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Abstract
In this paper, we define framed slant helices and give a necessary and sufficient
condition for them in three-dimensional Euclidean space. Then, we introduce the
spherical images of a framed curve. Also, we examine the relations between a framed
slant helix and its spherical images. Moreover, we give an example of a framed slant
helix and its spherical images with figures.
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1 Introduction
Let γ be a regular curve with the Frenet apparatus {T , N , B,κ , τ } in three-dimensional Eu-
clidean space R

3. We know that the curve γ is a general helix if the tangent vector of γ

makes a constant angle with a fixed straight line. In 1802, a classical characterization of
general helices was given by M.A. Lancert and was proved first by B. de Saint Venant in
1845: “The curve γ is a general helix if and only if its curvatures ratio is constant.” (see
[1, 2]). On the other hand, the curve γ is a slant helix if its normal vector makes a con-
stant angle with a fixed straight line. It is well known that slant helices have the following
characterization: “The curve γ is a slant helix in R

3 if and only if the geodesic curvature
of the principal normal indicatrix (N) of the curve is a constant function.” That is

σN (s) =
(

κ2

(κ2 + τ 2) 3
2

)(
τ

κ

)′

is a constant function (see [3]). To date, general helices and slant helices have been in-
troduced in different spaces and characterizations obtained of these curves by many re-
searchers (see [4–9]).

Recently, Shun’ichi Honda and Masatomo Takahashi investigated framed curves in Eu-
clidean space (see [10]). Moreover, Yongqiao Wang et al. defined framed helices and gave
a characterization for a framed curve to be a framed helix (see [11]). Tuncer et al. intro-
duced pedal and contrapedal curves of fronts by using the Legendrian Frenet frame in the
Euclidean plane and also examined singularities of pedal and contrapedal curves of fronts
in [12]. Yazıcı et al. investigated framed rectifying curves via the dilation of framed curves
on S2 in R

3, [13]. Yıldız studied the evolution of framed curves in R
3, [14].
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In this paper, we define framed slant helices and give a characterization to be a framed
slant helix of a framed curve in three-dimensional Euclidean space. We then define framed
spherical images of a framed curve. Also, we obtain some relations between a framed slant
helix and its spherical images. Finally, we present an illustrated example to support the
theory.

2 Basic materials
In this section, we outline the definitions of framed curves and framed helices in three-
dimensional Euclidean space (see for details [10, 11]).

Let γ : I ⊂ R→R
3 be a curve with singular points. The set �2, which is defined by

�2 =
{
μ = (μ1,μ2) ∈R

3 ×R
3 | μi.μj = δij, i, j = 1, 2

}
,

is a three-dimensional smooth manifold. For a given μ = (μ1,μ2) ∈ �2, we can define a
unit vector of R3, as follows:

v = μ1 × μ2.

This means that v is orthogonal to μ1 and μ2.

Definition 2.1 We say that (γ ,μ) : I → R
3 × �2 is a framed curve if 〈γ ′(s),μi(s)〉 = 0 for

all s ∈ I and i = 1, 2. We also say that γ : I → R
3 is a framed base curve if there exists

μ : I → �2 such that (γ ,μ) is a framed curve.

Let (γ ,μ) : I →R
3 × �2 be a framed curve, then the Frenet–Serret-type formula of the

curve γ is as follows:

v′(s) = –m(s)μ1(s) – n(s)μ2(s)

μ′
1(s) = l(s)μ2(s) + m(s)v(s),

μ′
2(s) = –l(s)μ1(s) + n(s)v(s),

where l(s) = 〈μ′
1(s),μ2(s)〉, m(s) = 〈μ′

1(s), v(s)〉 and n(s) = 〈μ′
2(s), v(s)〉. Also, there exists a

smooth mapping α : I →R such that:

γ ′(s) = α(s)v(s).

The functions l(s), m(s), n(s) and α(s) are called the curvature functions of γ . Clearly,
α(s0) = 0 if and only if s0 is a singular point of the curve γ . The curvature of the framed
curve is quite useful to analyze the framed curves and singularities (see [10, 11]).

