zero Lebesgue measure set N ⊂
(0, T) such that we get

lim
k→∞

∫

�

unk (t)ρ(x) dt =
∫

�

ub(x, t)ρ(x) dx +
〈
μ(·, t),ρ

〉

�
(5.29)

for any t ∈ (0, T)\N and every ρ ∈ Cc(�), hence (5.10) and (5.11). �

Proposition 5.4 Suppose that (1.1), (1.4), (R), and (G) hold. Let μ be given by Proposi-
tion 5.2. Then there holds

ψ(unk )
∗

⇀ ψ∗ + αμ in M+(Q), (5.30)

and

f (unk )
∗

⇀ f ∗ + f ′(+∞)μ in M+(Q), (5.31)
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where f ∗,ψ∗ ∈ L∞((0, T), L1(�)) is defined by

ψ∗(x, t) =
∫

[0,+∞)
ψ(λ) dτ(x,t)(λ) and f ∗(x, t) =

∫

[0,+∞)
f (λ) dτ(x,t)(λ) (3.4)

for a.e. in Q.

The proof of Proposition 5.4 is argued as in [14, Proposition 5.2] or [1, Lemma 8.3], for
this reason we omit this proof.

Proposition 5.5 Assume that (1.1), (1.4), (R), and (G) hold. Let μ be given by Proposi-
tion 5.2. Then there exist a zero Lebesgue measure set N ⊂ (0, T) and a subsequence of
{unk } such that, for any t ∈ (0, T)\N , there holds

ψ(unk )
∗

⇀ ψ∗(·, t) + αμ(·, t) in M+(�) (5.32)

and

f (unk )
∗

⇀ f ∗(·, t) + f ′(+∞)μ(·, t) in M+(�). (5.33)

Proof Let τ ∈ Y(Q,R) and {unk } be respectively the Young measure and the subsequence
associated with the sequence of Young measure {τ n}. For every ρ ∈ Cc(�),

Gρ

k (t) =
∫

�

ψ(unk )(x, t)ρ(x) dx, a.e. t ∈ (0, T).

To prove convergence (5.32), it is enough to show that

lim
k→+∞

∫ T

0
Gρ

k (t)ξ (t) dt =
∫ T

0
Gρ(t)ξ (t) dt (5.34)

for every ξ ∈ C1
c (0, T), with

Gρ(t) =
∫

�

ψ∗(x, t))ρ(x) dx + α

∫

�

μ(·, t)ρ(x) dx (5.35)

and μ(·, t) ∈ M+(�) and ψ∗ ∈ L∞(Q) given by (3.4). From assumption (G) and (1.1), the
function ψ ∈ C2(R+), and for any ρ ∈ C1

c (�), for every k ∈ N, there holds

∥
∥Gρ

k
∥
∥

L∞(0,T) ≤ C
∥
∥ψ(unk )

∥
∥

L1(Q)‖ρ‖L∞(�). (5.36)

Moreover, let us consider ρψ ′(unk )ξ . For every ξ ∈ C1
c (0, T) as a test function in (Pn), there

holds

∫ T

0

[
Gρ

k (t)
]

tξ dx dt = –
∫ T

0
ξ (t)

(∫

�

[
ψ(unk )

]

x

[
ρ(x)ψ ′(unk )

]

x dx
)

dt

+
∫ T

0
ξ (t)

(∫

�

f (unk )ψ ′(unk )ρ(x) dx
)

dt, (5.37)
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which leads to the fact that the weak derivation of Gρ

k ∈ W 1,1(0, T) is such that

d
dt

Gρ

k (t) = –
∫

�

[
ψ(unk )

]

x

[
ρ(x)ψ ′(unk )

]

x dx +
∫

�

f (unk )ψ ′(unk )ρ(x) dx. (5.38)

Since f , f ′, ψ ′, and ψ ′′ are continuous and uniformly bounded (see assumptions (G) and
(R)), then we have

