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Abstract
In this paper, we consider a new stage-structured population model with transient
and nontransient impulsive effects in a polluted environment. By using the theories
of impulsive differential equations, we obtain the globally asymptotically stable
condition of a population-extinction solution; we also present the permanent
condition for the investigated system. The results indicate that the nontransient and
transient impulsive harvesting rate play important roles in system permanence.
Finally, numerical analyses are carried out to illustrate the results. Our results provide
effective methods for biological resource management in a polluted environment.
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1 Introduction
In recent years, the aggravation of environmental pollution not only affects human life
style, but also poses a serious threat to the long-term survival of the species. The European
Environmental Protection Agency released a new “Health and Environmental Assessment
Report” on September 8, 2020, which said that 13 percent of the deaths in 28 European
countries are related to environmental pollution. Therefore, the study of the population
models in polluted environments is becoming more important. To date, some work has
been carried out to study the population models in polluted environments [1–7]. Many
workers have adopted a mathematical modeling approach to study the influence of envi-
ronmental pollution on the survival of biological populations [8–10]. Most of the previous
studies assumed that the input of the toxicant was continuous. The toxicants, however, are
often emitted to the environment in regular pulses [11]. For example, the spraying of agri-
cultural chemicals can be regarded as time-pulse discharge, though the discharge of the
toxin is transient, the influence of the toxin will be long lasting.

Currently, the population system with a stage structure has become another focus of
many studies [12–15]. Cai [16] presented a stage-structured single-species model with
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pulse input in a polluted environment and revealed that a long mature period of the pop-
ulation in a polluted environment can cause it to go extinct. Kang [17] proposed and stud-
ied an age-structured population with nonlocal diffusion. Jiao [18] investigated a stage-
structured single-population model with nontransient and transient impulsive effects.

2 The model
In real life, when facing pollutants from the environment, a mature population and an
immature population have different reactions. Considering the population with different
stage structures has more practical significance. Inspired by the above discussions, we con-
sider a new stage-structured population model with transient and nontransient impulsive
effects in a polluted environment:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = –(c1 + d1)x(t) – β1co(t)x(t),

dy(t)
dt = c1x(t) – d2y(t) – β2co(t)x(t),

dco(t)
dt = fce1(t) – (g + m)co(t),

dce1(t)
dt = –h1ce1(t),

dce2(t)
dt = –h2ce2(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

t ∈ (
nτ , (n + l)τ

]
,

�x(t) = –u1x(t),

�y(t) = –u2y(t),

�co(t) = 0,

�ce1(t) = 0,

�ce2(t) = 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

t = (n + l)τ ,

dx(t)
dt = –(c2 + d3 + E1)x(t) – β1co(t)x(t),

dy(t)
dt = c2x(t) – (d4 + E2)y(t) – β2co(t)x(t),

dco(t)
dt = fce1(t) – (g + m)co(t),

dce1(t)
dt = –h1ce1(t),

dce2(t)
dt = –h2ce2(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

t ∈ (
(n + l)τ , (n + 1)τ

]
,

�x(t) = y(t)(a – by(t)),

�y(t) = 0,

�co(t) = 0,

�ce1(t) = d(ce2(t) – ce1(t)) + v1,

�ce2(t) = d(ce1(t) – ce2(t)) + v2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

t = (n + 1)τ ,

(2.1)