Theorem 2.1 Let (l, m, n,α) : I → R
4 be a smooth mapping. There exists a framed curve

(γ ,μ) : I →R
3 ×�2 whose associated curvature of the framed curve is (l, m, n,α) (see [11]).

Theorem 2.2 Let (γ ,μ) and (γ ,μ) : I → R
3 × �2 be framed curves whose curvatures of

the framed curves (l, m, n,α) and (l, m, n,α) coincide. Then, (γ ,μ) and (γ ,μ) are congruent
as framed curves (see [11]).
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In [11], the authors defined an adapted frame with {v(s),μ1(s),μ2(s)} along the γ and
gave Frenet formulas for the adapted frame as follows:

⎛
⎜⎝

v′(s)
μ′

1(s)
μ′

2(s)

⎞
⎟⎠ =

⎛
⎜⎝

0 p(s) 0
–p(s) 0 q(s)

0 –q(s) 0

⎞
⎟⎠

⎛
⎜⎝

v(s)
μ1(s)
μ2(s)

⎞
⎟⎠ , (1)

where (μ1,μ2) ∈ �2 is defined by

(
μ1(s)
μ2(s)

)
=

(
cos θ (s) – sin θ (s)
sin θ (s) cos θ (s)

)(
μ1(s)
μ2(s)

)
.

Here, θ (s) is a smooth function. Clearly, (γ ,μ1,μ2) : I → R
3 × �2 is also a framed curve,

so we have:

v(s) = μ1(s) × μ2(s) = μ1(s) × μ2(s) = v(s).

The vectors v(s), μ1(s), μ2(s) are called the generalized tangent vector, the generalized
principal normal vector and the generalized binormal vector of the framed curve γ , re-
spectively. The functions (p(s), q(s),α(s)) are referred to as the framed curvatures of the
framed curve γ , where p(s) = |v′(s)| > 0 and q(s) = l(s) – θ ′(s).

Definition 2.2 Let (γ ,μ1,μ2) : I → R
3 × �2 be a framed curve. If the framed base curve

γ is a curve on S2, the γ is a framed spherical curve (see [11]).

Definition 2.3 Let (γ ,μ1,μ2) : I → R
3 × �2 be a framed curve with p(s) > 0. The γ is

called a framed helix if its generalized tangent vector v makes a constant angle with a
fixed unit vector ζ . That is

〈
v(s), ζ

〉
= cosφ,

where φ is a constant angle (see [11]).

Theorem 2.3 Let (γ ,μ1,μ2) : I → R
3 × �2 be a framed curve with the adapted frame

apparatus {v(s),μ1(s),μ2(s), p(s), q(s)}. Then, γ is a framed helix if and only if the following
equation holds:

q(s)
p(s)

= ∓ cotφ(s),

where φ is a constant angle (see [11]).

3 Framed slant helices in R
3

In this section we define a framed slant helix and its axis in three-dimensional Euclidean
space R

3. Also, we give a characterization of a framed slant helix.
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Definition 3.1 Let (γ ,μ1,μ2) : I →R
3 ×�2 be a framed curve. Then, γ is called a framed

slant helix if its generalized principal normal vector μ1 makes a constant angle with a fixed
unit vector ζ . That is

〈
μ1(s), ζ

〉
= cosϕ for all s ∈ I,

where ϕ 	= π
2 is a constant angle between ζ and μ1(s).

Definition 3.2 Let (γ ,μ1,μ2) : I → R
3 × �2 be a framed curve with the adapted frame

apparatus {v(s),μ1(s),μ2(s), p(s), q(s)}. Then, the framed harmonic curvature of the framed
curve (γ ,μ) is defined by

H(s) =
q(s)
p(s)

.

Proposition 3.1 Let (γ ,μ1,μ2) : I → R
3 × �2 be a framed curve and {v(s),μ1(s),μ2(s)}

denote the adapted frame of γ . If the curve γ is a framed slant helix, then the axis of γ is

ζ =
(

pH(1 + H2)
H ′ v + μ1 +

p(1 + H2)
H ′ μ2

)
cosϕ,

where H is the framed harmonic curvature function of the curve γ and ϕ 	= π
2 is a constant

angle.