∫ T

0

∣
∣
∣
∣

d
dt

Gρ

k (t)
∣
∣
∣
∣dt ≤

∫ T

0

∣
∣
∣
∣

∫

�

[
ψ(unk )

]

x

[
ρ(x)ψ ′(unk )

]

x dx
∣
∣
∣
∣dt

+
∫ T

0

∣
∣
∣
∣

∫

�

f (unk )ψ ′(unk )ρ(x) dx
∣
∣
∣
∣dt. (5.39)

By (4.8), (4.9), (4.11), and assumptions (G) and (R), we may estimate each term of (5.39) as
follows:

∫ T

0

∣
∣
∣
∣

∫

�

[
ψ(unk )

]

x

[
ρ(x)ψ ′(unk )

]

x dx
∣
∣
∣
∣dt ≤

∫

Q

∣
∣
[
ψ(unk )

]

x

∣
∣
∣
∣ψ ′(unk )

∣
∣
∣
∣ρ ′(x)

∣
∣dx dt

+
∫

Q

∣
∣
[
ψ(unk )

]

x

∣
∣2 ψ ′′(unk )

ψ ′(unk )
dx dt. (5.40)

Therefore, there exists a positive constant Cρ = C(ρ) such that

∫ T

0

∣
∣
∣
∣

∫

�

[
ψ(unk )

]

x

[
ρ(x)ψ ′(unk )

]

x dx
∣
∣
∣
∣dt ≤ Cρ . (5.41)

On the other hand, we have

∫ T

0

∣
∣
∣
∣

∫

�

f (unk )ψ ′(unk )ρ(x) dx
∣
∣
∣
∣dt ≤ L‖ρ‖L∞(�)

∥
∥ψ ′(unk )

∥
∥

L∞(R+)

∫

Q
unk dx dt.

Accordingly, there exists a positive constant C̃ρ = C̃(ρ) such that

∫ T

0

∣
∣
∣
∣

∫

�

f (unk )ψ ′(unk )ρ(x) dx
∣
∣
∣
∣dt ≤ C̃ρ . (5.42)

In view of (5.39)–(5.42), the sequence {Gρ

h,k} is uniformly bounded in W 1,1(0, T), whence
relatively compact in L1(0, T). To achieve this proof, we consider for every ρ ∈ Cc(�) and
{ρk} ⊆ C2

c (�) be any sequence such that ρk → ρ uniformly in �, then we get

∫ T

0

∣
∣Gρ

k (t) – Gρ(t)
∣
∣dt

≤
∫ T

0

∣
∣Gρ

k (t) – Gρj
k (t)

∣
∣dt +

∫ T

0

∣
∣Gρj

k (t) – Gρj (t)
∣
∣dt +

∫ T

0

∣
∣Gρj (t) – Gρ(t)

∣
∣dt

≤ ‖ρ – ρj‖C(�)

∫

Q
ψ(unk )(x, t) dx dt

+ α‖ρ – ρj‖C(�)

∫ T

0
μ(·, t)(�) dt +

∫ T

0

∣
∣Gρj

k (t) – Gρj (t)
∣
∣dt. (5.43)
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By (4.5) and (5.43), one has

lim sup
k→∞

∫ T

0

∣
∣Gρ

k (t) – Gρ(t)
∣
∣dt ≤ C‖ρ – ρj‖C(�) + ‖ρ – ρj‖C(�)

∫

Q
ψ∗(x, t) dx dt

+ α‖ρ – ρj‖C(�)

∫ T

0
μ(·, t)(�) dt.

By letting j → ∞ in the above inequality, assertion (5.32) holds true. We use a similar
approach to prove convergence (5.33). Hence, we omit the proof of assertion (5.33). �

Remark 5.1 Since ψ is given in (1.1), assumption (H) and (5.8) hold, then there exists a
subsequence of {unk } (not relabeled) such that

ψ(unk )
∗

⇀ αu + βϕ∗ in M+(Q), (5.44)

where ϕ∗ is defined by (5.22) and u is given in Proposition 5.2. Similarly, we get

ψ(unk )
∗

⇀ αu(·, t) + βϕ∗(·, t) in M+(�), (5.45)

where t ∈ (0, T)\N .

