Positive solutions for eigenvalue problems of fractional q-difference equation with ϕ-Laplacian

Jufang Wang ${ }^{1}$, Changlong Yu ${ }^{2,1^{*}}$ © ${ }^{(0)}$, Boya Zhang ${ }^{1}$ and Si Wang ${ }^{1}$

"Correspondence:

changlongyu@126.com
${ }^{1}$ College of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, P.R. China
${ }^{2}$ Interdisciplinary Research Institute, Faculty of Science, Beijing University of Technology, Beijing 100124, China

Abstract

The aim of this paper is to investigate the boundary value problem of a fractional q-difference equation with ϕ-Laplacian, where ϕ-Laplacian is a generalized p-Laplacian operator. We obtain the existence and nonexistence of positive solutions in terms of different eigenvalue intervals for this problem by means of the Green function and Guo-Krasnoselskii fixed point theorem on cones. Finally, we give some examples to illustrate the use of our results.

Keywords: Fractional q-difference equations; Positive solutions; Boundary value problem; Guo-Krasnoselskii fixed point theorem

1 Introduction

The theory of q-calculus has been developed for more than 100 years; see [1]. As a branch of q-calculus, fractional q-calculus was first proposed by Al-Salam and Agarwal in the 1960s; see [2, 3]. Fractional q-calculus has a wide range of applications in many fields, such as cosmic strings and black holes, quantum theory, aerospace dynamics, biology, economics, control theory, medicine, electricity, signal processing, image processing, biophysics, blood flow phenomenon, and so on; see [4-10] and the references therein. The fractional q-difference equations are very important, and their basic theory has been continuously developed. Recently, as a new research direction, the solvability of boundary value problems (BVPs) of fractional q-difference equations have been widely concerned by scholars at home and abroad, and some conclusions have been obtained; see [11-14]. However, there are a few studies of eigenvalue problems for fractional q-difference equations with ϕ-Laplacian operator, and lots of work should be done.

In 2013, Li et al. [15] studied some positive solutions for a class of nonlinear fractional q difference equations with parameters involving the Riemann-Liouville fractional derivative by means of a fixed theorem in cones,

$$
\left\{\begin{array}{l}
\left(D_{q}^{\alpha} u\right)(x)+\lambda f(u(x))=0, \quad 0<x<1, \\
u(0)=\left(D_{q} u\right)(0)=\left(D_{q} u\right)(1)=0,
\end{array}\right.
$$

[^0] sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
where $2<\alpha \leq 3$, and $f:[0,1] \times R \rightarrow R$ is a nonnegative continuous function.
In 2015, Wang et al. [16] obtained the existence and uniqueness of solutions for a class of singular BVPs of nonlinear fractional q-difference equations by a fixed point theorem in partially ordered sets,
\[

\left\{$$
\begin{array}{l}
\left(D_{q}^{\alpha} u\right)(t)+f(t, u(t))=0, \quad 0<t<1, \\
u(0)=u(1)=0, \quad\left(D_{q} u\right)(0)=0,
\end{array}
$$\right.
\]

where $2<\alpha \leq 3$, and $f:[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous with $\lim _{t \rightarrow 0^{+}} f(t, \cdot)=\infty$.
In 2015, Han et al. [17] used the Green function and Guo-Krasnoselskii fixed-point theorem on cones to study solutions for eigenvalue problems of fractional differential equations with generalized p-Laplacian

$$
\begin{cases}D_{0^{+}}^{\beta}\left(\phi\left(D_{0^{+}}^{\alpha} u(t)\right)\right)=\lambda f(u(t)), & 0<t<1 \tag{1.1}\\ u(0)=u^{\prime}(0)=u^{\prime}(1)=0, & \phi\left(D_{0^{+}}^{\alpha} u(0)\right)=\left(\phi\left(D_{0^{+}}^{\alpha} u(1)\right)\right)^{\prime}=0\end{cases}
$$

where $0<q<1,2<\alpha \leq 3,1<\beta \leq 2, \lambda>0$ is a parameter, and $D_{0^{+}}^{\beta}$ and $D_{0^{+}}^{\alpha}$ are the standard Riemann-Liouville fractional derivatives.

Motivated by the work above, in this paper, we investigate the following BVP of fractional q-difference equation with ϕ-Laplacian:

$$
\left\{\begin{array}{l}
D_{q}^{\beta}\left(\phi\left(D_{q}^{\alpha} u(t)\right)\right)=\lambda f(u(t)), \quad 0<t<1 \tag{1.2}\\
u(0)=D_{q} u(0)=D_{q} u(1)=0, \quad \phi\left(D_{q}^{\alpha} u(0)\right)=D_{q}\left(\phi\left(D_{q}^{\alpha} u(1)\right)\right)=0,
\end{array}\right.
$$

where $0<q<1,2<\alpha \leq 3,1<\beta \leq 2, \lambda>0$ is a parameter, and $D_{q}^{\beta}, D_{q}^{\alpha}$ are the standard Riemann-Liouville fractional q-derivatives. As $q \rightarrow 1^{-}$, problem (1.2) reduces to problem (1.1).

In this paper, we always assume that
(A1) $\phi: R \rightarrow R$ is an odd increasing homeomorphism, and there exist two increasing homeomorphisms $\psi_{1}, \psi_{2}:(0, \infty) \rightarrow(0, \infty)$ such that

$$
\psi_{1}(x) \phi(y) \leq \phi(x y) \leq \psi_{2}(x) \phi(y), \quad x, y>0 ;
$$

(A2) $f:(0,+\infty) \rightarrow(0,+\infty)$ is a continuous function.
A function ϕ satisfying (A1) is called a generalized p-Laplacian operator. Two important cases are $\phi(u)=u$ and $\phi(u)=|u|^{p-2} u(p>1)$; see [18] and the references therein.

We aim to obtain the existence of at least one or two positive solutions in terms of different eigenvalue intervals using the Green function and Guo-Krasnoselskii fixed point theorem on cones. We also consider the nonexistence of positive solutions in terms of the parameter λ. Finally, we give some examples to illustrate our main results.

2 Preliminary results

In this section, we cite some definitions and fundamental results of the q-calculus and fractional q-calculus.

Definition 2.1 ([1]) For $0<q<1$, we define the q-derivative of a real-valued function f as

$$
\left(D_{q} f\right)(x)=\frac{f(x)-f(q x)}{(1-q) x}, \quad\left(D_{q} f\right)(0)=\lim _{x \rightarrow 0}\left(D_{q} f\right)(x)
$$

Note that $\lim _{q \rightarrow 1^{-}} D_{q} f(x)=f^{\prime}(x)$.
Definition 2.2 ([1]) The q-integral of a function f in the interval $[0, b]$ is given by

$$
\left(I_{q} f\right)(x)=\int_{0}^{x} f(t) d_{q} t=x(1-q) \sum_{n=0}^{\infty} f\left(x q^{n}\right) q^{n}, \quad x \in[0, b] .
$$

If $a \in[0, b]$ and f is defined in the interval $[0, b]$, then its integral from a to b is defined as

$$
\int_{a}^{b} f(t) d_{q} t=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t
$$

More definitions and properties of q-calculus can be found in [1]. In recent years, some results of q-calculus have been obtained; see [18-20] and the references therein.