Proof If the axis of a framed slant helix γ is ζ , then we can write

ζ = λ1(s)v(s) + λ2(s)μ1(s) + λ3(s)μ2(s),

where λ1(s) = 〈v, ζ 〉, λ2(s) = 〈μ1, ζ 〉 and λ3(s) = 〈μ2, ζ 〉.
Also, we know from Definition 3.1 that

〈μ1, ζ 〉 = cosϕ. (2)

By differentiating equation (2), we obtain

〈
μ′

1, ζ
〉
+

〈
μ1, ζ ′〉 = 0

and using the Frenet formulas for the adapted frame of the curve γ given in equation (1),
we have

〈v, ζ 〉 = H〈μ2, ζ 〉. (3)

Again, differentiating equation (3) and using equation (1), we obtain

〈μ2, ζ 〉 =
p(1 + H2)

H ′ 〈μ1, ζ 〉. (4)

Then, if we substitute equation (4) into equation (3), we obtain

〈v, ζ 〉 =
pH(1 + H2)

H ′ 〈μ1, ζ 〉. (5)
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Consequently, using equations (2), (4) and (5) the axis of the framed slant helix γ is given
by

ζ =
(

pH(1 + H2)
H ′ v + μ1 +

p(1 + H2)
H ′ μ2

)
cosϕ,

which completes the proof. �

Theorem 3.1 Let (γ ,μ1,μ2) : I → R
3 × �2 be a framed curve with the adapted frame

apparatus {v,μ1,μ2, p, q}. Then, γ is a framed slant helix if and only if

σ =
H ′

p(1 + H2) 3
2

is a constant function, where H is the framed harmonic curvature function of the curve γ .

Proof If the axis of the framed slant helix γ is ζ , we have from Proposition 3.1:

ζ =
(

pH(1 + H2)
H ′ v + μ1 +

p(1 + H2)
H ′ μ2

)
cosϕ.

As ζ is a unit vector we can readily see that

σ =
H ′

p(1 + H2) 3
2

= ± cotϕ,

where ϕ is the constant angle between ζ and μ1.
Conversely, if σ is a constant function then the result is obvious. This completes the

proof. �

Corollary 3.1 Let (γ ,μ1,μ2) : I → R
3 × �2 be a framed curve and {v(s),μ1(s),μ2(s)} de-

note the adapted frame of γ . If the curve γ is a framed slant helix, then the axis of γ is

ζ = cosψ(s) sin θv(s) + cos θμ1(s) + sinψ(s) sin θμ2(s),

where ψ(s) = arccos( H
1+H2 ) is the angle between v and ζ .

4 Spherical images of framed slant helices in R
3

In this section, first we define the spherical indicatrices of a framed curve and we investi-
gate the relations between framed slant helices and their spherical indicatrices.

4.1 v-Indicatrices of framed slant helices
Definition 4.1 Let (γ ,μ1,μ2) : I → R

3 × �2 be a framed curve. Its v-indicatrix is the
framed curve (β ,μ1β

,μ2β
) : I → S2 × �2 defined by

β(s) = v(s) for all s ∈ I.

The adapted frame apparatus of β is given by the notation {vβ ,μ1β
,μ2β

}. Clearly, there
exists a smooth mapping αβ : I →R such that:

β ′(s) = αβ (s)vβ(s).
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Theorem 4.1 Let (γ ,μ1,μ2) be a framed curve in R
3 and (β ,μ1β

,μ2β
) be the framed v-

indicatrix of γ . Then, γ is a framed slant helix if and only if β is a framed helix.

Proof We assume that γ is a framed slant helix in R
3 and β is the framed v-indicatrix of γ .

From Definition 4.1, we have

β(s) = v(s),

then, differentiating the last equation according to parameter s and using equation (1), we
obtain

β ′(s) = v′(s),

that is

αβ (s)vβ(s) = p(s)μ1(s).

From the norm of the last equation, we obtain

αβ (s) = p(s).

Hence, we obtain the following equation:

vβ (s) = μ1(s). (6)

If we differentiate the last equation and use equation (1), we obtain

pβ (s)μ1β
(s) = –p(s)v(s) + q(s)μ2(s).

