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Abstract
In this paper, we construct a method with eight steps that belongs to the family of
Obrechkoff methods. Due to the explicit nature of the new method, not only does it
not require another method as predictor, but it can also be considered as a suitable
predictive technique to be used with implicit methods. Periodicity and error terms are
studied when applied to solve the radial Schrödinger equation, considering different
energy levels. We show its advantages in terms of accuracy, consistency, and
convergence in comparison with other methods of the same order appearing in the
literature.
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1 Introduction
Our main goal is to discuss the one-dimensional radial Schrödinger equation of the form

y′′(x) =
(

l(l + 1)
x2 + V (x) – E

)
y(x), y(0) = 0, (1)

where V (x) and E are the potential and energy, respectively. The second additional con-
dition is obtained from the physical meaning of the problem. The numerical solution of
equations of type (1) is of special importance for applied scientists, because they appear
in many areas of science when formulating natural problems such as in chemical physics
and in quantum physics, among others. Since the analytical solution for problem (1) has
a special and complex structure, its numerical approximation and the construction of ac-
curate approximation methods are of great importance. In recent years, various methods
have been designed by different authors to solve the Schrödinger equation numerically.
We will mention a limited number of these methods, such as Runge–Kutta methods [1–
12], hybrid methods [21–23], EF and TF methods [13–20].

Since the method we propose here belongs to the category of linear multistep multi-
derivative methods, we turn our attention to presenting some properties of these methods.
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Consider the multiderivative symmetric multistep Obrechkoff method defined as

k∑
j=0

αjyn–j+1 =
l∑

i=1

h2i
k∑

j=0

βijy(2i)
n–j+1. (2)

In the case αj = αk–j and βij = βi,k–j, for j = 0, 1, 2, . . . , k, method (2) will be symmetric. Also,
its order will be q, provided the truncation error is

TE = Cq+2hq+2y(q+2)(η), xn–k+1 < η < xn+1,

in which Cq+2 is a constant. To study the properties of stability of a method for solving
second-order differential equations, Lambert and Watson [10] offered the scalar test equa-
tion

y′′ = –ω2y, ω ∈R. (3)

If we apply (2) to (3), then we have the characteristic equation

ρ(ξ ) –
l∑

i=1

(–1)iv2iσi(ξ ) = 0, (4)

in which v = ωh and

ρ(ξ ) =
k∑

j=0

αjξ
k–j, σi(ξ ) =

k∑
j=0

βijξ
k–j, i = 1, 2, . . . , l.

Definition 1.1 The interval (0, v2
0) is called the interval of periodicity of method (2) pro-

vided for each v2 in this interval (4) has complex roots so that at least two of the roots are
on the unit circle and the rest are inside the unit circle. Also, if the interval of periodicity
is (0,∞), then method (2) has the property of P-stability.

In general, if we apply a 2k-step symmetric scheme to (3), its difference equation is ob-
tained in the form

Ak(v)(yn+k + yn–k) + · · · + A1(v)(yn+1 + yn–1) + A0(v)yn = 0, (5)

in which Ai(v), i = 0, 1, . . . , k, are polynomials depending on v. In addition, CE (the charac-
teristic equation) corresponding to the difference equation (5) is

Ak(v)
(
sk + s–k) + · · · + A1(v)

(
s + s–1) + A0(v) = 0. (6)

Definition 1.2 For any scheme with CE (6), PL (phase-lag) is defined as the first term in
the expansion of

t = v – θ (v),

where θ (v) is a real function of v. If we can write t = O(vq+1) as v → ∞, then the order of
PL is q.
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Theorem 1.3 The symmetric 2k-step scheme with CE (6) has PL order q and PL constant
c, where

–cvq+2 + O
(
vq+4) =

∑k
i=1 2Ai(v) cos(iv) + A0(v)∑k

i=1 2i2Ai(v)
.