Proposition 5.6 Suppose that (1.1), (1.4), (R), and (G) hold. Let (5.8) be the Lebesgue de-
composition of u. Then there holds

ub = ur a.e. in Q; μ = us a.e. in M+(Q). (5.46)

Moreover,

ψ(ur) =
∫

[0,+∞)
ψ(λ) dτ(x,t)(λ) and f (ur) =

∫

[0,+∞)
f (λ) dτ(x,t)(λ), (5.47)

where ur ∈ L∞((0, T), L1(�)) is the density of an absolutely continuous part of u.

Proof Let us recall the definition of the weak solution to problem (Pn) with m ∈ N\{0}
such that

∫

Q

{
um

nk
ξt + ψm

(
um

nk

)
ξxx

}
dx dt +

∫

Q
fm

(
um

nk

)
ξ dx dt =

〈
um

0nk
, ξ (·, 0)

〉

�
, (5.48)

whenever ψm(λ) = ψ(λ)χ(–m, 1
m )(λ) and fm(λ) = f (λ)χ(–m, 1

m )(λ). From Proposition 5.2 –
Proposition 5.4, the following assertions hold true:

lim
nk→∞

∫ t

0

∣
∣
∣
∣

∫

�

um
nk

ξt dx –
∫

�

um
b ξt dx –

〈
μ(·, t), ξt

〉

�

∣
∣
∣
∣dt = 0, (5.49)

lim
nk→∞

∫ t

0

∣
∣
∣
∣

∫

�

ψm
(
um

nk

)
ξxx dx –

∫

�

ψ∗
mξxx dx –

〈
αμ(·, t), ξxx

〉

�

∣
∣
∣
∣dt = 0, (5.50)
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and

lim
nk→∞

∫ t

0

∣
∣
∣
∣

∫

�

fm
(
um

nk

)
ξ dx –

∫

�

f ∗
mξ dx –

〈
f ′(+∞)μ(·, t), ξ

〉

�

∣
∣
∣
∣dt = 0, (5.51)

where

um
b (x, t) =

∫

[0,+∞)
λχ(–m, 1

m )(λ) dτ(x,t)(λ),

ψ∗
m(x, t) =

∫

[0,+∞)
ψ(λ)χ(–m, 1

m )(λ) dτ(x,t)(λ),

and

f ∗
m(x, t) =

∫

[0,+∞)
f (λ)χ(–m, 1

m )(λ) dτ(x,t)(λ)

belong to L∞((0, T), L1(�)). Since we assume that ξ is a solution to the backward parabolic
equations (ν · α) such that ξν ∈ C(Q), we get

lim
nk→∞

[∫

�×(0,t)

{
um

nk
ξt + ψm

(
um

nk

)
ξxx

}
dx dt +

∫

�×(0,t)
fm

(
um

nk

)
ξ dx dt

]

=
∫

�×(0,t)

{
um

b (x, t)ξt(x, t) + ψ∗
m(x, t)ξxx(x, t) + f ∗

m(x, t)ξ (x, t)
}

dx dt

+
∫ t

0

〈
μ(·, t), ξν

〉

�
(5.52)

and

lim
nk→∞

∫

�

um
0nk

ξ (·, 0) dx =
∫

�

u0rχ(–m, 1
m )(u0r)ξ (·, 0) dx +

∫

�

u0sξ (·, 0) dx. (5.53)

Since, for all u ≥ 0, |ψm(u)| ≤ (α + β)uχ(–m, 1
m )(u) and |fm(u)| ≤ Luχ(–m, 1

m )(u), then
|ψ∗

m(x, t)| ≤ (α + β)um
b , where L := ‖f ′(u)‖L∞(R+) and |f ∗

m(x, t)| ≤ Lum
b . Therefore, the fol-

lowing convergence holds: um
b → 0, ψ∗

m → 0, and f ∗
m → 0 a.e. in Q as m → ∞. For all

t ∈ (0, T)\N , with |N | = 0. From (5.48)–(5.53), we deduce that

〈
μ(·, t), ξ

〉

�
=

∫ t

0

〈
μ(·, t), ξν

〉

�
dt +

〈
u0s, ξ (·, 0)

〉

�
.