Definition 2.3 ([10]) Let $\alpha \geq 0$, and let f be a function on [0,1$]$. The fractional q-integral of the Riemann-Liouville type is defined by $\left(I_{q}^{0} f\right)(x)=f(x)$ and

$$
\left(I_{q}^{\alpha} f\right)(x)=\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{x}(x-q t)^{(\alpha-1)} f(t) d_{q} t, \quad \alpha>0, x \in[0,1] .
$$

Definition 2.4 ([21]) The fractional q-derivative of the Riemann-Liouville type of order $\alpha \geq 0$ is defined by $\left(D_{q}^{0} f\right)(x)=f(x)$ and

$$
\left(D_{q}^{\alpha} f\right)(x)=\left(D_{q}^{m} I_{q}^{m-\alpha} f\right)(x), \quad \alpha>0,
$$

where m is the smallest integer greater than or equal to α.

Lemma 2.1 ($[10,21])$ Let $\alpha, \beta \geq 0$, and let f be a continuous differentiable function on $[0,1]$. Then we have the following formulas:

1. $\left(I_{q}^{\beta} I_{q}^{\alpha} f\right)(x)=\left(I_{q}^{\alpha+\beta} f\right)(x)$,
2. $\left(D_{q}^{\alpha} I_{q}^{\alpha} f\right)(x)=f(x)$.

Lemma 2.2 ([22]) Let $f:[0,1] \rightarrow R$ be differentiable, let p be a positive integer, and let $\alpha>p-1$. Then

$$
\left(I_{q}^{\alpha} D_{q}^{p} f\right)(x)=\left(D_{q}^{p} I_{q}^{\alpha} f\right)(x)-\sum_{k=0}^{p-1} \frac{x^{\alpha-p+k}}{\Gamma_{q}(\alpha+k-p+1)}\left(D_{q}^{k} f\right)(0) .
$$

Lemma 2.3 ([23]) Let $\alpha \in R^{+}, n:=\lceil\alpha\rceil$. Then

$$
\left(I_{q}^{\alpha} D_{q}^{\alpha} f\right)(x)=f(x)-\sum_{j=1}^{n} D_{q}^{\alpha-j} f\left(0^{+}\right) \frac{x^{\alpha-j}}{\Gamma_{q}(\alpha-j+1)}
$$

Lemma 2.4 ([22]) Let $\alpha \geq 0$. Then we have the following three formulas:

$$
\begin{aligned}
& {[a(t-s)]^{(\alpha)}=a^{\alpha}(t-s)^{(\alpha)},} \\
& { }_{t} D_{q}(t-s)^{(\alpha)}=[\alpha]_{q}(t-s)^{(\alpha-1)}, \\
& { }_{x} D_{q} \int_{0}^{x} f(x, t) d_{q} t=\int_{0}^{x}{ }_{x} D_{q} f(x, t) d_{q} t+f(q x, x) .
\end{aligned}
$$

Remark 2.1 ([22]) Note that if $\alpha \geq 0$ and $a \leq b \leq t$, then $(t-a)^{(\alpha)} \geq(t-b)^{(\alpha)}$.

Lemma 2.5 Let $y \in C_{q}[0,1], 2<\alpha \leq 3,1<\beta \leq 2$. Then the $B V P$

$$
\left\{\begin{array}{l}
D_{q}^{\beta}\left(\phi\left(D_{q}^{\alpha} u(t)\right)\right)=\lambda y(t), \quad 0<t<1 \tag{2.1}\\
u(0)=\left(D_{q} u\right)(0)=D_{q} u(1)=0, \quad \phi\left(D_{q}^{\alpha} u(0)\right)=D_{q}\left(\phi\left(D_{q}^{\alpha} u(1)\right)\right)=0,
\end{array}\right.
$$

has a unique solution

$$
u(t)=\int_{0}^{1} G(t, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) y(\tau) d_{q} \tau\right) d_{q} s
$$

where

$$
\begin{align*}
& H(s, \tau)=\frac{1}{\Gamma_{q}(\beta)} \begin{cases}s^{\beta-1}(1-\tau)^{(\beta-2)}-(s-\tau)^{(\beta-1)}, & \tau \leq s, \\
s^{\beta-1}(1-\tau)^{(\beta-2)}, & \tau \geq s,\end{cases} \tag{2.2}\\
& G(t, s)=\frac{1}{\Gamma_{q}(\alpha)} \begin{cases}t^{\alpha-1}(1-s)^{(\alpha-2)}-(t-s)^{(\alpha-1)}, & s \leq t, \\
t^{\alpha-1}(1-s)^{(\alpha-2)}, & s \geq t .\end{cases} \tag{2.3}
\end{align*}
$$

Proof By Lemma 2.3 we have

$$
\phi\left(D_{q}^{\alpha} u(t)\right)=C_{1} t^{\beta-1}+C_{2} t^{\beta-2}+\lambda \int_{0}^{t} \frac{(t-q \tau)^{(\beta-1)}}{\Gamma_{q}(\beta)} y(\tau) d_{q} \tau .
$$

Using Lemma 2.4 and the boundary conditions $\phi\left(D_{q}^{\alpha} u(0)\right)=D_{q}\left(\phi\left(D_{q}^{\alpha} u(1)\right)\right)=0$, we get that

$$
C_{2}=0, C_{1}=-\lambda \int_{0}^{1} \frac{(1-q \tau)^{(\beta-2)}}{\Gamma_{q}(\beta)} y(\tau) d_{q} \tau .
$$

So we can obtain

$$
\begin{aligned}
\phi\left(D_{q}^{\alpha} u(t)\right) & =-\lambda \int_{0}^{1} \frac{t^{\beta-1}(1-q \tau)^{(\beta-2)}}{\Gamma_{q}(\beta)} y(\tau) d_{q} \tau+\lambda \int_{0}^{t} \frac{(t-q \tau)^{(\beta-1)}}{\Gamma_{q}(\beta)} y(\tau) d_{q} \tau \\
& =-\lambda \int_{0}^{1} H(t, q \tau) y(\tau) d_{q} \tau .
\end{aligned}
$$

Further, from

$$
D_{q}^{\alpha} u(t)=-\phi^{-1}\left(\lambda \int_{0}^{1} H(t, q \tau) y(\tau) d_{q} \tau\right)
$$

by Lemma 2.3 we have

$$
u(t)=C_{3} t^{\alpha-1}+C_{4} t^{\alpha-2}+C_{5} t^{\alpha-3}-\int_{0}^{t} \frac{(t-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)} \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) y(\tau) d_{q} \tau\right) d_{q} s
$$

Using the boundary condition $u(0)=\left(D_{q} u\right)(0)=D_{q} u(1)=0$, we get

$$
C_{5}=0, \quad C_{4}=0, \quad C_{3}=\int_{0}^{1} \frac{(1-q s)^{(\alpha-2)}}{\Gamma_{q}(\alpha)} \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) y(\tau) d_{q} \tau\right) d_{q} s
$$

so we have

$$
\begin{aligned}
u(t)= & \int_{0}^{1} \frac{t^{\alpha-1}(1-q s)^{(\alpha-2)}}{\Gamma_{q}(\alpha)} \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) y(\tau) d_{q} \tau\right) d_{q} s \\
& -\int_{0}^{t} \frac{(t-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)} \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) y(\tau) d_{q} \tau\right) d_{q} s \\
= & \int_{0}^{1} G(t, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) y(\tau) d_{q} \tau\right) d_{q} s .
\end{aligned}
$$

Lemma 2.6 Let $2<\alpha \leq 3$. The functions $G(t, q s)$ and $H(s, q \tau)$ defined by (2.2) and (2.3), respectively, are continuous on $[0,1] \times[0,1]$ and satisfy
(i) $G(t, q s) \geq 0, H(s, q \tau) \geq 0$ for $t, s, \tau \in[0,1]$;
(ii) $G(t, q s) \leq G(1, q s), H(s, q \tau) \leq H(q \tau, q \tau)$ for $t, s, \tau \in[0,1]$;
(iii) $G(t, q s) \geq k(t) G(1, q s), H(s, q \tau) \geq s^{\beta-1} H(1, q \tau)$, where $k(t)=t^{\alpha-1}$, for $t, s, \tau \in[0,1]$.