where it is assumed that system (2.1) consists of two lakes that are connected by un-
derground rivers. Environmental toxins will be dispersed between the two lakes due to
weather conditions, such as rainy season or flood outbreaks. x(t), y(t) represent the den-
sities of the immature and mature populations, which depend on drinking the water from
lake 1, at time t, respectively. co(t) represents the average concentration of toxins in the
organism of the immature and mature populations at time t. ce1(t) represents the concen-
tration of environmental toxins in lake 1 at time t. ce2(t) represents the concentration of
environmental toxins in lake 2 at time t. c1 > 0 represents the rate of immature population
x turning into mature population y on (nτ , (n + l)τ ]. d1 > 0 represents the natural death
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rate of population x on (nτ , (n + l)τ ]. d2 > 0 represents the natural death rate of popula-
tion y on (nτ , (n + l)τ ]. β1 > 0 and β2 > 0 represent the mortality coefficient of the imma-
ture population and the mature population due to the influence of toxins, respectively.
f > 0 represents the uptake rate of toxin from lake 1 per unit biomass. g > 0 represents the
toxin-consumption coefficient of the population by means of excretion and so on. m > 0
represents the toxin-consumption coefficient in the population by means of biochemical
reactions in the body. h1 > 0 represents the consumption coefficient of the environmental
toxins with lake 1 as the water source is affected by processes such as chemical hydroly-
sis, volatilization, microbial degradation and photosynthesis on ((n + l)τ , (n + 1)τ ]. h2 > 0
represents the consumption coefficient of environmental toxins with lake 2 as the water
source affected by processes such as chemical hydrolysis, volatilization, microbial degra-
dation and photosynthesis on ((n + l)τ , (n + 1)τ ]. 0 < u1 < 1 represents the transient impul-
sive harvesting rate of population x at time t = (n + l)τ . 0 < u2 < 1 represents the transient
impulsive harvesting rate of population y at time t = (n + l)τ . c2 > 0 represents the rate
of immature population x turning into mature population y on ((n + l)τ , (n + 1)τ ]. d3 > 0
represents the natural death rate of population x on ((n + l)τ , (n + 1)τ ]. d4 > 0 represents
the natural death rate of population y on ((n + l)τ , (n + 1)τ ]. The population is birth pulse
as intrinsic rate of nature increase and density dependence rate of the population, which
are denoted by a > 0, b > 0, respectively. E1 > 0 represents the nontransient impulsive har-
vesting rate of the immature population x on ((n + l)τ , (n + 1)τ ]. E2 > 0 represents the
nontransient impulsive harvesting rate of the mature population y on ((n + l)τ , (n + 1)τ ].
0 < d < 1 is the dispersal rate between the two lakes. v1 > 0 represents the concentration
of toxins that input into lake 1 due to environmental changes at time t = (n + 1)τ . v2 > 0
represents the concentration of toxins that input into lake 2 due to environmental changes
at time t = (n + 1)τ . τ is the period of the population-impulsive harvesting or pulse-input
period of toxins.

3 The dynamics
Denoting U(t) = (x(t), y(t), co(t), ce1(t), ce2(t))T , the solution of system (2.1), is a piecewise
continuous U : R+ → R5

+, where R+ = [0,∞), R5
+ = {Z ∈ R5 : U > 0}. U(t) is continuous

on (nτ , (n + l)τ ] and ((n + l)τ , (n + 1)τ ]. According to Ref. [19], the global existence and
uniqueness of the solution of system (2.1) is guaranteed by the smoothness properties of
f1, which denotes the mapping defined by the right-side of system (2.1).

The subsystem of system (2.1) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = –(c1 + d1)x(t),

dy(t)
dt = c1x(t) – d2y(t),

⎫
⎬

⎭
t ∈ (

nτ , (n + l)τ
]
,

�x(t) = –u1x(t),

�y(t) = –u2y(t),

⎫
⎬

⎭
t = (n + l)τ ,

dx(t)
dt = –(c2 + d3 + E1)x(t),

dy(t)
dt = c2x(t) – (d4 + E2)y(t),

⎫
⎬

⎭
t ∈ (

(n + l)τ , (n + 1)τ
]
,

�x(t) = y(t)(a – by(t)),

�y(t) = 0,

⎫
⎬

⎭
t = (n + 1)τ .

(3.1)
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Considering the first and second equations and the fifth and sixth equations of system
(3.1), we can obtain the analytic solution of system (3.1) between pluses as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) =

⎧
⎨

⎩

x(nτ+)e–(c1+d1)(t–nτ ), t ∈ (nτ , (n + l)τ ],

x((n + l)τ+)e–(c2+d3+E1)(t–(n+l)τ ), t ∈ ((n + l)τ , (n + 1)τ ],

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e–d2(t–nτ )[ c1(1–e–(c1+d1–d2)(t–nτ ))
c1+d1–d2

x(nτ+) + y(nτ+)],

t ∈ (nτ , (n + l)τ ],

e–(d4+E2)(t–(n+l)τ )[ c2(1–e–(c2+d3+E1–d4–E2)(t–(n+l)τ ))
c2+d3+E1–d4–E2

x

× ((n + l)τ+) + y((n + l)τ+)],

t ∈ ((n + l)τ , (n + 1)τ ].

(3.2)

Considering the third and fourth equations and the seventh and eighth equations of
system (3.1), we obtain the stroboscopic map of system (3.1)

⎧
⎨

⎩

x((n + 1)τ+) = (aA + C)x(nτ+) + aBy(nτ+) – b(Ax(nτ+) + By(nτ+))2,

y((n + 1)τ+) = Ax(nτ+) + By(nτ+),
(3.3)

where

A = e–(d4+E2)(1–l)τ [
c2(1 – u1)e–(c1+d1)lτ (1 – e–(c2+d3+E1–d4–E2)(1–l)τ )

c2 + d3 + E1 – d4 – E2

+
c1(1 – u2)e–d2lτ (1 – e–(c1+d1–d2)lτ )

c1 + d1 – d2
,

B = (1 – u2)e–[d2lτ+(d4+E2)(1–l)τ ] < 1,

C = (1 – u1)e–[(c1+d1)lτ+(c2+d3+E1)(1–l)τ ] < 1.