Taking the test function ξ ∈ C([0, T], C1
0(�)) such that ξν = 0 in � × (0, t). Hence μ(·, t)

is singular with respect to the Lebesgue measure and μ(·, t) = [μ(·, t)]s = us(·, t) for any
t ∈ (0, T)\N . �

6 Characterization of the limit Young measure
The main result of this section is given by the following proposition.

Proposition 6.1 Let v ∈ L2((0, T), H1
0 (�))∩L∞((0, T), H1

0 (�))∩L∞(Q) be the limit of func-
tion given in Proposition 5.1. (i) Let {σn} ⊆ Y(Q,R) be the sequence of Young measures on
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Q ×R associated with {ψ(un)}. Then there exist Young measure σ ∈ Y(Q,R) and a subse-
quence {ψ(unk )} ⊆ {ψ(un)} such that

σnk → σ narrowly on Q ×R, (6.1)

for almost everywhere (x, t) ∈ Q, there holds

σ(x,t) = δ{v(x,t)}, (6.2)

where σ(x,t) ∈P(R) is the disintegration of σ .
(ii) Let {τn} ⊆ Y(Q,R) be the sequence of Young measures on Q ×R associated with {un}.

Then there exist Young measure τ ∈ Y(Q,R) and a subsequence {unk } ⊆ {un} such that

τnk → τ narrowly on Q ×R. (6.3)

Denoting by τ(x,t) the disintegration of τ , for almost everywhere (x, t) ∈ Q, there hold

τ(x,t) = δψ–1(v(x,t)) and supp τ(x,t) ⊆ [0, +∞), (6.4)

where δ{ψ–1(v(x,t))} is a Dirac mass concentration at ψ–1(v(x, t)).

The proof of Proposition 6.1 is postponed now, and it will be made at the end of this sec-
tion due to a number of intermediate steps: Proposition 6.2, Proposition 6.3, and Propo-
sition 6.4.

Let us consider the function V as follows:

V (s) =

⎧
⎨

⎩

s if s > 0,

0 if s ≤ 0.
(6.5)

Proposition 6.2 Let V be the function (6.5), and let τ(x,t) be the disintegration of the limit
Young measure τ mentioned in Proposition 5.2. Then there exist a subsequence {unk } ⊆ {un}
and a zero Lebesgue measure set N ⊂ (0, T) such that

V (unk )(·, t) ⇀

∫

[0,+∞)
V (λ) dτ(·,t)(λ) in L1(�) (6.6)

for every t ∈ (0, T)\N .

Proof Fix any ρ ∈ C1
c (�) and ε > 0. Set

W ρ
ε,n(t) =

∫

�

Vε(un)(x, t)ρ(x) dx
(
a.e. t ∈ (0, T)

)
, (6.7)

where

Vε(s) =
∫ s

0
Tε(σ ) dσ and Tε(σ ) = 1 if σ >

1
ε

; Tε(σ ) = εσ if σ ≤ 1
ε

. (6.8)

Let us first show that W ρ
ε,n ∈ W 1,1(0, T).
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By [28, Proposition 4.10], there exists an open set �t
n ⊆ � (depending on t) such

that dist(�t
n, St) > 0 and suppTε(un)(·, t) ⊂ �t

n and un(·, t) ∈ H1(�t
n), where St = {x ∈

�/ψ(ur)(x, t) �= ∞}, then there holds

unt(·, t) =
[
ψ(un)(·, t)

]

xx + f (un)(·, t) a.e. in �t
n. (6.9)

The weak derivative of W ρ
ε,n is given by

d
dt

W ρ
ε,n(t) =

∫

�

∣
∣
[
ψ(un)

]

x

∣
∣2 T ′

ε (un)
ψ ′(un)

ρ(x) dx +
∫

�

[
ψ(un)

]

xTε(un)ρ ′(x) dx

+
∫

�

f (un)Tε(un)ρ(x) dx (6.10)

for every t ∈ (0, T)\N .