Proof (i) Let

$$
\begin{aligned}
& g_{1}(t, q s)=t^{\alpha-1}(1-q s)^{(\alpha-2)}-(t-q s)^{(\alpha-1)}, \quad s \leq t, \\
& g_{2}(t, q s)=t^{\alpha-1}(1-q s)^{(\alpha-2)}, \quad s \geq t .
\end{aligned}
$$

It is clear that $g_{2}(t, q s) \geq 0$ for $t, s \in[0,1]$. If $s \leq t$, then in view of Remark 2.1, for $t \neq 0$,

$$
\begin{aligned}
g_{1}(t, q s) & =t^{\alpha-1}(1-q s)^{(\alpha-2)}-(t-q s)^{(\alpha-1)} \\
& =t^{\alpha-1}(1-q s)^{(\alpha-2)}-t^{\alpha-1}(1-q s / t)^{(\alpha-1)} \\
& \geq t^{\alpha-1}\left[(1-q s)^{(\alpha-2)}-(1-q s)^{(\alpha-1)}\right] \\
& \geq 0 .
\end{aligned}
$$

Therefore $G(t, q s) \geq 0$. In the same way, we can obtain that $H(s, q \tau) \geq 0$.
(ii) Fix $s \in[0,1]$. For $t \neq 0$, we have

$$
\begin{aligned}
{ }_{t} D_{q} g_{1}(t, q s) & =[\alpha-1]_{q} t^{\alpha-2}(1-q s)^{(\alpha-2)}-[\alpha-1]_{q}(t-q s)^{(\alpha-2)} \\
& =[\alpha-1]_{q} t^{\alpha-2}(1-q s)^{(\alpha-2)}-[\alpha-1]_{q} t^{\alpha-2}\left(1-\frac{q s}{t}\right)^{(\alpha-2)} \\
& =[\alpha-1]_{q} t^{\alpha-2}\left[(1-q s)^{(\alpha-2)}-\left(1-\frac{q s}{t}\right)^{(\alpha-2)}\right] \geq 0
\end{aligned}
$$

and

$$
{ }_{t} D_{q} g_{2}(t, q s)=[\alpha-1]_{q} t^{\alpha-2}(1-q s)^{(\alpha-2)} \geq 0 .
$$

Therefore $g_{1}(t, q s), g_{2}(t, q s)$ are increasing functions of t for $s \in[0,1]$. Thus $G(t, q s) \leq$ $G(1, q s)$. In the same way, we get that $H(s, q \tau) \leq H(q \tau, q \tau)$.
(iii) Suppose that $s \leq t$. Then

$$
\begin{aligned}
\frac{G(t, q s)}{G(1, q s)} & =\frac{t^{\alpha-1}(1-q s)^{(\alpha-2)}-(t-q s)^{(\alpha-1)}}{(1-q s)^{(\alpha-2)}-(1-q s)^{(\alpha-1)}} \\
& =\frac{t^{\alpha-1}(1-q s)^{(\alpha-2)}-t^{\alpha-1}\left(1-\frac{q s}{t}\right)^{(\alpha-1)}}{(1-q s)^{(\alpha-2)}-(1-q s)^{(\alpha-1)}} \\
& \geq t^{\alpha-1} .
\end{aligned}
$$

For the other circumstance, we also get $G(t, q s) \geq t^{\alpha-1} G(1, q s)$. In the same way, we get that $H(s, q \tau) \geq s^{\beta-1} H(1, q \tau)$. The proof is completed.

Lemma 2.7 ([17]) Assume that (A1) holds. Then

$$
\psi_{2}^{-1}(x) y \leq \phi^{-1}(x \phi(y)) \leq \psi_{1}^{-1}(x) y, \quad x, y \in(0, \infty)
$$

Theorem 2.1 ([24] (Krasnoselskii)) Let E be a Banach space, and let $K \in E$ be a cone in E. Let Ω_{1} and Ω_{2} be open subsets of E with $0 \in \Omega_{1}$ and $\bar{\Omega}_{1} \subset \Omega_{2}$. Let $T: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K$ be a completely continuous operator. In addition, suppose that either
$\left(\mathrm{H}_{1}\right)\|T u\| \leq\|u\|, \forall u \in K \cap \partial \Omega_{1}$ and $\|T u\| \geq\|u\|, \forall u \in K \cap \partial \Omega_{2}$ or
$\left(\mathrm{H}_{2}\right) \quad\|T u\| \leq\|u\|, \forall u \in K \cap \partial \Omega_{2}$ and $\|T u\| \geq\|u\|, \forall u \in K \cap \partial \Omega_{1}$.
Then T has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

3 Main results

In this section, we consider the existence of at least one or two positive solutions or no positive solution for the BVP (1.1).

Let the Banach space $E=C_{q}[0,1]$ be endowed with norm $\|u\|=\max _{0 \leq t \leq 1}|u(t)|$. Define the cone

$$
P=\{u \in E \mid u(t) \geq k(t)\|u\|, t \in[0,1]\} \subset E .
$$

Let $T_{\lambda}: P \rightarrow P$ be the operator defined by

$$
T_{\lambda} u(t):=\int_{0}^{1} G(t, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) f(u(\tau)) d_{q} \tau\right) d_{q} s
$$

Lemma 3.1 Assume that (A2) holds. Then $T_{\lambda}: P \rightarrow P$ is completely continuous.

Proof By Lemma 2.6 we have

$$
\left(T_{\lambda} u\right)(t) \geq t^{\alpha-1} \int_{0}^{1} G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) f(u(\tau)) d_{q} \tau\right) d_{q} s=k(t)\left\|T_{\lambda} u(t)\right\|
$$

Thus $T_{\lambda}(P) \subset P$. In view of the nonnegativeness and continuity of $G(t, q s), H(s, q \tau)$, and $f(u(\tau))$, we have that $T_{\lambda}: P \rightarrow P$ is continuous.
Next, we prove that T_{λ} is uniformly bounded.
Let $\Omega \subset P$ be bounded, that is, there exists a positive constant $M>0$ such that $\|u\| \leq M$ for all $u \in \Omega$. Set $L=\max _{0 \leq u \leq M}|f(u)|+1$. Then, for $u \in \Omega$ and all $t \in[0,1]$, we have

$$
\begin{aligned}
\left|T_{\lambda} u(t)\right| & =\left|\int_{0}^{1} G(t, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) f(u(\tau)) d_{q} \tau\right) d_{q} s\right| \\
& \leq \psi_{1}^{-1}(\lambda L) \int_{0}^{1} G(t, q s) \phi^{-1}\left(\int_{0}^{1} H(s, q \tau) d_{q} \tau\right) d_{q} s \\
& \leq \psi_{1}^{-1}(\lambda L) \int_{0}^{1} G(1, q s) \phi^{-1}\left(\int_{0}^{1} H(q \tau, q \tau) d_{q} \tau\right) d_{q} s \\
& <+\infty .
\end{aligned}
$$