The system (3.3) has two fixed points as F1(0, 0) and F2(x∗, y∗), where

⎧
⎨

⎩

x∗ = (1–B)[aA–(1–B)(1–C)]
bA2 , aA – (1 – B)(1 – C) > 0,

y∗ = aA–(1–B)(1–C)
bA , aA – (1 – B)(1 – C) > 0.

(3.4)

Theorem 1 (i) If aA – (1 – B)(1 – C) < 0, the fixed point F1(0, 0) is globally asymptotically
stable;

(ii) If aA – (1 – B)(1 – C) > 0, the fixed point F2(x∗, y∗) is globally asymptotically stable.

Proof For convenience, we make a notation as (xn, yn) = (x(nτ+), y(nτ+)). The linear form
of (3.3) can be written as

(
xn+1

yn+1

)

= J1

(
xn

yn

)

. (3.5)

Obviously, the near dynamics of F1(0, 0) and F2(x∗, y∗) of (3.3) are determined by the
linear system (3.5). The stabilities of the two fixed points of (3.3) are determined by the
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eigenvalues of J1 less than 1. We can determine the eigenvalue of J1 less than 1, if J1 satisfies
the Jury criteria [20]

1 – tr J1 + det J1 > 0. (3.6)

(i) If aA – (1 – B)(1 – C) < 0, F1(0, 0) is the unique fixed point of (3.3), we have

J1 =

(
aA + C aB

A B

)

. (3.7)

Calculating

1 – tr J1 + det J1 = 1 –
[
(aA + C) + B

]
+

[
B(aA + C) – aAB

]

= 1 – aA – C – B + BC

= –aA + (1 – B)(1 – C)

= –
[
aA – (1 – B)(1 – C)

]
> 0.

From the Jury criteria, F1(0, 0) is locally stable. Then, it is globally asymptotically stable.
(ii) If aA – (1 – B)(1 – C) > 0, F1(0, 0) is obviously unstable, F2(x∗, y∗) exists, and

J1 =

(
aA + C – 2bA(Ax∗ + By∗) aB – 2bB(Ax∗ + By∗)

A B

)

. (3.8)

Calculating

1 – tr J1 + det J1 = 1 –
[
aA + C – 2bA

(
Ax∗ + By∗) + B

]

+
{

B
[
aA + C – 2bA

(
Ax∗ + By∗)] – A

[
aB – 2bB

(
Ax∗ + By∗)]}

= 1 – aA – C – B + BC + 2bA
(
Ax∗ + By∗)

= –
[
aA + (1 – B)(1 – C)

]
+ 2

[
aA – (1 – B)(1 – C)

]

= aA – (1 – B)(1 – C) > 0.

From the Jury criteria, F2(x∗, y∗) is locally stable. Then, it is globally asymptotically stable.
This completes the proof. �

According to Theorem 1, and similar to reference [18], the following lemma can be easily
proved.

Theorem 2 (i) If aA – (1 – B)(1 – C) < 0, the triviality periodic solution (0, 0) of system (3.1)
is globally asymptotically stable;
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(ii) If aA – (1 – B)(1 – C) > 0, the periodic solution (x̃(t), ỹ(t)) of system (3.1) is globally
asymptotically stable, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃(t) =

⎧
⎨

⎩

x∗e–(c1+d1)(t–nτ ), t ∈ (nτ , (n + l)τ ],

x∗∗e–(c2+d3+E1)(t–(n+l)τ ), t ∈ ((n + l)τ , (n + 1)τ ],

ỹ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

e–d2(t–nτ )[ c1(1–e–(c1+d1–d2)(t–nτ ))
c1+d1–d2

x∗ + y∗], t ∈ (nτ , (n + l)τ ],

e–(d4+E2)(t–(n+l)τ )[ c2(1–e–(c2+d3+E1–d4–E2)(t–(n+l)τ ))
c2+d3+E1–d4–E2

x∗∗ + y∗∗],

t ∈ ((n + l)τ , (n + 1)τ ],

(3.9)

and
⎧
⎨

⎩

x∗∗ = (1 – u1)e–(c1+d1)lτ x∗,

y∗∗ = (1 – u2)e–d2lτ [ c1(1–e–(c1+d1–d2)lτ )
c1+d1–d2

x∗ + y∗].