Proof See [19]. �

Achieving the P-stability in numerical schemes is of great importance because with P-
stability property, we can say with confidence that the step-size constraint is eliminated.
In other words, differential equations with extreme oscillations can be easily solved with
P-stable methods, and the desired solution can be approximated accurately. Of course,
the P-stability property is a general concept and is used for differential equations involv-
ing multiple frequencies. The concept of singular P-stability has been applied to problems
with only one frequency. So when we exclusively talk about the interval and distinguish it
from the periodicity interval, we are, in fact, talking about the same concepts, and there
is no difference between the P-stability and the singular P-stability. Indeed, singular P-
stability is the same as P-stability with one frequency. On the other hand, given that the
Schrödinger equation discussed in this paper has only one frequency, we use the expres-
sion singular P-stability. We will show this property in the section devoted to the period-
icity analysis.

The paper is organized as follows. Introduction and review of multiderivative methods
are presented in Sect. 1. In Sect. 2, we propose the main method, and its coefficients will
be produced with a new approach. Periodicity analysis and Schrödinger error coefficient
analysis are provided in Sect. 3. Finally, the efficiency of the new scheme is demonstrated
in Sect. 4 by implementing the new method on the Schrödinger equation with several
energy levels.

2 Development and analysis
2.1 Development
Since the main purpose of this paper is to solve numerically (1) using symmetric multi-
derivative multistep methods, we consider an eight-step fourth-derivative method of the
form

yn±4 + a3yn±3 + a2yn±2 + a1yn±1 + a0yn = h2(b3y′′
n±3 + b2y′′

n±2 + b1y′′
n±1 + b0y′′

n
)

+ h4(c3y(4)
n±3 + c2y(4)

n±2 + c1y(4)
n±1 + c0y(4)

n
)
,

(7)

where

c3 =
1

500
, c2 = –

1
500

, c1 =
1

100
, c0 = –

1
250

,

yn±i = yn+i + yn–i, i = 1, 2, 3, 4,

and aj, bj, j = 0, 1, 2, 3, are real constant coefficients that should be computed. It is natural
that all the properties and characteristics of any numerical method are deduced from its
coefficients. However, the coefficients must be carefully generated in order to achieve su-
perior properties. In this paper, several goals are pursued simultaneously so that we can
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produce a better and more accurate method. Not only do we want to control the interval
of periodicity so that (0, +∞) is produced, but also we intend to have the Schrödinger er-
ror coefficient reduced. Applying the new method (7) to the scalar equation (3), CE of the
method (7) will be as follows:

A4(v)(yn±4) + A3(v)(yn±3) + A2(v)(yn±2) + A1(v)(yn±1) + A0(v)yn = 0, (8)

where

A0(v) = a0 + b0v2 +
1

250
v4,

A1(v) = a1 + b1v2 –
1

100
v4,

A2(v) = a2 + b2v2 +
1

500
v4,

A3(v) = a3 + b3v2 –
1

500
v4,

A4(v) = 1.

Now, to control the interval of periodicity, we will generate the coefficients so that CE of
the scheme is

λ8 – 2 cos(4v)λ4 + 1 = 0. (9)

To this end, the polynomials A1(v), A2(v), and A3(v) of the characteristic function must
be equal to zero, which produces three equations. On the other hand, because the new
method has eight free parameters, we need five more independent linear equations to
obtain unique coefficients. Now, to control the Schrödinger error coefficient, suppose that
PL and its derivatives up to four are zero. This leads to 8 equations with 8 unknowns.
According to Theorem 1.3 with k = 4, PL is

PL =
2A1(v) cos(v) + 2A2(v) cos(2v) + 2A3(v) cos(3v) + 2A4(v) cos(4v) + A0

2A1(v) + 8A2(v) + 18A3(v) + 32A4(v)
.