∫ T

0

∣
∣
∣
∣

d
dt

W ρ
ε,n(t)

∣
∣
∣
∣dt

≤
∫ T

0

∣
∣
∣
∣

∫

�

∣
∣
[
ψ(un)

]

x

∣
∣2 T ′

ε (un)
ψ ′(un)

ρ(x) dx
∣
∣
∣
∣dt +

∫ T

0

∣
∣
∣
∣

∫

�

[
ψ(un)

]

xTε(un)ρ ′(x) dx
∣
∣
∣
∣dt

+
∫ T

0

∣
∣
∣
∣

∫

�

f (un)Tε(un)ρ(x) dx
∣
∣
∣
∣dt. (6.11)

In view of (1.1), (4.5), (4.8), (6.8), and assumption (G), there exists a positive constant Ĉρ =
Ĉ(ρ) such that

∫ T

0

∣
∣
∣
∣

d
dt

W ρ
ε,n(t)

∣
∣
∣
∣dt

≤
∥
∥
∥
∥
T ′

ε (un)
ψ ′(un)

∥
∥
∥
∥

L∞(R+)
‖ρ‖C(�)

∫

Q

∣
∣
[
ψ(un)

]

x

∣
∣2 dx dt

+
∥
∥T ′

ε (un)
∥
∥

L∞(R+)

∥
∥ρ ′∥∥

C(�)

∫

Q

∣
∣
[
ψ(un)

]

x

∣
∣dx dt + C‖ρ‖C(�) := Ĉ(ρ). (6.12)

Notice that estimate (6.12) holds for every α �= 0.
Then sequence {Vε(un)} is uniformly bounded in L1(�) and equi-integrable. In fact, for

almost everywhere (x, t) ∈ Q, there holds

∫

�

∣
∣Vε(un)

∣
∣dx =

∫

�

∣
∣
∣
∣

∫ un(x,t)

0
Tε(σ ) dσ

∣
∣
∣
∣dx ≤

∫

�

∣
∣un(x, t)

∣
∣dx ≤ C‖u0‖M+(�). (6.13)

By (6.10) and (6.11), the family {W ρ
ε,n(t)} is uniformly bounded in W 1,1(0, T). Therefore,

there exist a subsequence {unk } ⊆ {un} and a function W ρ
ε ∈ L1(0, T) such that

W ρ
ε,nk

→ W ρ
ε in L1(0, T), (6.14)

where

W ρ
ε (t) =

∫

[0,+∞)
Vε(λ) dτ(x,t)(λ). (6.15)
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Notice that the proof of (6.14) is argued as in Proposition 5.3. Therefore, for any ξ ∈
L∞(0, T), we have

lim
nk→∞

∫ T

0
W ρ

ε,nk
(t)ξ (t) dt = lim

k→∞

∫ T

0
ξ (t) dt

∫

�

Vε(unk )ρ(x) dx

= lim
nk→∞

∫

Q
Vε(unk )ρ(x)ξ (t) dx dt

=
∫

Q

(∫

[0,+∞)
Vε(λ) dτ(x,t)(λ)

)

ρ(x)ξ (t) dx dt. (6.16)

By the dominated convergence theorem, there holds

lim
ε→0

lim
nk→∞

∫ T

0
W ρ

ε,nk
(t)ξ (t) dt =

∫ T

0
ξ (t) dt

∫

�

V ∗(x, t)ρ(x) dx, (6.17)

whenever

W ρ(t) =
∫

�

V ∗(x, t)ρ(x) dx =
∫

�

(∫

[0,+∞)
V (λ) dτ(x,t)(λ)