Remark 3 From Theorem 2, For any ε > 0, there exists a positive number t0, when t > t0,
we have

x̃(t) – ε ≤ x(t) ≤ x̃(t) + ε,

ỹ(t) – ε ≤ y(t) ≤ ỹ(t) + ε,

then

m1 ≤ x(t) ≤ M1,

m2 ≤ y(t) ≤ M2,

where

m1 =
[
x∗ + x∗∗] – ε,

M1 =
[
x∗e–(c1+d1)lτ + x∗∗e–(c2+d3+E1)(1–l)τ ] + ε,

m2 =
[
y∗ + y∗∗] – ε,

M2 =
{

e–d2lτ
[

c1(1 – e–(c1+d1–d2)lτ )
c1 + d1 – d2

x∗ + y∗
]

+ e–(d4+E2)(1–l)τ
[

c2(1 – e–(c2+d3+E1–d4–E2)(1–l)τ )
c2 + d3 + E1 – d4 – E2

x∗∗ + y∗∗
]}

+ ε.

Another subsystem of system (2.1) is also obtained as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dco(t)
dt = fce1(t) – (g + m)co(t),

dce1(t)
dt = –h1ce1(t),

dce2(t)
dt = –h2ce2(t),

⎫
⎪⎪⎬

⎪⎪⎭

t ∈ (
nτ , (n + 1)τ

]
,

�co(t) = 0,

�ce1(t) = d(ce2(t) – ce1(t)) + v1,

�ce2(t) = d(ce1(t) – ce2(t)) + v2

⎫
⎪⎪⎬

⎪⎪⎭

t = nτ .

(3.10)
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The first, second and third equations of system (3.10) integrate over the interval (nτ , (n+
1)τ ], we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

co(t) = e–(g+m)(t–nτ )[ f (1–e–(h1–g–m)(t–nτ ))
h1–g–m ce1(nτ+) + co(nτ+)],

t ∈ (nτ , (n + 1)τ ],

ce1(t) = ce1(nτ+)e–h1(t–nτ ), t ∈ (nτ , (n + 1)τ ],

ce2(t) = ce2(nτ+)e–h2(t–nτ ), t ∈ (nτ , (n + 1)τ ].

(3.11)

Considering the fourth, fifth and sixth equations of system (3.10), the stroboscopic map
of system (3.11) is obtained as

⎧
⎪⎪⎨

⎪⎪⎩

co((n + 1)τ+) = e–(g+m)τ [ f (1–e–(h1–g–m)τ )
h1–g–m ce1(nτ+) + co(nτ+)],

ce1((n + 1)τ+) = (1 – d)ce1(nτ+)e–h1nτ + dce2(nτ+)e–h2nτ + v1,

ce2((n + 1)τ+) = (1 – d)ce2(nτ+)e–h2nτ + dce1(nτ+)e–h1nτ + v2.

(3.12)

The unique fixed point of (3.12) is obtained as F(c∗
o , c∗

e1, c∗
e2), where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c∗
o = e–(g+m)τ f (1–e–(h1–g–m)τ )v2de–h2τ +v1[1–(1–d)e–h2τ ]

(h1–g–m)(1–e–(g+m)τ )[1–(1–d)e–h1τ ](1–e–h2τ )+de–h2τ (1–e–h1τ )
,

c∗
e1 = v2de–h2τ +v1[1–(1–d)e–h2τ ]

[1–(1–d)e–h1τ ](1–e–h2τ )+de–h2τ (1–e–h1τ )
,

c∗
e2 = v1de–h1τ +v2[1–(1–d)e–h1τ ]

[1–(1–d)e–h1τ ](1–e–h2τ )+de–h2τ (1–e–h1τ )
.

(3.13)

Theorem 4 If d > 1/2, the unique fixed point F(c∗
o , c∗

e1, c∗
e2) is globally asymptotically sta-

ble.

Proof Making a notation as (cn
o , cn

e1, cn
e2) = (co(nτ+), ce1(nτ+), ce2(nτ+)), we rewrite the linear

form of (3.12) as

⎛

⎜
⎝

cn+1
o

cn+1
e1

cn+1
e2

⎞

⎟
⎠ = J2

⎛

⎜
⎝

cn
o

cn
e1

cn
e2

⎞

⎟
⎠ . (3.14)

Obviously, the near dynamics of F(c∗
o , c∗

e1, c∗
e2) is determined by the linear system (3.14).

The stabilities of the fixed point of (3.12) are determined by the eigenvalues of J2 less than
1. According to the condition of this theorem and 0 < e–h1τ < 1, 0 < e–h2τ < 1, it is easy to
obtain the eigenvalues of

J2 =

⎛

⎜
⎝

e–(g+m)τ e–(g+m)τ f (1–e–(h1–g–m)τ )
h1–g–m 0

0 (1 – d)e–h1τ de–h2τ

0 de–h1τ (1 – d)e–h2τ

⎞

⎟
⎠ , (3.15)

which are

λ1 = e–(g+m)τ < 1,

λ2 =
(1 – d)(e–h1τ + e–h2τ ) +

√
[d(e–h1τ + e–h2τ )]2 – 4(1 – 2d)e–(h1+h2)τ

2
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<
(1 – d)(e–h1τ + e–h2τ ) + d(e–h1τ + e–h2τ )

2

=
e–h1τ + e–h2τ

2
< 1,

λ3 =
(1 – d)(e–h1τ + e–h2τ ) –

√
[d(e–h1τ + e–h2τ )]2 – 4(1 – 2d)e–(h1+h2)τ

2

<
(1 – d)(e–h1τ + e–h2τ )

2
< 1.