Using Maple 18, we have solved this system, and the obtained coefficients are given in
Appendix A. The Taylor series expansions of the coefficients are

a0 = –2 +
794,137
47,250

v2 –
1,190,687

70,875
v4 +

109,930,193
15,592,500

v6 – · · · ,

a1 = –
424,453
63,000

v2 +
108,841
13,500

v4 –
56,802,077
15,592,500

v6 + · · · ,

a2 = –
13,103

157,500
v2 –

13,087
236,250

v4 +
595,357

4,455,000
v6 – · · · ,

a3 = –
1,495,957
945,000

v2 +
557,087

1,417,500
v4 –

246,769
15,592,500

v6 + · · · ,

b0 = –
38,137
47,250

–
643,193
141,750

v2 +
67,477,807
15,592,500

v4 –
811,862,971
521,235,000

v6 + · · · ,
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b1 =
424,453
63,000

–
54,353
6750

v2 +
56,802,077
15,592,500

v4 –
77,581,573
90,090,000

v6 + · · · ,

b2 =
13,103

157,500
+

25,229
472,500

v2 –
595,357

4,455,000
v4 +

21,123,139
1,351,350,000

v6 – · · · ,

b3 =
1,495,957
945,000

–
138,563
354,375

v2 +
246,769

15,592,500
v4 –

39,543,703
36,486,450,000

v6 – · · · .

The local truncation error of (7), namely LTENew, is obtained using the usual Taylor series
expansion and is given by

LTENew = –
326,687

5,670,000
h10[ω10yn + 5ω8y(2)

n + 10ω6y(4)
n + 10ω4y(6)

n + 5ω2y(8)
n + y(10)

n
]

+ O
(
h12).

(10)

Then the local truncation error of the classical form of (7) (the same structure with con-
stant coefficients), namely LTEClass, will be

LTEClass = –
326,687

5,670,000
h10y(10)

n + O
(
h12). (11)

To study the efficiency of the new scheme for solving (1), we have to have its Schrödinger
error. To this end, we can transfer (1) to

y′′ = f (x)y(x).

Now, as per Ixaru and Rizea’s paper [9], f (x) can be changed to f (x) = g(x) + G, in which
g(x) = V (x) – Vc, and Vc is the constant approximation of the potential and G = v2 = Vc – E
(see [9]).

Theorem 2.1 The Schrödinger error of the new method increases as the second power of G.

Proof We know that, for any eighth algebraic-order linear multistep method, the general
form of the LTEs is given by

LTE = h10
j∑

i=0

NiGi,

where, in the classical case, Ni are constant numbers and in the frequency dependent
cases, Ni are functions of v and G, and j is the maximum power of G. Since G = Vc – E, we
can assume two cases according to the values of E:

1. G = Vc – E ≈ 0.
2. G � 0 or G � 0, where |G| has a large value.

If G = Vc – E ≈ 0, then we have Gr = 0, r = 1, 2, . . . . Obviously, the method with asymptotic
form of LTE, which includes the minimum power of G, is the most accurate one. Now,
G = Vc – E ≈ 0 implies LTE = h10N0, where N0 in (10) and (11) is – 326,687

5,670,000 [ω10yn + 5ω8y(2)
n +

10ω6y(4)
n + 10ω4y(6)

n + 5ω2y(8)
n + y(10)

n ] and – 326,687
5,670,000 y(10)

n , respectively. For the case G � 0 or
G � 0, firstly, we should calculate higher derivatives of y. By simple calculation, we have

y(2)(x) =
(
V (x) – Vc + G

)
y(x),
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y(4)(x) =
(

d2

dx2 V (x)
)

y(x) + 2
(

d
dx

V (x)
)(

d
dx

y(x)
)

+
(
V (x) – Vc + G

)( d2

dx2 y(x)
)

,

etc. Therefore, by substituting the above derivatives in LTE, we can get the Schrödinger
error for the new scheme. Hence, the principal term of the Schrödinger error of the new
method is

ErrSch =
326,687
354,375

(
d4

dx4 g(x)
)

y(x)h10G2,

and thus, for this method, the error increases as the second power of G. �

2.2 Periodicity analysis
In order to confidently implement a numerical method on problems, we must have accu-
rate information about how the method behaves. More specifically, we need to know the
stability or instability, convergence or divergence of the method and even the maximum
step length. For such studies, we must calculate the stability function of the method and
then generate the stability region. This helps us to easily compare the proposed method
with other methods. To generate the stability area of the scheme, we apply the main
method to the problem

y′′(x) = –φ2y(x) (12)

and obtain its CE. Note that the frequency used in (12) is different from the frequency
used in (3). If we assume s = φh and v = ωh, then we will produce y-axes with v and x-axis
with s in the stability region. Therefore, the proposed method can be used for problems
that have two frequencies. Applying (7) to (12), we will have

4∑
i=1

Ai(s, v)(yn+i + yn–i) + A0(s, v)yn = 0, (13)

in which v = ωh, s = φh, and Ai(s, v) are functions of s and v. To save space, Ai(s, v) are given
in Appendix B.