From the norm of the above equation, we obtain

pβ (s) = p(s)
√

1 + H2(s). (7)

Hence, we obtain the following equation

μ1β
(s) = –

1√
1 + H2(s)

v(s) +
H(s)√

1 + H2(s)
μ2(s). (8)

Then, using equations (6) and (8), we obtain

μ2β
(s) = vβ (s) × μ1β

(s) =
H(s)√

1 + H2(s)
v(s) +

1√
1 + H2(s)

μ2(s). (9)

From the norm of the derivative of the last equation, we obtain the following equation:

qβ (s) =
H ′(s)

1 + H2(s)
. (10)
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Then, we can readily see that qβ (s)
pβ (s) = H′(s)

p(s)(1+H2(s))
3
2

= σ is a constant function since γ is a

framed slant helix. In other words, using Theorem 2.3 we can readily see that β is a framed
helix.

Conversely, if we assume that β is a framed helix then it is clear that γ is a framed slant
helix. This completes the proof. �

Corollary 4.1 The v-indicatrix curve β of a framed curve γ is a regular framed curve.

Proof It is obvious from the equation αβ (s) = p(s) > 0 in the proof of Theorem 4.1. �

Corollary 4.2 Let (γ ,μ1,μ2) be a framed curve with the adapted frame {v(s),μ1(s),μ2(s)}
inR

3 and (β ,μ1β
,μ2β

) be the framed v-indicatrix of γ with the adapted frame {vβ (s),μ1β
(s),

μ2β
(s)}. Then, we have the following relations between the adapted frames of γ and β

vβ (s) = μ1(s),

μ1β
(s) = –

1√
1 + H2(s)

v(s) +
H(s)√

1 + H2(s)
μ2(s),

μ2β
(s) =

H(s)√
1 + H2(s)

v(s) +
1√

1 + H2(s)
μ2(s),

where H is the framed harmonic curvature function of the curve γ .

Proof It is obvious from equations (6), (8) and (9). �

Corollary 4.3 Let (γ ,μ1,μ2) be a framed curve with the framed curvatures p(s), q(s) in R
3

and (β ,μ1β
,μ2β

) be the framed v-indicatrix of γ with the framed curvatures pβ (s), qβ (s).
Then, the relations between these framed curvatures functions are

pβ (s) = p(s)
√

1 + H2(s),

qβ (s) =
H ′(s)

1 + H2(s)
,

where H is the framed harmonic curvature function of the curve γ .

Proof It is obvious from equations (7) and (10). �

4.2 μ1-Indicatrices of framed slant helices
Definition 4.2 Let (γ ,μ1,μ2) : I → R

3 × �2 be a framed curve. Its μ1-indicatrix is the
framed curve (η,μ1η

,μ2η
) : I → S2 × �2 defined by

η(s) = μ1(s) for all s ∈ I.

The adapted frame apparatus of η is given by the notation {vη,μ1η
,μ2η

}. Clearly, there
exists a smooth mapping αη : I →R such that:

η′(s) = αη(s)vη(s).
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Theorem 4.2 Let (γ ,μ1,μ2) be a framed slant helix in R
3 and (η,μ1η

,μ2η
) be the framed

μ1-indicatrix of γ . Then, the curve η is a plane curve on S2.

Proof Let γ be a framed slant helix in R
3 and η a framed μ1-indicatrix of γ . From Defini-

tion 4.2, we have

η(s) = μ1(s). (11)

Then, differentiating equation (11) according to the parameter s and using equation (1),
we obtain

η′(s) = μ′
1(s)

or

αη(s)vη(s) = –p(s)v(s) + q(s)μ2(s).

From the norm of the last equality, we obtain

αη(s) = p(s)
√

1 + H2(s).

Hence, we obtain the following equation:

vη(s) = –
1√

1 + H2(s)
v(s) +

H(s)√
1 + H2(s)

μ2(s). (12)

If we differentiate the last equation and use equation (1), we obtain

pη(s)μ1η
(s) =

H(s)H ′(s)
(1 + H2(s)) 3

2
v(s) – p(s)

√
1 + H2(s)μ1(s) +

H ′(s)
(1 + H2(s)) 3

2
μ2(s).