Hence, F(c∗
o , c∗

e1, c∗
e2) is locally stable. Then, it is globally asymptotically stable. �

Theorem 5 If d > 1/2, the periodic solution (c̃o(t), ˜ce1(t), ˜ce2(t)) of system (3.10) is globally
asymptotically stable, where

⎧
⎪⎪⎨

⎪⎪⎩

c̃o(t) = e–(g+m)(t–nτ )[ f (1–e–(h1–g–m)(t–nτ ))
h1–g–m c∗

e1 + c∗
o], t ∈ (nτ , (n + 1)τ ],

˜ce1(t) = c∗
e1e–h1(t–nτ ), t ∈ (nτ , (n + 1)τ ],

˜ce2(t) = c∗
e2e–h2(t–nτ ), t ∈ (nτ , (n + 1)τ ],

(3.16)

Here, c∗
o , c∗

e1, c∗
e2 are defined as (3.13).

Remark 6 From Theorem 5, for any ε > 0, there exists a positive number t0, when t > t0,
we have

c̃o(t) – ε ≤ co(t) ≤ c̃o(t) + ε,

˜ce1(t) – ε ≤ ce1(t) ≤ ˜ce1(t) + ε,

˜ce2(t) – ε ≤ ce2(t) ≤ ˜ce2(t) + ε,

then

mo ≤ co(t) ≤ Mo,

me1 ≤ ce1(t) ≤ Me1,

me2 ≤ ce2(t) ≤ Me2,

where

m0 =
f

h1 – g – m
c∗

e1 + c∗
o – ε,

M0 = e–(g+m)τ
[

f (1 – e–(h1–g–m)τ )
h1 – g – m

c∗
e1 + c∗

o

]

+ ε,

me1 = c∗
e1 – ε,

Me1 = c∗
e1e–h1τ + ε,

me2 = c∗
e2 – ε,

Me2 = c∗
e2e–h2τ + ε.
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Considering the first and second equations and the eleventh and twelfth equations of

system (2.1), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt ≤ –(c1 + d1)x(t),

dy(t)
dt ≤ c1x(t) – d2y(t),

⎫
⎬

⎭
t ∈ (

nτ , (n + l)τ
]
,

�x(t) = –u1x(t),

�y(t) = –u2y(t),

⎫
⎬

⎭
t = (n + l)τ ,

dx(t)
dt ≤ –(c2 + d3 + E1)x(t),

dy(t)
dt ≤ c2x(t) – (d4 + E2)y(t),

⎫
⎬

⎭
t ∈ (

(n + l)τ , (n + 1)τ
]
,

�x(t) = y(t)(a – by(t)),

�y(t) = 0,

⎫
⎬

⎭
t = (n + 1)τ ,

(3.17)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt ≥ –(c1 + d1 + β1(c̃o(t) + ε))x(t),

dy(t)
dt ≥ c1x(t) – (d2 + β2(c̃o(t) + ε))y(t),

⎫
⎬

⎭
t ∈ (

nτ , (n + l)τ
]
,

�x(t) = –u1x(t),

�y(t) = –u2y(t),

⎫
⎬

⎭
t = (n + l)τ ,

dx(t)
dt ≥ –(c2 + d3 + E1 + β1(c̃o(t) + ε))x(t),

dy(t)
dt ≥ c2x(t) – (d4 + E2 + β2(c̃o(t) + ε))y(t),

⎫
⎬

⎭
t ∈ (

(n + l)τ , (n + 1)τ
]
,

�x(t) = y(t)(a – by(t)),

�y(t) = 0,

⎫
⎬

⎭
t = (n + 1)τ .