Hence $T_{\lambda}(\Omega)$ is uniformly bounded.
On the other hand, we prove that T_{λ} is equicontinuous.
Since $G(t, q s)$ is continuous on $[0,1] \times[0,1]$, it is uniformly continuous on $[0,1] \times[0,1]$. Thus, for any $\varepsilon>0$, there exists a constant $\delta>0$ such that $t_{1}, t_{2} \in[0,1]$ with $\left|t_{1}-t_{2}\right|<\delta$ imply

$$
\left|G\left(t_{2}, q s\right)-G\left(t_{1}, q s\right)\right|<\frac{\varepsilon}{\psi_{1}^{-1}(\lambda L) \phi^{-1}\left(\int_{0}^{1} H(q \tau, q \tau) d_{q} \tau\right)} .
$$

Then, for all $u \in \Omega$,

$$
\begin{aligned}
\left|T_{\lambda} u\left(t_{2}\right)-T_{\lambda} u\left(t_{1}\right)\right| & \leq \int_{0}^{1}\left|G\left(t_{2}, q s\right)-G\left(t_{1}, q s\right)\right| \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) f(u(\tau)) d_{q} \tau\right) d_{q} s \\
& \leq \psi_{1}^{-1}(\lambda L) \int_{0}^{1}\left|G\left(t_{2}, q s\right)-G\left(t_{1}, q s\right)\right| \phi^{-1}\left(\int_{0}^{1} H(q \tau, q \tau) d_{q} \tau\right) d_{q} s \\
& =\psi_{1}^{-1}(\lambda L) \phi^{-1}\left(\int_{0}^{1} H(q \tau, q \tau) d_{q} \tau\right) \int_{0}^{1}\left|G\left(t_{2}, q s\right)-G\left(t_{1}, q s\right)\right| d_{q} s \\
& <\varepsilon .
\end{aligned}
$$

Hence $T_{\lambda}(\Omega)$ is equicontinuous. By the Arzelà-Ascoli theorem we have that $T_{\lambda}: P \rightarrow P$ is completely continuous. The proof is completed.

For convenience, we denote

$$
\begin{aligned}
& F_{0}=\lim _{u \rightarrow 0^{+}} \sup \frac{f(u)}{\phi(u)}, \quad F_{\infty}=\lim _{u \rightarrow+\infty} \sup \frac{f(u)}{\phi(u)}, \\
& f_{0}=\lim _{u \rightarrow 0^{+}} \inf \frac{f(u)}{\phi(u)}, \quad f_{\infty}=\lim _{u \rightarrow+\infty} \inf \frac{f(u)}{\phi(u)}, \\
& A_{1}=\int_{0}^{1} G(1, q s) \psi_{1}^{-1}\left(\int_{0}^{1} H(q \tau, q \tau) d_{q} \tau\right) d_{q} s \\
& A_{2}=k(\delta) \int_{0}^{1} \psi_{2}^{-1}\left(s^{\beta-1}\right) G(1, q s) \psi_{2}^{-1}\left(\int_{0}^{1} \psi_{1}\left(\tau^{\alpha-1}\right) H(1, q \tau) d_{q} \tau\right) d_{q} s
\end{aligned}
$$

$$
A_{3}=k(\delta) \int_{0}^{1} \psi_{2}^{-1}\left(s^{\beta-1}\right) G(1, q s) \psi_{2}^{-1}\left(\int_{0}^{1} H(1, q \tau) d_{q} \tau\right) d_{q} s
$$

Theorem 3.1 Assume that (A1), (A2), and $f_{\infty} \psi_{1}\left(A_{1}^{-1}\right)>F_{0} \psi_{2}\left(A_{2}^{-1}\right)$ hold. Then for each

$$
\begin{equation*}
\lambda \in\left(\psi_{2}\left(A_{2}^{-1}\right) f_{\infty}^{-1}, \psi_{1}\left(A_{1}^{-1}\right) F_{0}^{-1}\right) \tag{3.1}
\end{equation*}
$$

the BVP offractional q-difference Eq. (1.1) has at least one positive solution. Here we impose that $f_{\infty}^{-1}=0$ if $f_{\infty}=+\infty$ and $F_{0}^{-1}=+\infty$ if $F_{0}=0$.

Proof Let λ satisfy (3.1), and let $\varepsilon>0$ be such that

$$
\begin{equation*}
\psi_{2}\left(A_{2}^{-1}\right)\left(f_{\infty}-\varepsilon\right)^{-1} \leq \lambda \leq \psi_{1}\left(A_{1}^{-1}\right)\left(F_{0}+\varepsilon\right)^{-1} . \tag{3.2}
\end{equation*}
$$

We separate the proof into two steps.
(1) By the definition of F_{0} there exists $r_{1}>0$ such that

$$
\begin{equation*}
f(u) \leq\left(F_{0}+\varepsilon\right) \phi(u), \quad 0<u<r_{1} . \tag{3.3}
\end{equation*}
$$

If $u \in P$ with $\|u\|=r_{1}$, then from (3.2) and (3.3) we obtain

$$
\begin{aligned}
\left\|T_{\lambda} u(t)\right\| & \leq \int_{0}^{1} G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(q \tau, q \tau) f(u(\tau)) d_{q} \tau\right) d_{q} s \\
& \left.\leq \int_{0}^{1} G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(q \tau, q \tau)\left(F_{0}+\varepsilon\right) \phi\left(r_{1}\right)\right) d_{q} \tau\right) d_{q} s \\
& \left.\leq \psi_{1}^{-1}\left(\lambda\left(F_{0}+\varepsilon\right)\right) \int_{0}^{1} G(1, q s) \phi^{-1}\left(\int_{0}^{1} H(q \tau, q \tau) \phi\left(r_{1}\right)\right) d_{q} \tau\right) d_{q} s \\
& \leq \psi_{1}^{-1}\left(\lambda\left(F_{0}+\varepsilon\right)\right) r_{1} \int_{0}^{1} G(1, q s) \psi_{1}^{-1}\left(\int_{0}^{1} H(q \tau, q \tau) d_{q} \tau\right) d_{q} s \\
& =\psi_{1}^{-1}\left(\lambda\left(F_{0}+\varepsilon\right)\right) A_{1} r_{1} \leq r_{1}=\|u\| .
\end{aligned}
$$

Let $\Omega_{1}=\left\{u \in E \mid\|u\|<r_{1}\right\}$. Then

$$
\begin{equation*}
\left\|T_{\lambda} u\right\| \leq\|u\|, \quad u \in P \cap \partial \Omega_{1} . \tag{3.4}
\end{equation*}
$$

(2) By the definition of f_{∞} there exists $r_{3}>0$ such that

$$
\begin{equation*}
f(u) \geq\left(f_{\infty}-\varepsilon\right) \phi(u), \quad u>r_{3} . \tag{3.5}
\end{equation*}
$$