As explained at the beginning of this section, the stability function of the new method
has two parameters, s and v, each of which is derived from a frequency. We are looking for
P-stability of the method to solve more problems with the proposed method. The colored
parts in Fig. 1, which is the figure for the stability area of the method, show the stability
parts, and the white parts show the instability region of the method. The method will be P-
stable when the entire s – v plane is colored. But this is when we talk about two-frequency
issues. Since the equation discussed in this paper has one frequency, the concept of P-
stability changes to the one of singular P-stability. It is enough that the bisector of the first
quarter belongs to the colored part. Hence, the method is singular P-stable. Now we prove
the property of singular P-stability in the next theorem algebraically.

Theorem 2.2 The explicit eight-step scheme (7) is singularly P-stable.

Proof If we take s = v, then CE of (7) can be written as

CE = λ8 – 2λ4(8 cos4 v – 8 cos2 v + 1
)

+ 1.
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Figure 1 The periodicity region of the new scheme

Since cos(4v) = 8 cos4 v – 8 cos2 v + 1, CE of the new scheme may be rewritten as

CE = λ8 – 2λ4 cos(4v) + 1. (14)

Note that (14) is a polynomial of degree eight with real coefficients. So, it has eight roots
namely λi, i = 0, 1, 2, . . . , 7. According to these roots, CE = 0 is equivalent to

3∏
k=0

(λ – λ2k)(λ – λ2k+1) = 0.

If we assume λ2k = exp(I 2kπ
m ) exp(Iv) (see [22]), where k = 0, 1, 2, 3 and I =

√
–1, then

(λ2k)8 – 2 cos(mv)(λ2k)4 + 1

=
[

exp

(
I

2kπ

m

)
exp(Iv)

]8

– 2 cos(mv)
[

exp

(
I

2kπ

m

)
exp(Iv)

]4

+ 1

= exp(I2mv) – 2 cos(mv) exp(Imv) + 1

= 0.

(15)

Also, if for k = 0, 1, 2, 3 we set λ2k+1 = exp(I 2kπ
m ) exp(–Iv), then we have

(λ2k+1)8 – 2 cos(mv)(λ2k+1)4 + 1

=
[

exp

(
I

2kπ

m

)
exp(–Iv)

]8

– 2 cos(mv)
[

exp

(
I

2kπ

m

)
exp(–Iv)

]4

+ 1

= exp(I2mv) – 2 cos(mv) exp(–Imv) + 1

= 0.

(16)
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So, from (15) and (16), the characteristic roots of the new method are obtained as

λ0 = exp(Iv), λ1 = exp(–Iv), λ2 = I exp(Iv), λ3 = I exp(–iv),

λ4 = – exp(Iv), λ5 = – exp(–Iv), λ6 = –I exp(Iv), λ7 = –I exp(–iv).

Clearly, for these roots we have |λ0| = |λ1| = 1 and |λi| ≤ 1, i = 2, 3, . . . , 7. Accordingly,
when s = v, the periodicity interval of the new scheme is equal to (0,∞), and the method
is P-stable. Therefore, it is singularly P-stable. �

Remark 2.3 The characteristic equation (14) is the same as the one obtained in [18, Theo-
rem 5]. To explain this, since to prove the P-stability property of a linear multistep method,
we have to show that the characteristic roots have modulus less (or equal) than one. In
other words, they must lie in or on the unit circle. Although the structure of the proposed
method in [18] is different from the method presented in this paper, we know the char-
acteristic equation of an eight-step linear multistep method is equal to (8), and also its
two variable characteristic equation is (13). Singularly P-stability means P-stability when
s = v. To generate a system of equations for calculating the coefficients of the method,
we have assumed that A1(v), A2(v), and A3(v) are equal to zero and the remaining equa-
tions are obtained from vanishing phase-lag and some of its derivatives. Now, by sub-
stituting s = v in Ai(s, v), i = 0, 1, 2, 3, 4, we have yn+4 + B(v)yn + yn–4 = 0, where B(v) =
–2(8 cos4 v – 8 cos2 v + 1). Hence, the characteristic polynomial will be λ8 + B(v)λ4 + 1 = 0,
and then all characteristic roots are equal or less than one.