(3.18)

Then, we can obtain the comparative differential equation of system (3.17)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t)
dt = –(c1 + d1)x1(t),

dy1(t)
dt = c1x1(t) – d2y1(t),

⎫
⎬

⎭
t ∈ (

nτ , (n + l)τ
]
,

�x1(t) = –u1x1(t),

�y1(t) = –u2y1(t),

⎫
⎬

⎭
t = (n + l)τ ,

dx1(t)
dt = –(c2 + d3 + E1)x1(t),

dy1(t)
dt = c2x1(t) – (d4 + E2)y1(t),

⎫
⎬

⎭
t ∈ (

(n + l)τ , (n + 1)τ
]
,

�x1(t) = y1(t)(a – by1(t)),

�y1(t) = 0,

⎫
⎬

⎭
t = (n + 1)τ ,

(3.19)
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and the comparative differential equation of system (3.18)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx2(t)
dt = –(c1 + d1 + β1(c̃o(t) + ε))x2(t),

dy2(t)
dt = c1x(t) – (d2 + β2(c̃o(t) + ε))y2(t),

⎫
⎬

⎭
t ∈ (

nτ , (n + l)τ
]
,

�x2(t) = –u1x2(t),

�y2(t) = –u2y2(t),

⎫
⎬

⎭
t = (n + l)τ ,

dx2(t)
dt = –(c2 + d3 + E1 + β1(c̃o(t) + ε))x2(t),

dy2(t)
dt = c2x2(t) – (d4 + E2 + β2(c̃o(t) + ε))y2(t),

⎫
⎬

⎭
t ∈ (

(n + l)τ , (n + 1)τ
]
,

�x2(t) = y2(t)(a – by2(t)),

�y2(t) = 0,

⎫
⎬

⎭
t = (n + 1)τ .

(3.20)

Similarly with Theorem 1 and Theorem 2, we have:

Theorem 7 (i) If aA1 – (1 – B1)(1 – C1) < 0, the triviality periodic solution of system (3.20)
is globally asymptotically stable;

(ii) If aA1 – (1 – B1)(1 – C1) > 0, the triviality periodic solution of system (3.20) is unstable,
and the periodic solution (x2(t), y2(t)) of system (3.20) is globally asymptotically stable,

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2(t) =

⎧
⎨

⎩

x∗
2e–(c1+d1+β1Mo)(t–nτ ), t ∈ (nτ , (n + l)τ ],

x∗∗
2 e–(c2+d3+E1+β1Mo)(t–(n+l)τ ), t ∈ ((n + l)τ , (n + 1)τ ],

y2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e–(d2+β2Mo)(t–nτ )[ c1(1–e–(c1+d1+β1Mo–d2–β2Mo)(t–nτ ))
c1+d1+β1Mo–d2–β2Mo

x∗
2 + y∗

2],

t ∈ (nτ , (n + l)τ ],

e–(d4+E2+β2Mo)(t–(n+l)τ )

× [ c2(1–e–(c2+d3+E1+β1Mo–d4–E2–β2Mo)(t–(n+l)τ ))
c2+d3+E1+β1Mo–d4–E2–β2Mo

x∗∗
2 + y∗∗

2 ],

t ∈ ((n + l)τ , (n + 1)τ ],

(3.21)

Here, x∗
2, y∗

2, x∗∗
2 , y∗∗

2 are defined as follows:

⎧
⎨

⎩

x∗
2 = (1–B1)[aA1–(1–B1)(1–C1)]

bA2
1

, aA1 – (1 – B1)(1 – C1) > 0,

y∗
2 = aA1–(1–B1)(1–C1)

bA1
, aA1 – (1 – B1)(1 – C1) > 0,

(3.22)

and
⎧
⎨

⎩

x∗∗
2 = (1 – u1)e–(c1+d1+β1Mo)lτ x∗

2,

y∗∗
2 = (1 – u2)e–(d2+β2Mo)lτ [ c1(1–e–(c1+d1+β1Mo–d2–β2Mo)lτ )

c1+d1+β1Mo–d2–β2Mo
x∗

2 + y∗
2].

, (3.23)

where

A1 = e–(d4+E2+β2Mo)(1–l)τ
[

c2(1 – u1)e–(c1+d1+β1Mo)lτ (1 – e–(c2+d3+E1+β1Mo–d4–E2–β2Mo)(1–l)τ )
c2 + d3 + E1 + β1Mo – d4 – E2 – β2Mo

+
c1(1 – u2)e–(d2+β2Mo)lτ (1 – e–(c1+d1+β1Mo–d2–β2Mo)lτ )

c1 + d1 + β1Mo – d2 – β2Mo

]

,
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B1 = (1 – u2)e–[(d2+β2Mo)lτ+(c1+d1+β1Mo–d2–β2Mo)(1–l)τ ] < 1,

C1 = (1 – u1)e–[(c1+d1+β1Mo)lτ+(c2+d3+E1+β1Mo)(1–l)τ ] < 1.