Since γ is a framed slant helix σ (s) is a constant function. Hence, we can obtain

pη(s)μ1(s) = p(s)σH(s)v(s) – p(s)
√

1 + H2(s)μ1(s) + p(s)σμ2(s). (13)

Then, the norm of the last equation gives us

pη(s) = p(s)
√(

1 + H2(s)
)(

1 + σ 2
)

and so

μ1η
(s) =

σH(s)√
(1 + H2(s))(1 + σ 2)

v(s) –
1√

1 + σ 2
μ1(s) +

σ√
(1 + H2(s))(1 + σ 2)

μ2(s). (14)
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Then, using equations (12) and (14), we obtain

μ2η
(s) = vη(s) × μ1η

(s)

=
H(s)√

(1 + H2(s))(1 + σ 2)
v(s) +

σ√
1 + σ 2

μ1(s) (15)

+
1√

(1 + H2(s))(1 + σ 2)
μ2(s).

From the norm of the derivative of μ2(sη), we obtain

qη(s) = 0.

Hence, γ is a plane curve. This completes the proof. �

Corollary 4.4 The μ1-indicatrix curve η of a framed curve γ is a regular framed curve.

Proof It is obvious from the equation αη(s) = p(s)
√

1 + H2 > 0 in the proof of Theo-
rem 4.2. �

Corollary 4.5 Let (γ ,μ1,μ2) be a framed curve with the adapted frame {v(s),μ1(s),μ2(s)}
in R

3 and (η,μ1η
,μ2η

) be the framed μ1-indicatrix of γ with the adapted frame {vη(s),
μ1η

(s),μ2η
(s)}. Then, we have the following relations between the adapted frames of γ and η

vη(s) = –
1√

1 + H2(s)
v(s) +

H(s)√
1 + H2(s)

μ2(s),

μ1η
(s) =

1√
1 + σ 2

(
σH(s)√
1 + H2(s)

v(s) – μ1(s) +
σ√

1 + H2(s)
μ2(s)

)
,

μ2η
(s) =

1√
1 + σ 2

(
H(s)√

1 + H2(s)
v(s) + σμ1(s) +

1√
1 + H2(s)

μ2(s)
)

,

where H is the framed harmonic curvature function of the curve γ .

Proof It is obvious from equations (12), (14) and (15). �

4.3 μ2-Indicatrices of framed slant helices
Definition 4.3 Let (γ ,μ1,μ2) : I → R

3 × �2 be a framed curve. Its μ2-indicatrix is the
framed curve (δ,μ1δ

,μ2δ
) : I → S2 × �2 defined by

δ(s) = μ2(s) for all s ∈ I.

The adapted frame apparatus of δ is given by the notation {vδ ,μ1δ
,μ2δ

}. Clearly, there exists
a smooth mapping αδ : I →R such that:

δ′(s) = αδ(s)vδ(sδ).

Theorem 4.3 Let (γ ,μ1,μ2) be a framed curve in R
3 and (δ,μ1δ

,μ2δ
) be the framed μ2-

indicatrix of γ . Then, γ is a framed slant helix if and only if δ is a framed helix.
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Proof We assume that γ is a framed slant helix in R
3 and δ is the framed μ2-indicatrix

of γ . From Definition 4.3, we have

δ(s) = μ2(s).

Then, differentiating the last equation according to the parameter s and using equation
(1), we obtain

δ′(s) = μ′
2(s)

that is

αδ(s)vδ(s) = –p(s)H(s)μ1(s),

where H(s) is the framed harmonic curvature function of γ . From the norm of the above
equation, assuming that ε = 1 if H > 0 or ε = –1 if H < 0, we obtain

αδ(s) = εp(s)H(s).

Hence, we obtain the following equation:

vδ(s) = –εμ1(s). (16)

If we differentiate the last equation and use equation (1), we obtain

pδ(s)μ1δ
(s) = –ε

(
–p(s)v(s) + q(s)μ2(s)

)
.