If $u \in P$ with $\|u\|=r_{2}=\max \left\{2 r_{1}, r_{3}\right\}$, then from (3.2) and (3.5) we obtain

$$
\begin{aligned}
\left\|T_{\lambda} u(t)\right\| & \geq \int_{0}^{1} k(\delta) G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) f(u(\tau)) d_{q} \tau\right) d_{q} s \\
& \geq \int_{0}^{1} k(\delta) G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} s^{\beta-1} H(1, q \tau)\left(f_{\infty}-\varepsilon\right) \phi\left(\tau^{\alpha-1}\|u\|\right) d_{q} \tau\right) d_{q} s \\
& \geq \int_{0}^{1} k(\delta) G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} s^{\beta-1} H(1, q \tau)\left(f_{\infty}-\varepsilon\right) \psi_{1}\left(\tau^{\alpha-1}\right) \phi\left(r_{2}\right) d_{q} \tau\right) d_{q} s
\end{aligned}
$$

$$
\begin{aligned}
\geq & \psi_{2}^{-1}\left(\lambda\left(f_{\infty}-\varepsilon\right)\right) r_{2} k(\delta) \\
& \times \int_{0}^{1} \psi_{2}^{-1}\left(s^{\beta-1}\right) G(1, q s) \psi_{2}^{-1}\left(\int_{0}^{1} H(1, q \tau) \psi_{1}\left(\tau^{\alpha-1}\right) d_{q} \tau\right) d_{q} s \\
= & \psi_{2}^{-1}\left(\lambda\left(f_{\infty}-\varepsilon\right)\right) A_{2} r_{2} \geq r_{2}=\|u\| .
\end{aligned}
$$

Let $\Omega_{2}=\left\{u \in E \mid\|u\|<r_{2}\right\}$. Then

$$
\begin{equation*}
\left\|T_{\lambda} u\right\| \geq\|u\|, \quad u \in P \cap \partial \Omega_{2} \tag{3.6}
\end{equation*}
$$

From (3.4) and (3.6) and from Theorem 2.1 we have that T_{λ} has a fixed point $u \in P \cap$ $\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ with $r_{1} \leq\|u\| \leq r_{2}$ and that u is a positive solution for the BVP of fractional q-difference Eq. (1.1). The proof is completed.

Theorem 3.2 Assume that (A1), (A2), and $f_{0} \psi_{1}\left(A_{1}^{-1}\right)>F_{\infty} \psi_{2}\left(A_{2}^{-1}\right)$ hold. Then for each

$$
\begin{equation*}
\lambda \in\left(\psi_{2}\left(A_{2}^{-1}\right) f_{0}^{-1}, \psi_{1}\left(A_{1}^{-1}\right) F_{\infty}^{-1}\right), \tag{3.7}
\end{equation*}
$$

the BVP offractional q-difference Eq. (1.1) has at least one positive solution. Here we impose that $f_{0}^{-1}=0$ if $f_{0}=+\infty$ and $F_{\infty}^{-1}=+\infty$ if $F_{\infty}=0$.

Proof Let λ satisfy (3.7), and let $\varepsilon>0$ be such that

$$
\begin{equation*}
\psi_{2}\left(A_{2}^{-1}\right)\left(f_{0}-\varepsilon\right)^{-1} \leq \lambda \leq \psi_{1}\left(A_{1}^{-1}\right)\left(F_{\infty}+\varepsilon\right)^{-1} . \tag{3.8}
\end{equation*}
$$

We separate the proof into two steps.
(1) By the definition of f_{0} there exists $r_{1}>0$ such that

$$
\begin{equation*}
f(u) \geq\left(f_{0}-\varepsilon\right) \phi(u), \quad 0<u \leq r_{1} . \tag{3.9}
\end{equation*}
$$

If $u \in P$ with $\|u\|=r_{1}$, then similarly to the second part of the proof of Theorem 3.1, let $\Omega_{1}=\left\{u \in E \mid\|u\|<r_{1}\right\}$. Then

$$
\begin{equation*}
\left\|T_{\lambda} u\right\| \geq\|u\|, \quad u \in P \cap \partial \Omega_{1} . \tag{3.10}
\end{equation*}
$$

(2) By the definition F_{∞} there exists $R_{1}>0$ such that

$$
\begin{equation*}
f(u) \leq\left(F_{\infty}+\varepsilon\right) \phi(u), \quad u>R_{1} . \tag{3.11}
\end{equation*}
$$

We consider two cases:

Case 1: When f is bounded, then there exists $N>0$, such that $|f(u)| \leq N$ for $u \in(0,+\infty)$. If $u \in P$ with $\|u\|=r_{3}$, where $r_{3}=\max \left\{2 r_{1}, \phi^{-1}(\lambda N) A_{1}\right\}$, then

$$
\begin{aligned}
\left\|T_{\lambda} u(t)\right\| & \leq \int_{0}^{1} G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(q \tau, q \tau) f(u(\tau)) d_{q} \tau\right) d_{q} s \\
& \leq \phi^{-1}(\lambda N) \int_{0}^{1} G(1, q s) \psi_{1}^{-1}\left(\int_{0}^{1} H(q \tau, q \tau) d_{q} \tau\right) d_{q} s
\end{aligned}
$$

$$
\begin{aligned}
& \leq \phi^{-1}(\lambda N) A_{1} \\
& \leq r_{3}=\|u\| .
\end{aligned}
$$

So let $\Omega_{3}=\left\{u \in E \mid\|u\|<r_{3}\right\}$. Then

$$
\begin{equation*}
\left\|T_{\lambda} u\right\| \leq\|u\|, \quad u \in P \cap \partial \Omega_{3} \tag{3.12}
\end{equation*}
$$

Case 2: Suppose f is unbounded. Then there exists $r_{4}>\max \left\{2 r_{1}, R_{1}\right\}$ such that $f(u) \leq$ $f\left(r_{4}\right)$ for $0<u<r_{4}$. If $u \in P$ with $\|u\|=r_{4}$, then by (3.7) and (3.11) we have

$$
\begin{aligned}
\left\|T_{\lambda} u(t)\right\| & \leq \int_{0}^{1} G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(q \tau, q \tau) f(u(\tau)) d_{q} \tau\right) d_{q} s \\
& \leq \int_{0}^{1} G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(q \tau, q \tau)\left(F_{\infty}+\varepsilon\right) \phi\left(r_{4}\right) d_{q} \tau\right) d_{q} s \\
& \leq \psi_{1}^{-1}\left(\lambda\left(F_{\infty}+\varepsilon\right)\right) A_{1} r_{4} \\
& \leq r_{4}=\|u\| .
\end{aligned}
$$

Thus we suppose $\Omega_{4}=\left\{u \in E \mid\|u\|<r_{4}\right\}$. Then

$$
\begin{equation*}
\left\|T_{\lambda} u\right\| \leq\|u\|, \quad u \in P \cap \partial \Omega_{4} . \tag{3.13}
\end{equation*}
$$

In view of Cases 1 and 2 , we let $\Omega_{2}=\left\{u \in E \mid\|u\|<r_{2}\right\}$, where $r_{2}=\max \left\{r_{3}, r_{4}\right\}$. Then

$$
\begin{equation*}
\left\|T_{\lambda} u\right\| \leq\|u\|, \quad u \in P \cap \partial \Omega_{2} \tag{3.14}
\end{equation*}
$$

From (3.10) and (3.14) and from Theorem 2.1 we obtain that T_{λ} has a fixed point $u \in$ $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ with $r_{1} \leq\|u\| \leq r_{2}$. Obviously, u is a positive solution of the BVP of fractional q-difference Eq. (1.1). The proof is completed.

Theorem 3.3 Assume that (A1) and (A2) hold and there exist $r_{2}>r_{1}>0$ such that

$$
\lambda \min _{k(\delta) r_{1} \leq u \leq r_{1}} f(u) \geq \phi\left(\frac{r_{1}}{A_{3}}\right), \quad \lambda \max _{0 \leq u \leq r_{2}} f(u) \leq \phi\left(\frac{r_{2}}{A_{1}}\right) .
$$

Then the BVP of fractional q-difference Eq. (1.1) has a positive solution $u \in P$ with $r_{1} \leq$ $\|u\| \leq r_{2}$.