Remark 8 From Theorem 7, For any ε > 0, there exists a positive number t0, such that for
t > t0,

x2(t) – ε ≤ x2(t) ≤ x2(t) + ε,

y2(t) – ε ≤ y2(t) ≤ y2(t) + ε,

then

m21 ≤ x2(t) ≤ M21,

m22 ≤ y2(t) ≤ M22,

where

m21 =
[
x∗

2 + x∗∗
2

]
– ε,

M21 =
[
x∗

2e–(c1+d1+β1Mo)lτ + x∗∗
2 e–(c2+d3+E1+β1Mo)(1–l)τ ] + ε,

m22 =
[
y∗

2 + y∗∗
2

]
– ε,

M22 = e–(d2+β2Mo)lτ
[

c1(1 – e–(c1+d1+β1Mo–d2–β2Mo)lτ )
c1 + d1 + β1Mo – d2 – β2Mo

x∗
2 + y∗

2

]

+ e–(d4+E2+β2Mo)(1–l)τ
[

c2(1 – e–(c2+d3+E1+β1Mo–d4–E2–β2Mo)(1–l)τ )
c2 + d3 + E1 + β1Mo – d4 – E2 – β2Mo

x∗∗
2 + y∗∗

2

]

+ ε.

From the above theorems and remarks, we present an important theorem in this paper.

Theorem 9 (i) aA – (1 – B)(1 – C) < 0, the population x(t) and y(t) go extinct;
(ii) If aA1 – (1 – B1)(1 – C1) > 0, the system is permanent.

Proof (i) In the condition of aA – (1 – B)(1 – C) < 0, the trivial periodic solution is globally
asymptotically stable, that is when t → ∞, we have x(t) → 0 and y(t) → 0. According to
(3.17), (3.19) and comparison with the theorem of the impulsive equation [21], we know
that 0 ≤ x(t) ≤ x1(t) = x(t) and 0 ≤ y(t) ≤ y1(t) = y(t). These show that the populations x(t)
and y(t) go extinct.

(ii) By the condition aA1 – (1 – B1)(1 – C1) > 0, it is easy to show that aA – (1 – B)(1 – C) >
0. According to (18)–(20) and with the comparison theorem of the impulsive equation
[21], we can obtain that x2(t) – ε ≤ x2(t) ≤ x(t), x(t) ≤ x1(t) ≤ x̃(t) + ε. From Remark 3 and
Remark 8, we have m21 ≤ x2(t), x1(t) ≤ M1, then m21 ≤ x(t) ≤ M1. Similarly, m22 ≤ y(t) ≤
M2, From Remark 6, we have mo ≤ co(t) ≤ Mo, me1 ≤ ce1(t) ≤ Me1, me2 ≤ ce2(t) ≤ Me2. This
completes the proof. �

4 Numerical simulations
Using numerical simulations, we analyze the influences of E1 and u1 on system (2.1). If
it is assumed that x(t) = 1, y(t) = 0.5, co(t) = 0.5, ce1(t) = 0.4, c1 = 0.1, d1 = 0.1, β1 = 0.01,
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Figure 1 The permanence of system (2.1) with x(t) = 1, y(t) = 0.5, co(t) = 0.5, ce1(t) = 0.4, c1 = 0.1, d1 = 0.1,
β1 = 0.01, d2 = 0.3, β2 = 0.01, f = 0.1, g = 0.4,m = 0.5, h1 = 0.3, h2 = 0.15, a = 0.4, b = 1, c2 = 0.5, d3 = 0.1,
E1 = 0.08, d4 = 0.1, E2 = 0.05, u1 = 0.01, u2 = 0.03, d = 0.5, v1 = 0.4, v2 = 0.5, l = 0.5, τ = 1; (a) time series of x(t);
(b) time series of y(t); (c) time series of co(t); (d) time series of ce1(t); (e) time series of ce2(t)

d2 = 0.3, β2 = 0.01, f = 0.1, g = 0.4, m = 0.5, h1 = 0.3, h2 = 0.15, a = 0.4, b = 1, c2 = 0.5,
d3 = 0.1, E1 = 0.08, d4 = 0.1, E2 = 0.05, u1 = 0.01, u2 = 0.03, d = 0.5, v1 = 0.4, v2 = 0.5, l = 0.5,
τ = 1, the system is permanent, as shown in Fig. 1.

4.1 The simulation of system (2.1) affected by parameter E1

Assuming that x(t) = 1, y(t) = 0.5, co(t) = 0.5, ce1(t) = 0.4, c1 = 0.1, d1 = 0.1, β1 = 0.01, d2 =
0.3, β2 = 0.01, f = 0.1, g = 0.4, m = 0.5, h1 = 0.3, h2 = 0.15, a = 0.4, b = 1, c2 = 0.5, d3 = 0.1,
E1 = 0.3, d4 = 0.1, E2 = 0.05, u1 = 0.01, u2 = 0.03, d = 0.5, v1 = 0.4, v2 = 0.5, l = 0.5, τ = 1,
the population-extinction periodic solution (0, 0) of system (2.1) is globally asymptotically
stable, as shown in Fig. 2. From Figs. 1 and 2, if all parameters of system (2.1) are fixed,
when E1 = 0.08, we can obtain aA – (1 – B)(1 – C) = 0.0120 > 0, then the condition of
Theorem 9(ii) is satisfied, and the system is permanent. When E1 = 0.3, we can obtain
aA – (1 – B)(1 – C) = –0.0108 < 0, then the condition of Theorem 9(i)is satisfied, and the
populations x(t) and y(t) go extinct.