From the norm of the last equation, we obtain

pδ(s) = p(s)
√

1 + H2(s). (17)

Hence, we have

μ1δ
(s) =

ε√
1 + H2(s)

v(s) –
εH(s)√

1 + H2(s)
μ2(s). (18)

Then, using equations (16) and (18), we have

μ2δ
(s) = vδ(s) × μ1δ

(s) =
H(s)√

1 + H2(s)
v(s) +

1√
1 + H2(s)

μ2(s). (19)

From the norm of the derivative of the last equation, we obtain the following equation:

qδ(s) =
H ′(s)

1 + H2(s)
. (20)

Then, we can readily see that qδ (s)
pδ (s) = H′(s)

p(s)(1+H2(s))
3
2

= σ is a constant function since γ is a

framed slant helix. In other words, using Theorem 2.3 we can see readily that δ is a framed
helix.
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Conversely, we assume that δ is a framed helix then it is clear that γ is a framed slant
helix. This completes the proof. �

Corollary 4.6 Let (γ ,μ1,μ2) be a framed curve with the adapted frame {v(s),μ1(s),μ2(s)}
in R

3 and (δ,μ1δ
,μ2δ

) be the framed μ2-indicatrix of γ with the adapted frame {vδ(s),
μ1δ

(s),μ2δ
(s)}. Then, we have the following relations between the adapted frames of γ and δ

vδ(s) = –εμ1(s),

μ1δ
(s) =

ε√
1 + H2(s)

v(s) –
εH(s)√

1 + H2(s)
μ2(s),

μ2δ
(s) =

H(s)√
1 + H2(s)

v(s) +
1√

1 + H2(s)
μ2(s),

where ε = 1 if H > 0 or ε = –1 if H < 0, H is the framed harmonic curvature function of the
curve γ .

Proof It is obvious from equations (16), (18) and (19). �

Corollary 4.7 Let (γ ,μ1,μ2) be a framed curve with the framed curvatures p(s), q(s) in R
3

and (δ,μ1δ
,μ2δ

) be the framed μ2-indicatrix of γ with the framed curvatures pδ(s), qδ(s).
Then, the relations between these framed curvatures functions are

pδ(s) = p(s)
√

1 + H2(s),

qδ(s) =
H ′(s)

1 + H2(s)
,

where H is the framed harmonic curvature function of the curve γ .

Proof It is obvious from equations (17) and (20). �

Example 4.1 Let γ : (–2π , 2π ) ⊂R →R
3 be a curve defined by

γ (t) =
√

6
5

(
sin

(
3t
5

)
–

2
7

sin

(
7t
5

)
–

sin(t)
5

, – cos

(
3t
5

)
+

2
7

cos

(
7t
5

)
+

cos(t)
5

,

2
√

6t
5

–
√

6 sin

(
2t
5

))
.

The curve γ has a singular point at t = 0, so that it is not a Frenet curve. On the other hand,
the curve γ is a framed curve with the mapping (γ ,μ1,μ2) : (–2π , 2π ) ⊂ R → R

3 × �2.
The adapted frame vectors of the framed curve (γ ,μ1,μ2) are given by

v(t) =
1
5

(
3 sin

(
4t
5

)
+ 2 sin

(
6t
5

)
, –3 cos

(
4t
5

)
– 2 cos

(
6t
5

)
,

2
√

6
5

sin

(
t
5

))
,

μ1 =
(

2
5
√

6 cos(t),
2
5
√

6 sin(t),
1
5

)
,

μ2 =
1
5

(
2 cos

(
6t
5

)
– 3 cos

(
4t
5

)
, 2 sin

(
6t
5

)
– 3 sin

(
4t
5

)
,

2
√

6
5

cos

(
t
5

))
.
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Figure 1 Framed slant helix γ

Figure 2 v-indicatrix of γ

Also, the framed curvatures of the framed curve (γ ,μ1,μ2) are as follows:

p(t) =
2
5
√

6 cos

(
t
5

)
and q(t) =

2
5
√

6 sin

(
t
5

)
.
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Figure 3 μ1-indicatrix of γ

Figure 4 μ2-indicatrix of γ

Moreover, we can readily see that the σ = 1
2
√

6
for the framed curve (γ ,μ1,μ2) with the

help of Theorem 3.1, so it is a framed slant helix. Finally, we show Figs. 1–4, which are the
framed slant helix, the v-indicatrix of γ , the μ1-indicatrix of γ , and the μ2-indicatrix of
γ , respectively.
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