3 Numerical results
This section is devoted to implementing the method built on the Schrödinger problem.
In order to better judge the quality of the method, we have implemented it on two energy
levels E = 341.495874 and E = 989.701916. We have compared the produced results with
those of the other methods which are of the same order as the new one, and we showed
the superiority of the new method. Since we need a value ω in numerical implementation,
we need to specify this value. Different methods have been proposed in different papers to
consider ω. We may mention ω =

√|V (x) – E| in which v(x) is the potential; in this article,
we will use the Woods–Saxon potential function. The definition of the function V is (see
Fig. 2)

V (x) = u0(1 + z)–1[1 – z
(
a(1 + z)

)–1], z = e
x–x0

a , a = 0.6, x0 = 7.0, u0 = –50. (17)

Figure 2 The Woods–Saxon potential
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Here, in order to implement and produce numerical results of the new method (see [8]),
we let

ω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
E – 50, 0 ≤ x ≤ 6.5 – 2h,√
E – 37.5, x = 6.5 – h,√
E – 25, x = 6.5,√
E – 12.5, x = 6.5 + h,√
E, 6.5 + 2h ≤ x ≤ 15.

This value is considered for the interval [0, 15].

3.1 Schrödinger equation-resonance problem
Consider the numerical solution of the radial time-independent Schrödinger equation
(1) in the well-known case of the Woods–Saxon potential (17). To numerically solve this
problem, we should approximate the true or infinite interval of integration by applying a
finite interval. Since we need to illustrate our problem numerically, we take the domain
of integration as x ∈ [0, 15]. We consider (1) in a relatively large domain of energies, i.e.,
E ∈ [1, 1000]. When it comes to positive energies, E = k2, the potential fades faster than
the term l(l+1)

x2 , and the Schrödinger equation effectively reduces to

y′′(x) =
(

l(l + 1)
x2 – E

)
y(x), (18)

for x greater than some value X. Equation (18) has two linearly independent solutions
kxjl(kx) and kxnl(kx), where jl and nl are the spherical Bessel and Neumann functions,
respectively. When x → ∞, the solution takes the asymptotic form

y(x) ≈ Akxjl(kx) – Bkxnl(kx)

≈ D
[
sin(kx – π l/2) + tan(δl) cos(kx – π l/2)

]
,

where δl is called scattering phase shift that may be calculated from the formula

tan(δl) =
y(x1)S(x2) – y(x2)S(x1)
y(x2)C(x1) – y(x1)C(x2)

,

where x1 and x2 are distinct points in the asymptotic region (we choose x1 as the right-
hand end point of the interval of integration and x2 = x1 –h) with S(x) = kxjl(kx) and C(x) =
–kxnl(kx). The problem is dealt with as an initial value problem; thus, we have to have y0.
We obtain y0 from the initial condition. With these starting values, we evaluate at x1 of
the asymptotic region the phase shift δl .

For positive energies, we have resonance problem which is comprised either of finding
the phase-shift δl or finding those E, for E ∈ [1, 1000], at which δl = π

2 . We solve the prob-
lem when the positive energies lie under potential barrier. The boundary conditions for
this problem are

y(0) = 0, y(x) = cos(
√

Ex) for large x.