4.2 The simulation of system (2.1) affected by parameter u1

Assuming that x(t) = 1, y(t) = 0.5, co(t) = 0.5, ce1(t) = 0.4, c1 = 0.1, d1 = 0.1, β1 = 0.01, d2 =
0.3, β2 = 0.01, f = 0.1, g = 0.4, m = 0.5, h1 = 0.3, h2 = 0.15, a = 0.4, b = 1, c2 = 0.5, d3 = 0.1,
E1 = 0.08, d4 = 0.1, E2 = 0.05, u1 = 0.2, u2 = 0.03, d = 0.5, v1 = 0.4, v2 = 0.5, l = 0.5, τ = 1,
the population-extinction periodic solution (0, 0) of system (2.1) is globally asymptotically
stable, as shown in Fig. 3. From Figs. 1 and 3, if all parameters of system (2.1) are fixed,
when u1 = 0.01, we can obtain aA – (1 – B)(1 – C) = 0.0120 > 0, then the condition of
Theorem 9(ii) is satisfied, and the system is permanent. When u1 = 0.2, we can obtain
aA – (1 – B)(1 – C) = –0.0035 < 0, then the condition of Theorem 9(i) is satisfied, and the
populations x(t) and y(t) go extinct.
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Figure 2 Globally asymptotically stable population-extinction periodic solution of system (2.1) with x(t) = 1,
y(t) = 0.5, co(t) = 0.5, ce1(t) = 0.4, c1 = 0.1, d1 = 0.1, β1 = 0.01, d2 = 0.3, β2 = 0.01, f = 0.1, g = 0.4,m = 0.5,
h1 = 0.3, h2 = 0.15, a = 0.4, b = 1, c2 = 0.5, d3 = 0.1, E1 = 0.3, d4 = 0.1, E2 = 0.05, u1 = 0.01, u2 = 0.03, d = 0.5,
v1 = 0.4, v2 = 0.5, l = 0.5, τ = 1; (a) time series of x(t); (b) time series of y(t); (c) time series of co(t); (d) time series
of ce1(t); (e) time series of ce2(t)

Figure 3 Globally asymptotically stable population-extinction periodic solution of system (2.1) with x(t) = 1,
y(t) = 0.5, co(t) = 0.5, ce1(t) = 0.4, c1 = 0.1, d1 = 0.1, β1 = 0.01, d2 = 0.3, β2 = 0.01, f = 0.1, g = 0.4,m = 0.5,
h1 = 0.3, h2 = 0.15, a = 0.4, b = 1, c2 = 0.5, d3 = 0.1, E1 = 0.08, d4 = 0.1, E2 = 0.05, u1 = 0.2, u2 = 0.03, d = 0.5,
v1 = 0.4, v2 = 0.5, l = 0.5, τ = 1; (a) time series of x(t); (b) time series of y(t); (c) time series of co(t); (d) time series
of ce1(t); (e) time series of ce2(t)

5 Discussion
In this paper, we propose a new stage-structured population model with impulsive effects
in a polluted environment. The condition for the globally asymptotic stability of the triv-
iality periodic solution (0, 0) of system (2.1) is obtained, and the permanent condition of
system (2.1) is also obtained. It can be seen from the analyses that the nontransient har-
vesting rate and transient impulsive harvesting rate play important roles in system (2.1).



Quan et al. Advances in Difference Equations        (2021) 2021:518 Page 14 of 15

From the numerical simulation of Figs. 1 and 2, we can deduce that there must exist a non-
transient impulsive harvesting population threshold E∗

1 , which satisfies 0.08 < E∗
1 < 0.3. If

E1 < E∗
1 , the system (2.1) is permanent, and if E1 > E∗

1 , the populations go extinct. From
the numerical simulation of Figs. 1 and 3, we can also deduce that there exists a transient
impulsive harvesting population threshold u∗

1, which satisfies 0.01 < u∗
1 < 0.2. If u1 < u∗

1,
the system (2.1) is permanent, and if u1 > u∗

1, the populations go extinct. Comparing the
figures, it is obvious that under the condition of system persistence, the nontransient im-
pulsive harvesting rate E1 and the transient impulsive harvesting rate u1 are both smaller
than under the condition of population extinction. Hence, we can protect biological di-
versity by reducing the amount of transient pulse harvest, or reducing the nontransient
impulsive harvesting intensity.
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