)

ρ(x) dx (6.18)

for any t ∈ (0, T)\N . �

Consider the orthogonal basic of L2(�) given by the operator –� with homogeneous
Dirichlet conditions. Let {μi} be the corresponding sequence of eigenvalues. Let Pn, Qn:
L2(�) → H1

0 (�), Pn + Qn = I be the projection operator defined as follows:

Pñf =
∑

μi≤n
f̃iηi, Qñf =

∑

μi≥n
f̃iηi, and f̃i =

∫

�

f̃ ηi dx

for any f̃ ∈ L2(�).

Proposition 6.3 There exists C > 0 such that

∥
∥Pnψ(un)

∥
∥

L2((0,T),H1
0 (�)) + n

1
2
∥
∥Pnψ(un)

∥
∥

L2(Q) ≤ C. (6.19)

We omit the proof of Proposition 6.3, the reader may refer to [28, Lemma 1], and this
proposition is used in the proof of the following proposition.

Proposition 6.4 Let {unk } be a subsequence mentioned in Proposition 6.2 and ν be the
disintegration of the limit Young measure τ in Proposition 5.2. Let V be function (6.3), set
also F := f̃ ◦ ψ with f̃ ∈ C(R) such that ‖̃f ‖L∞(R) + ‖̃f ′‖L∞(R) ≤ C for some constant C > 0.
Then there holds

∫

[0,+∞)
F(λ)V (λ) dτ(x,t)(λ) =

∫

[0,+∞)
F(λ) dτ(x,t)(λ) ·

∫

[0,+∞)
V (λ) dτ(x,t)(λ). (6.20)

We omit the proof of Proposition 6.4, the reader should refer to [28, Proposition 6] for de-
tails. The importance of recalling this Proposition 6.4 is that it can be proved for almost
everywhere (x, t) ∈ Q, the disintegration measure σ(x,t) is the Dirac mass concentrated at
the point ψ∗(x, t), where ψ∗(x, t) is given by (5.31).
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Now we can prove the main result of this section.

Proof of Proposition 6.1 (i) By Proposition 5.1, the function v ∈ L2((0, T), H1
0 (�)) ∩

L∞((0, T), H1
0 (�)) ∩ L∞(Q) is such that (5.1), (5.2), and (5.4) hold. By statement (6.20),

we choose the suitable functions F and V , then it can be proven for almost everywhere
(x, t) ∈ Q, the disintegration σ (probably replacing σ(x,t) by τ(x,t)) is a Dirac mass concen-
trated at ψ∗(x, t) such that

ψ(unk ) ⇀ ψ∗(x, t) =
∫

[0,+∞)
ψ(λ) dσ(x,t)(λ) in L1(Q). (6.21)

The relevant proof is similar to that given in [41] and [42, Lemmas 5.1–5.2 and Theorem
2.12], then we omit it. To achieve the proof of the assertion (6.2), we should show that
ψ∗ = v a.e. in Q. According to Proposition 5.6 and Proposition 5.2, we obtain

ψ∗(x, t) =
∫

[0,+∞)
ψ(λ) dσ(x,t)(λ) = ψ

(∫

[0,+∞)
λdσ(x,t)(λ)

)

= ψ(ur) = v(x, t). (6.22)

It follows that

σ(x,t) = δ{ψ∗(x,t)} = δ{v(x,t)}. (6.2)

(ii) Convergence (6.3) is a consequence of the Prokhorov theorem, since the sequence
{un} is uniformly bounded in L1(Q) (see (4.5)). Furthermore, there exists a subsequence
{unk } ⊆ {un} such that (5.1)–(5.4) and (6.2) hold. Since ψ ′ > 0, then unk → ψ–1(v(x, t)) a.e.
in Q. Hence (6.4) is satisfied. �

Remark 6.1 (i) Assume that (1.1) and (G) are satisfied and v ∈ L2((0, T), H1
0 (�)) ∩