Proof Let $\Omega_{1}=\left\{u \in E \mid\|u\|<r_{1}\right\}$. Then for $u \in P \cap \partial \Omega_{1}$, we obtain

$$
\begin{aligned}
\left\|T_{\lambda} u(t)\right\| & \geq T_{\lambda} u(\delta) \\
& =\int_{0}^{1} G(\delta, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(s, q \tau) f(u(\tau)) d_{q} \tau\right) d_{q} s \\
& \geq \int_{0}^{1} k(\delta) G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} s^{\beta-1} H(1, q \tau) \min _{k(\delta) r_{1} \leq u \leq r_{1}} f(u(\tau)) d_{q} \tau\right) d_{q} s \\
& \geq \int_{0}^{1} k(\delta) G(1, q s) \psi_{2}^{-1}\left(s^{\beta-1}\right) \phi^{-1}\left(\lambda \int_{0}^{1} H(1, q \tau) \min _{k(\delta) r_{1} \leq u \leq r_{1}} f(u(\tau)) d_{q} \tau\right) d_{q} s
\end{aligned}
$$

$$
\begin{aligned}
& \geq \phi^{-1}\left(\lambda \min _{k(\delta) r_{1} \leq u \leq r_{1}} f(u)\right) A_{3} \\
& \geq r_{1}=\|u\| .
\end{aligned}
$$

Suppose $\Omega_{2}=\left\{u \in E \mid\|u\|<r_{2}\right\}$. Then for $u \in P \cap \partial \Omega_{2}$, we have

$$
\begin{aligned}
\left\|T_{\lambda} u(t)\right\| & \leq \int_{0}^{1} G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(q \tau, q \tau) f(u(\tau)) d_{q} \tau\right) d_{q} s \\
& \leq \int_{0}^{1} G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(q \tau, q \tau) \max _{0 \leq u \leq r_{2}} f(u(\tau)) d_{q} \tau\right) d_{q} s \\
& \leq \phi^{-1}\left(\lambda \max _{0 \leq u \leq r_{2}} f(u(\tau))\right) A_{1} \\
& \leq r_{2}=\|u\| .
\end{aligned}
$$

Thus by Theorem 2.1 the BVP of fractional q-difference Eq. (1.1) has a positive solution $u \in P$ with $r_{1} \leq\|u\| \leq r_{2}$. The proof is completed.

Theorem 3.4 Assume that (A1) and (A2) hold. Let $\lambda_{1}=\sup _{r>0} \frac{\phi(r)}{\phi\left(A_{1}\right) \max _{0 \leq u \leq r f(u)}}$. If $f_{0}=+\infty$ and $f_{\infty}=+\infty$, then the BVP of fractional q-difference Eq. (1.1) has at least two positive solutions for each $\lambda \in\left(0, \lambda_{1}\right)$.

Proof We define $x(r)=\frac{\phi(r)}{\psi_{2}\left(A_{1}\right) \max _{0<u<r} f(u)}$. In view of the continuity of $f, f_{0}=+\infty$, and $f_{\infty}=+\infty$, we obtain that $x(r):(0,+\infty) \rightarrow(0,+\infty)$ is continuous and $\lim _{r \rightarrow 0^{+}} x(r)=$ $\lim _{r \rightarrow+\infty} x(r)=0$. So there exists $r_{0} \in(0,+\infty)$ such that $x\left(r_{0}\right)=\sup _{r>0} x(r)=\lambda_{1}$. For all $\lambda \in\left(0, \lambda_{1}\right)$, there exist constants $a_{1}, a_{2}>0$ such that $x\left(a_{1}\right)=x\left(a_{2}\right)=\lambda$, where $0<a_{1}<r_{0}<$ $a_{2}<+\infty$. Thus

$$
\begin{array}{ll}
\lambda f(u) \leq \frac{\phi\left(a_{1}\right)}{\psi_{2}\left(A_{1}\right)} \leq \phi\left(\frac{a_{1}}{A_{1}}\right), & u \in\left[0, a_{1}\right], \\
\lambda f(u) \leq \frac{\phi\left(a_{2}\right)}{\psi_{2}\left(A_{1}\right)} \leq \phi\left(\frac{a_{2}}{A_{1}}\right), & u \in\left[0, a_{2}\right], \tag{3.16}
\end{array}
$$

By the conditions $f_{0}=+\infty$ and $f_{\infty}=+\infty$ there exist constants $b_{1}, b_{2}>0$, where $0<b_{1}<$ $a_{1}<r_{0}<a_{2}<b_{2}<+\infty$, such that

$$
\frac{f(u)}{\phi(u)} \geq \frac{1}{\lambda \psi_{1}(k(\delta)) \phi\left(A_{3}\right)}, \quad u \in\left(0, b_{1}\right) \cup\left(k(\delta) b_{2},+\infty\right)
$$

so that

$$
\begin{align*}
& \lambda \min _{k(\delta) b_{1} \leq u \leq b_{1}} f(u) \geq \phi\left(\frac{b_{1}}{A_{3}}\right), \tag{3.17}\\
& \lambda \min _{k(\delta) b_{2} \leq u \leq b_{2}} f(u) \geq \phi\left(\frac{b_{2}}{A_{3}}\right) . \tag{3.18}
\end{align*}
$$

By (3.15), (3.17), (3.16), and (3.18), combined with Theorems 2.1 and 3.3, the BVP of fractional q-difference Eq. (1.1) has at least two positive solutions for each $\lambda \in\left(0, \lambda_{1}\right)$. The proof is completed.

Theorem 3.5 Assume that (A1) and (A2) hold. If $F_{0}<+\infty$ and $F_{\infty}<+\infty$, then there exists $\lambda_{0}>0$ such that for all $0<\lambda<\lambda_{0}$, the BVP offractional q-difference Eq. (1.1) has no positive solution.

Proof Since $F_{0}<+\infty$ and $F_{\infty}<+\infty$, there exist $M_{1}, M_{2}, r_{1}, r_{2}>0$, such that $r_{1}<r_{2}$ and

$$
\begin{array}{ll}
f(u) \leq M_{1} \phi(u), & u \in\left[0, r_{1}\right] \\
f(u) \leq M_{2} \phi(u), & u \in\left[r_{2},+\infty\right)
\end{array}
$$

Let $M_{0}=\max \left\{M_{1}, M_{2}, \max _{r_{1} \leq u \leq r_{2}} \frac{f(u)}{\phi(u)}\right\}$. Then we have

$$
f(u) \leq M_{0} \phi(u), \quad u \in[0,+\infty)
$$

Let v be a positive solution of the fractional q-difference equation boundary value problem (1.1). We will show that this leads to a contradiction for $0<\lambda<\lambda_{0}$, where $\lambda_{0}:=M_{0}^{-1} \psi_{1}\left(A_{1}^{-1}\right)$. Indeed, since $T_{\lambda} \nu(t)=\nu(t)$ for $t \in[0,1]$, we have

$$
\begin{aligned}
\|v\| & =\left\|T_{\lambda} v\right\| \leq \int_{0}^{1} G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(q \tau, q \tau) f(v(\tau)) d_{q} \tau\right) d_{q} s \\
& \leq \int_{0}^{1} G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(q \tau, q \tau) M_{0} \phi(v(\tau)) d_{q} \tau\right) d_{q} s \\
& \leq \psi_{1}^{-1}\left(\lambda M_{0}\right)\|v\| A_{1}<\|v\|,
\end{aligned}
$$

a contradiction. Therefore the BVP of fractional q-difference Eq. (1.1) has no positive solution. The proof is completed.