Shokri et al. Advances in Difference Equations        (2021) 2021:506 Page 10 of 16

The following methods have been used to compare the new method:
• The twelve-step thirteenth algebraic-order method developed by Quinlan and

Tremaine [15] which is indicated as I;
• The eight-step method with PL and its first derivative equal to zero obtained in [5]

which is indicated as II;
• The ten-step method with PL and its first, second, and third derivatives equal to zero

obtained in [7] which is indicated as III;
• The exponentially-fitted four-step method developed by Raptis [16] which is indicated

as IV;
• The eight-step method with PL and its first and second derivative equal to zero

obtained in [6] which is indicated as V;
• The trigonometrically-fitted six-step method developed by Wang [22] which is

indicated as VI;
• The new explicit eight-step singularly P-stable multiderivative method developed in

this paper which is indicated as New.
The computed eigenenergies are compared with the exact ones. In Fig. 3, we present the
digits of accuracy given by log10(Err), where

Err = |Ecalculated – Eaccurate|, (19)

versus the CPU times for several methods used for calculating the eigenenergy E2 =
341.495874. In Fig. 4, we present the maximum absolute error log10(Err) of the eigenen-
ergy E3 = 989.701916. In addition, it is pointed out in Fig. 5 that the new method shows a
better long time behavior than other ones when applied to the Schrödinger equation for
various eigenenergies. All computations were carried out on a PC(i5 @2.67 GHz) using
Maple 18 with 16 significant digits accuracy (IEEE standard).

Figure 3 Digits of accuracy versus CPU times (in seconds) for different methods, corresponding to the
eigenvalue E2 = 341.495874
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Figure 4 Digits of accuracy versus CPU times (in seconds) for different methods, corresponding to the
eigenvalue E3 = 989.701916

Figure 5 Digits of accuracy versus energy levels for different methods

4 Conclusion
By using higher-order derivatives in classical methods and combining them with the sys-
tem of PL and its derivatives, we were able to create a new high-efficiency method (with
lower CPU time) that can approximate different types of energy levels of the Schrödinger
equation with high accuracy. In fact, by keeping the computation time low, we were able
to produce better quality results, which is very important in numerical analysis.

Appendix A

a0 =
1

750v2 sin5 v
((

–8v5 – 6000v2 sin v – 3000 sin v
)

cos8 v

+
(
–2v5 – 12v4 sin v – 16,000v3 + 6000v

)
cos7 v

– 20v2(v3 – 1500 sin v
)

cos6 v +
(
5v5 + 29,000v3 – 16,500v

)
cos5 v
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+
((

3v6 – 42,000v2 + 5250
)

sin v + 70v5) cos4 v

+
(
6v5 + 51v4 sin v – 22,500v3 + 11,250v

)
cos3 v

+
((

–6v6 – 15v4 + 18,000v2 – 2250
)

sin v – 93v5) cos2 v

+
(
6v5 + 6v4 sin v + 2000v3 – 750v

)
cos v

+ 3v6 sin v + 6v5),

a1 =
1

3000v2 sin5 v
((

32,000v3 – 12,000v
)

cos8 v

+
(
72v5 – 24,000v2 sin v + 18,000 sin v

)
cos7 v

+
(
24v5 + 96v4 sin v – 56,000v3 + 21,000v

)
cos6 v

+
((

–12v4 + 30,000v2 – 22,500
)

sin v – 138v5) cos5 v

+
((

–30v6 – 156v4) sin v – 66v5 + 40,000v3 + 7500v
)

cos4 v

+
((

39v4 + 12,000v2 + 2250
)

sin v + 105v5) cos3 v

+
((

60v6 – 66v4) sin v + 15v5 + 5000v3 – 18,750v
)

cos2 v

+
((

18v4 – 18,000v2 + 2250
)

sin v + 96v5) cos v

+
(
–30v6 – 9v4) sin v – 18v5 + 1500v3 + 2250v

)
,

a2 =
1

1500v2 sin5 v
((

–4000v3 + 6000v
)

cos7 v

+
(
–36v5 + 9000v2 sin v – 4500 sin v

)
cos6 v

+
(
–3v5 – 30v4 sin v + 4000v3 – 15,000v

)
cos5 v

+
((

3v6 + 6v4 – 16,500v2 + 6750
)

sin v + 96v5) cos4 v

+
(
6v5 + 51v4 sin v – 500v3 + 9750v

)
cos3 v

+
((

–6v6 – 15v4 + 6000v2 – 2250
)