L∞((0, T), H1
0 (�)) ∩ L∞(Q) as in Proposition 5.1, then S̃ = {(x, t) ∈ Q/v(x, t) = ∞} has a

zero Lebesgue measure. Moreover,

ur(x, t) = ψ–1(v(x, t)
)

a.e. (x, t) ∈ Q\̃S and supp us ⊆ S̃. (6.23)

(ii) ur ∈ H1(Q0) for any open subset Q0 ⊆ Q such that dist(Q0, S̃) > 0 and ur ∈ C(Q\̃S), then

lim
dist(Q0,̃S)→0

ur(x, t) = 0. (6.24)

Proof of Theorem 3.1 The existence of solutions to problem (P) with qualitative properties
follows from the statement of Proposition 5.2 – Proposition 5.6 and Proposition 6.1. �

7 Decay estimate of solutions
To establish the decay estimates, we make use of suitable test functions in the definition
of weak solutions to the approximation problem (P) and the lower semi-continuity of the
total variation theorem, then the estimate follows.
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Proof of Theorem 3.2 Let us consider the approximation problem of (Zn) given by

⎧
⎪⎪⎨

⎪⎪⎩

vnt = [ψ(vn)]xx + f (un) in Q := � × (0, T),

vn = 0 on ∂� × (0, T),

vn(x, 0) = 0 in �.

(Zn)

For every ε > 0, we consider that {ηε(t)} is a sequence of smooth functions such that
‖ηε(t)‖L1(0,T) ≤ C and ηε(t)

∗
⇀ δt in M+(0, T). Let us choose ξ (x, t) = sign(un(x, t) –

vn(x, t))
∫ T

t ηε(s)sα ds as a test function in the approximation problem (Pn) – (Zn), then we
have

∫

�

∫ T

0

∣
∣un(x, t) – vn(x, t)

∣
∣ηε(t)tα dx dt

=
∫

�

∫ T

0
u0n(x)ηε(t)tα dx dt

+
∫

�

∫ T

0

[
ψ(un) – ψ(vn)

]

xx sign
(
un(x, t) – vn(x, t)

)
∫ T

t
ηε(s)sα ds dx dt.

By the integration by parts, the second term on the right-hand side vanishes, and we esti-
mate the first term on the right-hand side, then we obtain

∫

�

∫ T

0

∣
∣un(x, t) – vn(x, t)

∣
∣ηε(t)tα dx dt ≤ C‖u0‖M+(�), (7.1)

where C = C(T) > 0. By letting ε → 0+, we deduce that

tα

∫

�

∣
∣un(x, t) – vn(x, t)

∣
∣dx ≤ C‖u0‖M+(�). (7.2)

By [9, Theorem 1, Sect. 5.2.1], the lower semi-continuity of the total variation, we get

tα
∥
∥u(·, t) – v(·, t)

∥
∥
M+(�) ≤ lim inf

n→+∞ tα

∫

�

∣
∣un(x, t) – vn(x, t)

∣
∣dx ≤ C‖u0‖M+(�)

for a.e. t ∈ (0, T) and α > 0. Estimates (3.5) and (3.6) are achieved. �

Proof of Theorem 3.3 We argue this proof in two steps:
Step 1. We show that the solution of the nonlinear elliptic equation (S) is Radon measure-

valued.
To prove that the pseudo-stationary solutions w are Radon measure-valued solutions,

we consider the approximation problem

⎧
⎪⎪⎨

⎪⎪⎩

–[ψ(wn)]xx + wn = u0n in �,

wn = 0 on ∂�,

wn(x) ≥ 0 in �,

(Sn)
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where {wn} ⊆ H1
0 (�)∩L∞(�) and {u0n} ⊆ C∞

0 (�) satisfies hypothesis (4.2). Let us consider
the function Tε for any ε > 0 defined above such that

Tε(s) =

⎧
⎨

⎩

1 if s > 1
ε

,

εs if s ≤ 1
ε

.