Theorem 3.6 Assume that $(A 1)$ and (A2) hold. Iff $f_{0}>0$ and $f_{\infty}>0$, then there exists $\lambda_{0}^{\prime}>0$ such that for all $\lambda>\lambda_{0}^{\prime}$, the BVP of fractional q-difference Eq. (1.1) has no positive solution.

Proof Since $f_{0}>0$ and $f_{\infty}>0$, there exist $m_{1}, m_{2}, r_{3}, r_{4}>0$ such that $r_{3}<r_{4}$ and

$$
\begin{array}{ll}
f(u) \geq m_{1} \phi(u), & u \in\left[0, r_{3}\right], \\
f(u) \geq m_{2} \phi(u), & u \in\left[r_{4},+\infty\right) .
\end{array}
$$

Let $m_{0}=\max \left\{m_{1}, m_{2}, \max _{r_{3} \leq u \leq r 4} \frac{f(u)}{\phi(u)}\right\}$. Then we have

$$
f(u) \geq m_{0} \phi(u), \quad u \in[0,+\infty)
$$

Let v be a positive solution of the fractional q-difference equation BVP (1.1). We will show that this leads to a contradiction for $\lambda>\lambda_{0}^{\prime}$, where $\lambda_{0}^{\prime}:=m_{0}^{-1} \psi_{2}\left(A_{2}^{-1}\right)$. Indeed, since $T_{\lambda} v(t)=v(t)$ for $t \in[0,1]$, we have

$$
\begin{aligned}
\|v\| & =\left\|T_{\lambda} v\right\| \geq \int_{0}^{1} k(\delta) G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} s^{\beta-1} H(1, q \tau) f(v(\tau)) d_{q} \tau\right) d_{q} s \\
& \geq \int_{0}^{1} k(\delta) G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} s^{\beta-1} H(1, q \tau) m_{0} \phi(v(\tau)) d_{q} \tau\right) d_{q} s
\end{aligned}
$$

$$
\begin{aligned}
& \geq \int_{0}^{1} k(\delta) \psi_{2}^{-1}\left(s^{\beta-1}\right) G(1, q s) \phi^{-1}\left(\lambda \int_{0}^{1} H(1, q \tau) m_{0} \phi\left(\tau^{\alpha-1}\|v\|\right) d_{q} \tau\right) d_{q} s \\
& \geq \psi_{2}^{-1}\left(\lambda m_{0}\right)\|v\| A_{2}>\|v\|,
\end{aligned}
$$

a contradiction. Therefore the BVP of fractional q-difference Eq. (1.1) has no positive solution. The proof is completed.

4 Some examples of application

Example 4.1 Consider the following fractional q-difference equation BVP:

$$
\left\{\begin{array}{l}
D_{q}^{\frac{3}{2}}\left(D_{q}^{\frac{5}{2}} u(t)\right)=\lambda(7 u(t)-6 \sin (u(t))), \quad 0<t<1, \tag{4.1}\\
u(0)=D_{q} u(0)=D^{q} u(1)=0, \quad D_{q}^{\frac{5}{2}} u(0)=D_{q}\left(D_{q}^{\frac{5}{2}} u(1)\right)=0 .
\end{array}\right.
$$

Here $q=\frac{1}{2}, \alpha=\frac{5}{2}, \beta=\frac{3}{2}, \phi(u)=u, f(u)=7 u-6 \sin u$. Take $\psi_{1}(x)=\psi_{2}(x)=x, \delta=0.9$.
By a simple calculation we obtain $\Gamma_{\frac{1}{2}}\left(\frac{5}{2}\right) \approx 1.1906, \Gamma_{\frac{1}{2}}\left(\frac{3}{2}\right) \approx 0.9209, A_{1} \approx 0.05523, A_{2} \approx$ 0.00811, $F_{0}=1, f_{\infty}=7, f_{\infty} \psi_{1}\left(A_{1}^{-1}\right) \approx 126.74271, F_{0} \psi_{2}\left(A_{2}^{-1}\right) \approx 123.30456, \psi_{2}\left(A_{2}^{-1}\right) f_{\infty}^{-1} \approx$ 17.6194 and $\left.\psi_{1}\left(A_{1}^{-1}\right) F_{0}^{-1}\right) \approx 18.10610$.

Obviously, $f_{\infty} \psi_{1}\left(A_{1}^{-1}\right)>F_{0} \psi_{2}\left(A_{2}^{-1}\right)$. By Theorem 3.1 we obtain that BVP (4.1) has at least one positive solution for each $\lambda \in(17.61494,18.10610)$.

Example 4.2 Consider the following fractional q-difference equation BVP with ϕ-Laplacian:

$$
\left\{\begin{array}{l}
D_{q}^{\frac{3}{2}}\left(\phi\left(D_{q}^{\frac{5}{2}} u(t)\right)\right)=\lambda \frac{\left(u^{3}(t)+u^{2}(t)\right)(\sin (u(t))+9)}{25 u(t)+1}, \quad 0<t<1, \tag{4.2}\\
u(0)=D_{q} u(0)=D^{q} u(1)=0, \quad \phi\left(D_{q}^{\frac{5}{2}} u(0)\right)=D_{q}\left(\phi\left(D_{q}^{\frac{5}{2}} u(1)\right)\right)=0 .
\end{array}\right.
$$

Here $q=\frac{1}{2}, \alpha=\frac{5}{2}, \beta=\frac{3}{2}, \phi(u)=|u| u$, and $f(u)=\frac{\left(u^{3}+u^{2}\right)(\sin u+9)}{25 u+1}$.
Take $\psi_{1}(x)=\psi_{2}(x)=x^{2}, \delta=0.9$. By calculating we get $A_{1} \approx 0.07088, A_{2} \approx 0.01550, F_{\infty}=$ 0.4 and $f_{0}=9$. Thus, $f_{0} \psi_{1}\left(A_{1}^{-1}\right)>F_{\infty} \psi_{2}\left(A_{2}^{-1}\right)$. By Theorem 3.1 we obtain that BVP (4.2) has at least one positive solution for each $\lambda \in(462.24260,497.6280425)$.

Example 4.3 Consider the following fractional q-difference equation BVP:

$$
\left\{\begin{array}{l}
D_{q}^{\frac{3}{2}}\left(\phi\left(D_{q}^{\frac{5}{2}} u(t)\right)\right)=\lambda \frac{\left(20 u^{2}(t)+u(t)\right)(\sin (u(t))+2)}{u(t)+1}, \quad 0<t<1, \tag{4.3}\\
u(0)=D_{q} u(0)=D^{q} u(1)=0, \quad D_{q}^{\frac{5}{2}} u(0)=D_{q}\left(D_{q}^{\frac{5}{2}} u(1)\right)=0 .
\end{array}\right.
$$

Here $q=\frac{1}{2}, \alpha=\frac{5}{2}, \beta=\frac{3}{2}, \phi(u)=u$, and $f(u)=\frac{\left(20 u^{2}+u\right)(\sin u+2)}{u+1}$. Take $\psi_{1}(x)=\psi_{2}(x)=x, \delta=0.9$. By calculating we have $A_{1} \approx 0.05523, A_{2} \approx 0.00811, F_{0}=f_{0}=2, F_{\infty}=60, f_{\infty}=20$, and $u<f(u)<60 u$ for $u>0$.
(i) By Theorem 3.1 we obtain that BVP (4.3) has at least one positive solution for each $\lambda \in(6.1653,9.05305)$.
(ii) By Theorem 3.5 we obtain that BVP (4.3) has no positive solution for each $\lambda \in(0,0.30177)$.
(iii) By Theorem 3.6 we obtain that BVP (4.3) has no positive solution for each $\lambda \in(123.30456,+\infty)$.