sin v – 93v5) cos2 v

+
(
6v5 + 6v4 sin v – 4000v3 – 750v

)
cos v

+
(
3v6 + 1500v2) sin v + 6v5),

a3 =
1

3000v2 sin5 v
((

8000v3 – 3000v
)

cos6 v

+
(
22v5 – 6000v2 sin v + 1500 sin v

)
cos5 v

+
((

–6v6 + 12v4) sin v – 2v5 – 20,000v3 + 7500v
)

cos4 v

+
((

–3v4 + 12,000v2 – 2250
)

sin v – 53v5) cos3 v

+
((

12v6 – 18v4) sin v + 5v5 + 17,000v3 – 5250v
)

cos2 v

+
((

6v4 – 6000v2 + 750
)

sin v + 40v5) cos v

+
(
–6v6 – 3v4) sin v – 6v5 – 3500v3 + 750v

)
,

b0 =
1

750v4 sin5 v
((

8v5 – 6000v2 sin v + 3000 sin v
)

cos8 v

+
(
2v5 + 12v4 sin v + 16,000v3 – 6000v

)
cos7 v
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+ 20v2(v3 + 300 sin v
)

cos6 v

+
(
–5v5 – 29,000v3 + 16,500v

)
cos5 v

+
((

–6v6 + 4500v2 – 5250
)

sin v – 70v5) cos4 v

+
(
–6v5 – 51v4 sin v + 22,500v3 – 11,250v

)
cos3 v

+
((

12v6 + 15v4 – 3000v2 + 2250
)

sin v + 93v5) cos2 v

+
(
–6v5 – 6v4 sin v – 2000v3 + 750v

)
cos v

+
(
–6v6 – 1500v2) sin v – 6v5),

b1 =
1

3000v4 sin5 v
((

–32,000v3 + 12,000v
)

cos8 v

+
(
–72v5 + 24,000v2 sin v – 18,000 sin v

)
cos7 v

+
(
–24v5 – 96v4 sin v + 56,000v3 – 21,000v

)
cos6 v

+
((

12v4 – 30,000v2 + 22,500
)

sin v + 138v5) cos5 v

+
((

60v6 + 156v4) sin v + 66v5 – 40,000v3 – 7500v
)

cos4 v

+
((

–39v4 – 12,000v2 – 2250
)

sin v – 105v5) cos3 v

+
((

–120v6 + 66v4) sin v – 15v5 – 5000v3 + 18,750v
)

cos2 v

+
((

–18v4 + 18,000v2 – 2250
)

sin v – 96v5) cos v

+
(
60v6 + 9v4) sin v + 18v5 – 1500v3 – 2250v

)
,

b2 =
1

1500v4 sin5 v
((

4000v3 – 6000v
)

cos7 v

+
(
36v5 – 9000v2 sin v + 4500 sin v

)
cos6 v

+
(
3v5 + 30v4 sin v – 4000v3 + 15,000v

)
cos5 v

+
((

–6v6 – 6v4 + 16,500v2 – 6750
)

sin v – 96v5) cos4 v

+
(
–6v5 – 51v4 sin v + 500v3 – 9750v

)
cos3 v

+
((

12v6 + 15v4 – 6000v2 + 2250
)

sin v + 93v5) cos2 v

+
(
–6v5 – 6v4 sin v + 4000v3 + 750v

)
cos v

+
(
–6v6 – 1500v2) sin v – 6v5),

b3 =
1

3000v4 sin5 v
((

–8000v3 + 3000v
)

cos6 v

+
(
–22v5 + 6000v2 sin v – 1500 sin v

)
cos5 v

+
((

12v6 – 12v4) sin v + 2v5 + 20,000v3 – 7500v
)

cos4 v

+
((

3v4 – 12,000v2 + 2250
)

sin v + 53v5) cos3 v

+
((

–24v6 + 18v4) sin v – 5v5 – 17,000v3 + 5250v
)

cos2 v

+
((

–6v4 + 6000v2 – 750
)