Notice that 0 ≤ Tε(s) ≤ 1 in R+, Tε(s) → 1 as ε → 0+. Taking Tε(wn) as a function in (Sn),
we obtain

∫

�

ψ ′(wn)T ′
ε (wn)|wnx|2 dx +

∫

�

Tε(wn)wn dx ≤ ‖u0‖M+(�).

By assumption (G), there holds

‖wn‖L1(�) ≤ ‖u0‖M+(�). (7.3)

On the other hand, we consider TK (ψ(wn)) = (1 + 1
2 gK (ψ(wn)))ψ(wn)χ(1,1+ε)(ψ(wn)) (see

the proof of Proposition 4.2) is a test function in the approximation problem (Sn), then we
obtain

∫

�

∣
∣
[
ψ(wn)

]

x

∣
∣2T ′

K
(
ψ(wn)

)
dx +

∫

�

wnTK
(
ψ(wn)

)
dx =

∫

�

u0nTK
(
ψ(wn)

)
dx.

Since 1 ≤ T ′
K (ψ(wn)) ≤ 2 and TK (ψ(wn)) ∈ L∞(R+), for every K , there holds

∫

�

∣
∣
[
ψ(wn)

]

x

∣
∣2 dx +

∫

�

wnTK
(
ψ(wn)

)
dx ≤ ∥

∥TK
(
ψ(wn)

)∥
∥

L∞(R+)

∫

�

u0n dx.

Since wn ≥ 0 in � and assumption (4.2) holds, then we get

∥
∥ψ(wn)

∥
∥

H1
0 (�) ≤ C‖u0‖M+(�). (7.4)

As argued in [18] and estimates (7.3) and (7.4), problem (S) admits a Radon measure-
valued solution i.e. w ∈M+(�).

Step 2. We show that convergence (3.8) holds true.
Let us consider ξ (x, t) = sign(un(x, t) – wn(x))

∫ T
t ηε(s)sα ds as a test function in the ap-

proximation problems (Sn) and (Pn), then we have

∫

�

∫ T

0

∣
∣un(x, t) – wn(x)

∣
∣ηε(t)tα dx dt

=
∫

�

∫ T

0

∣
∣u0n(x) – wn(x)

∣
∣ηε(t)tα dx dt

+
∫

�

∫ T

0

[
ψ(un) – ψ(wn)

]

xx sign
(
un(x, t) – wn(x)

)
∫ T

t
ηε(s)sα ds dx dt

+
∫

�

∫ T

0

[
f (un) + wn)

]
sign

(
un(x, t) – wn(x)

)
∫ T

t
ηε(s)sα ds dx dt

–
∫

�

∫ T

0
u0n sign

(
un(x, t) – wn(x)

)
∫ T

t
ηε(s)sα ds dx dt.
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By the integration by parts, the second term on the right-hand side of the above equations
vanishes, and we make use of estimate (7.3) and assumption (R). Then we can deduce that

∫

�

∫ T

0

∣
∣un(x, t) – wn(x)

∣
∣ηε(t)tα dx dt ≤ C‖u0‖M+(�). (7.5)

By letting ε → 0+, therefore we obtain

tα

∫

�

∣
∣un(x, t) – wn(x)

∣
∣dx ≤ C‖u0‖M+(�), (7.6)

where C = C(T) > 0. By virtue of [9, Theorem, Sect. 5.2.1], the lower semi-continuity of
the total variation, we infer that

tα
∥
∥u(·, t) – w(·)∥∥M+(�) ≤ lim inf

n→+∞ tα

∫

�

∣
∣un(x, t) – wn(x)

∣
∣dx ≤ C(T)‖u0‖M+(�)

for a.e. t ∈ (0, T) and α > 0. Since the constant C in estimate (7.6) is also uniform T , then
by passing to the limit as t → +∞ in the following inequality

∥
∥u(·, t) – w(·)∥∥M+(�) ≤ C(T)

‖u0‖M+(�)

tα
,

convergence (3.8) is achieved. �
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