Example 4.4 Consider the following fractional q-difference equation BVP with ϕ-Laplacian:

$$
\begin{cases}D_{q}^{\frac{3}{2}}\left(\phi\left(D_{q}^{\frac{5}{2}} u(t)\right)\right)=\lambda \frac{\left(u^{3}(t)+u^{2}(t)\right)(\arctan (u(t))+8)}{40 u(t)+1}, & 0<t<1, \tag{4.4}\\ u(0)=D_{q} u(0)=D^{q} u(1)=0, \quad D_{q}^{\frac{5}{2}} u(0)=D_{q}\left(D_{q}^{\frac{5}{2}} u(1)\right)=0 .\end{cases}
$$

Here $q=\frac{1}{2}, \alpha=\frac{5}{2}, \beta=\frac{3}{2}, \phi(u)=|u| u$, and $f(u)=\frac{\left.\left(u^{3}+u^{2}\right)(\arctan u+8)\right)}{40 u+1}$. Take $\psi_{1}(x)=\psi_{2}(x)=x^{2}$, $\delta=0.9$. Then we get $A_{1} \approx 0.07088, A_{2} \approx 0.01550, f_{0}=8, F_{\infty}=0.23927$, and $\frac{1}{5} \phi(u)<f(u)<$ $9.57080 \phi(u)$ for $u>0$.
(i) By Theorem 3.2 we obtain that BVP (4.4) has at least one positive solution for each $\lambda \in(520.02293,831.91078)$.
(ii) By Theorem 3.5 we obtain that BVP (4.3) has no positive solution for each $\lambda \in(0,20.79777)$.
(iii) By Theorem 3.6 we obtain that BVP (4.3) has no positive solution for each $\lambda \in(20800.91719,+\infty)$.

5 Conclusions

This research establishes the existence of at least one or two positive solutions in terms of different eigenvalue intervals for the BVP of ϕ-Laplacian fractional q-difference equation, by applying the Green function and Guo-Krasnoselskii fixed point theorem on cones. This enriches the theories for fractional q-difference equations and provides the theoretical guarantee for the application of fractional q-difference equations in such fields as aerodynamics, electrodynamics of complex medium, capacitor theory, electrical circuits, control theory, and so on. At the same time, we also consider the nonexistence of a positive solution in terms of the parameter λ. In the future, we will use bifurcation theory, critical point theory, variational method, and other methods to continue our works in this area.

Acknowledgements

The authors wish to thank the reviewers for their comments and efforts toward improving this manuscript

Funding

The author is very grateful to the referees for their very helpful comments and suggestions. The research project is supported by the National Natural Science Foundation of China (11772007), Beijing Natural Science Foundation (1172002, Z180005), the Natural Science Foundation of Hebei Province (A2015208114), and the Foundation of Hebei Education Department (QN2017063).

Availability of data and materials
Not applicable.

Declarations

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Conceptualization, CY and JW; methodology, CY; data curation, JW and SW; original draft preparation, BZ; review and editing, JW. All authors have read and agreed with the published version of the manuscript. All authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)
2. Al-Salam, W.A.: Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15(2), 135-140 (1966)
3. Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Math. Proc. Camb. Philos. Soc. 66, 365-370 (1969)
4. Han, Z., Lu, H., Zhang, C.: Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian. Appl. Math. Comput. 257, 526-536 (2015)
5. Xu, X., Zhang, H.: Multiple positive solutions to singular positone and semipositone m-point boundary value problems of nonlinear fractional differential equations. Bound. Value Probl. 34, 1-18 (2018)
6. Jiang, W., Kosmatov, N.: Solvability of a third-order differential equation with functional boundary conditions at resonance. Bound. Value Probl. 81, 1-20 (2017)
7. Yang, Y.Y., Wang, Q.R.: Multiple positive solutions for p-Laplacian equations with integral boundary conditions. J. Math. Anal. Appl. 453(1), 558-571 (2017)
8. Liu, X., Jia, M., Ge, W.: The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator. Appl. Math. Lett. 65, 56-62 (2017)
9. Jannelli, A., Ruggieri, M., Speciale, M.P.: Analytical and numerical solutions of time and space fractional advection-diffusion-reaction equation. Commun. Nonlinear Sci. Numer. Simul. 70, 89-101 (2019)
10. Jannelli, A., Rrggieri, M., Speciale, M.P.: Exact and numerical solutions of time-fractional advection-diffusion equation with a nonlinear source term by means of the Lie symmetries. Nonlinear Dyn. 92(2), 543-555 (2018)
11. Ma, K., Sun, S., Han, Z.: Existence of solutions of boundary value problems for singular fractional q-difference equations. J. Appl. Math. Comput. 54(1-2), 23-40 (2017)
12. Zhai, C., Ren, J.: Positive and negative solutions of a boundary value problem for a fractional q-difference equation. Adv. Differ. Equ. 2017, 82 (2017). https://doi.org/10.1186/s13662-017-1138-x
13. Guo, F., Kang, S., Chen, F.: Existence and uniqueness results to positive solutions of integral boundary value problem for fractional q-derivatives. Adv. Differ. Equ. 2018, 379 (2018). https://doi.org/10.1186/s13662-018-1796-3
14. Araci, S., Sen, E., Acikgoz, M., Srivastava, H.M.: Existence and uniqueness of positive and nondecreasing solutions for a class fractional bounday value problems involving the p-Laplacian operator. Adv. Differ. Equ. 2015, 40 (2015). https://doi.org/10.1186/s13662-015-0375-0
15. Li, X., Han, Z., Sun, S.: Existence of positive solutions of nonlinear fractional q-difference equation with parameter. Adv. Differ. Equ. 2013, 260 (2013). https://doi.org/10.1186/1687-1847-2013-260
16. Wang, J., Yu, C., Guo, Y.: Positive solutions for a class of singular boundary value problems with fractional q-difference equations. J. Funct. Spaces 2015, 1-8 (2015)
17. Han, Z., Lu, H., Zhang, C.: Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian. Appl. Math. Comput. 257, 526-536 (2015)
18. Wang, H.: On the number of positive solutions of nonlinear systems. J. Math. Anal. Appl. 281, 287-306 (2003)
19. Duran, U., Acikgoz, M., Araci, S.: A study on some new results arising from (p, q)-calculus. TWMS J. Pure Appl. Math. 1(11), 57-71 (2020)
20. Acikgoz, M., Ates, R., Duran, U., Araci, S.: Applications of q-umbral calculus to modified Apostol type q-Bernoulli polynomials. J. Math. Stat. 14, 7-15 (2018)
21. Atici, F.M., Eloe, P.W.: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14(3), 341-352 (2007)
22. Ferreira, R.A.C.: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 70, 1 (2010)
23. Anna, M.H., Mansour, Z.S.: q-Fractional Calculus and Equations. Springer, Berlin (2012)
24. Krasnoselskii, M.A.: Positive Solution of Operator Equation. Noordhoff, Groningen (1964)

Submit your manuscript to a SpringerOpen ${ }^{\circ}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at springeropen.com

[^0]: © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,