sin v – 40v5) cos v

+
(
12v6 + 3v4) sin v + 6v5 + 3500v3 – 750v

)
.
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Appendix B

A0 =
1

750

(((
–6000v4 +

(
–6000s2 – 3000

)
v2 + 3000s2) sin v + 8s2v5 – 8v7) cos8 v

+ 2v(s – v)(s + v)
(
v4 + 6v3 sin v + 8000v2 – 3000

)
cos7 v

+ 20v2((300s2 + 1500v2) sin v + s2v3 – v5) cos6 v

– 5v
(
v4 + 5800v2 – 3300

)
(s – v)(s + v) cos5 v

+
((

3v8 – 6s2v6 +
(
3s4 – 42,000

)
v4 +

(
4500s2 + 5250

)
v2 – 5250s2) sin v

– 70s2v5 + 70v7) cos4 v

– 6(s + v)v
(

v4 +
17
2

v3 sin v – 3750v2 + 1875
)

(s – v) cos3 v

+
((

–6v8 +
(
12s2 – 15

)
v6 +

(
–6s4 + 15s2 + 18,000

)
v4

+
(
–3000s2 – 2250

)
v2 + 2250s2) sin v + 93s2v5 – 93v7) cos2 v

– 6(s + v)v
(

v4 + v3 sin v +
1000

3
v2 – 125

)
(s – v) cos v

+ 3
((

s4v2 – 2s2v4 + v6 – 500s2) sin v – 2s2v3 + 2v5)v2
)

v–4 sin–5 v,

A1 = –
1

100

((
3200

3
v3 – 400v

)
cos8 v

+
(

12
5

v5 + 600 sin v – 800v2 sin v
)

cos7 v

+
(

–
5600

3
v3 +

16
5

v4 sin v +
4
5

v5 + 700v
)

cos6 v

+
((

–
2
5

v4 + 1000v2 – 750
)

sin v –
23
5

v5
)

cos5 v

+
((

s2 – v2 –
26
5

)
v3 sin v +

4000
3

v2 + 250 –
11
5

v4
)

v cos4 v

+
((

400v2 +
13
10

v4 + 75
)

sin v +
7
2

v5
)

cos3 v

– 2v
((

s2 – v2 +
11
10

)
v3 sin v –

250
3

v2 +
625

2
–

1
4

v4
)

cos2 v

+
((

–600v2 + 75 +
3
5

v4
)

sin v +
16
5

v5
)

cos v

+ v
((

s2 – v2 –
3

10

)
v3 sin v + 50v2 + 75 –

3
5

v4
))

(s + v)(s – v)v–4 sin–5 v,

A2 =
1

500
(s + v)(s – v)

((
4000

3
v3 – 2000v

)
cos7 v

+
(
12v5 – 3000v2 sin v + 1500 sin v

)
cos6 v

+
(

v5 –
4000

3
v3 + 10v4 sin v + 5000v

)
cos5 v
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+
((

–2250 – v6 +
(
s2 – 2

)
v4 + 5500v2) sin v – 32v5) cos4 v

+
(

–2v5 – 17v4 sin v – 3250v +
500

3
v3

)
cos3 v

+
((

750 + 2v6 +
(
–2s2 + 5

)
v4 – 2000v2) sin v + 31v5) cos2 v

+
(

–2v5 – 2v4 sin v +
4000

3
v3 + 250v

)
cos v

+ v2((s2v2 – v4 – 500
)

sin v – 2v3))v–4 sin–5 v,

A3 = –
1

500
(s + v)(s – v)

((
–500v +

4000
3

v3
)

cos6 v

+
(

250 sin v +
11
3

v5 – 1000v2 sin v
)

cos5 v

+
(

v3(s2 – v2 + 2
)

sin v –
10,000

3
v2 + 1250 –

1
3

v4
)

v cos4 v

+
((

–
1
2

v4 – 375 + 2000v2
)

sin v –
53
6

v5
)

cos3 v

+
((

2v6 +
(
–2s2 – 3

)
v4) sin v +

5
6

v5 +
8500

3
v3 – 875v

)
cos2 v

+
((

v4 – 1000v2 + 125
)

sin v +
20
3

v5
)

cos v

+
(

v3
(

s2 – v2 –
1
2

)
sin v –

1750
3

v2 + 125 – v4
)

v
)

v–4 sin–5 v.
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