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Abstract
The main purpose of this paper is to prove the existence of positive solutions for a
system of nonlinear Caputo-type fractional differential equations with two
parameters. By using the Guo–Krasnosel’skii fixed point theorem, some existence
theorems of positive solutions are obtained in terms of different values of parameters.
Two examples are given to illustrate the main results.
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1 Introduction
Fractional-order calculus, which is an important branch of mathematics, was introduced
in 1695. Since fractional-order calculus can characterize many non-classical phenomena
in natural sciences and engineering, it has been applied to various fields in recent years. At
the same time, boundary value problems of fractional differential equations have appeared
with applications of fractional-order calculus; so far, there have been many literature works
about boundary value problems of fractional differential equations.

For some recent studies on fractional differential equations, we can refer to [1–27]. For
example, in [10], the authors used the Guo–Krasnosel’skii fixed point theorem and the
Leggett–Williams fixed point theorem to obtain the existence of positive solutions to the
nonlinear Caputo fractional q-difference equation with integral boundary conditions. In
[12], the authors investigated the following boundary value problem of Caputo-type frac-
tional differential equation subject to Riemann–Stieltjes integral boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

cDθ p(t) + μf (t, p(t)) = 0, t ∈ [0, 1],

p(0) = p′′(0) = 0,

p(1) =
∫ 1

0 p(t) dA(t),

where cDθ is the Caputo fractional derivative, θ ∈ (2, 3), and f : [0, 1] × [0, +∞) → [0, +∞)
is continuous, and μ > 0 is a parameter. By using the Guo–Krasnosel’skii fixed point the-
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orem, the authors obtained some new results about the existence and non-existence of
positive solutions for the above equation.

In [18], the authors focused on the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDqu(t) + f (t, u(t)) = 0, t ∈ [0, 1],

u′′(0) = 0,

αu(0) – βu′(0) =
∫ 1

0 h1(s)u(s)ds,

γ u(1) + δ(CDσ
0+u)(1) =

∫ 1
0 h2(s)u(s) ds,

where 2 < q ≤ 3, 0 < σ ≤ 1, α,γ , δ ≥ 0 and β > 0 satisfying

0 < (α + β)γ +
αδ

�(2 – σ )
< β

[

γ +
δ�(q)

�(q – σ )

]

.

The method they used is the Guo-Krasnoselskii fixed point theorem, and the existence
theorems of positive solutions for the above equation were obtained.

In [23], the authors investigated a coupled system of Caputo fractional differential equa-
tions with coupled non-conjugate Riemann–Stieltjes type integro-multipoint boundary
conditions. They obtained some new theorems by using the Leray–Schauder nonlinear al-
ternative, the Krasnosel’skii fixed point theorem, and Banach’s contraction mapping prin-
ciple.

In [24], the authors studied the following nonlinear Caputo-type fractional differential
equations with integral boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDαu(t) = f (t, u(t), v(t)), t ∈ (0, 1),
cDβv(t) = g(t, u(t), v(t)), t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n–2)(0) = u(n)(0) = 0, u(1) = λ
∫ 1

0 u(s) ds,

v(0) = v′(0) = · · · = v(n–2)(0) = v(n)(0) = 0, v(1) = λ
∫ 1

0 v(s) ds,

where n < α, β < n + 1, n ≥ 2, n ∈ N , 0 < λ < n; f , g ∈ C([0, 1] × R × R, R). In this paper, by
using Schauder’s fixed point theorem and Banach’s fixed point theorem, sufficient condi-
tions were obtained for the existence and uniqueness of positive solutions of the above
coupled system.

In [25], the authors considered the following fractional differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–cDθ1 x(t) = f1(t, x(t), y(t)), t ∈ [0, 1],

–cDθ2 y(t) = f2(t, x(t), y(t)), t ∈ [0, 1],

x(0) = x′′(0) = 0, x(1) =
∫ 1

0 x(t) dA1(t),

y(0) = y′′(0) = 0, y(1) =
∫ 1

0 y(t) dA2(t),

where fi : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) is continuous; θi ∈ (2, 3); Ai is a bounded
variation function with positive measure Bi =

∫ 1
0 t dAi(t) < 1, i = 1, 2. By means of the fixed

point index theory, the authors proved that the above system has at least two positive
solutions.
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In [26, 27], the authors used the Guo–Krasnosel’skii fixed point theorem to investigate
the existence of positive solutions for systems of fractional differential equations nonlo-
cal boundary value problems with two parameters, and the existence of positive solutions
were obtained. In [26], the fractional derivative is the standard Riemann–Liouville deriva-
tive, and in [27], the fractional derivative is a conformable fractional derivative.

Inspired by [2–27], in this paper, we study the existence of positive solutions for the
following system of fractional differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–cDθ1 u(t) = λf1(t, u(t), v(t)), t ∈ [0, 1],

–cDθ2 v(t) = μf2(t, u(t), v(t)), t ∈ [0, 1],

u(0) = u′′(0) = 0, u(1) =
∫ 1

0 u(t) dA1(t),

v(0) = v′′(0) = 0, v(1) =
∫ 1

0 v(t) dA2(t),

(1.1)

where cDθi is the Caputo fractional derivative; fi : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞)
is continuous; θi ∈ (2, 3); Ai is a bounded variation function with positive measure Bi =
∫ 1

0 t dAi(t) < 1, i = 1, 2; λ and μ are positive parameters. By studying system (1.1), we
improve and generalize paper [12]. Compared with literatures [26, 27], the definition of
fractional derivative is different from those of [26, 27]. The main purpose of this paper
is to demonstrate the existence of positive solutions about system (1.1). By the Guo–
Krasnosel’skii fixed point theorem, we obtain some existence theorems of positive solu-
tions under the conditions of various values of parameters. To illustrate the theoretical
results, two examples are given in the last section of the paper.

2 Preliminaries
In the following, some concepts and lemmas of Caputo differential equations are pre-
sented, as well as some auxiliary results for proving the main theorems.

Definition 2.1 (see [1]) For a function x ∈ Cn[0, +∞), the Caputo fractional derivative of
order θ > 0 is defined as

cDθ x(t) =
1

�(n – θ )

∫ t

0
(t – s)n–θ–1x(n)(s) ds, n – 1 < θ < n.

Lemma 2.1 (see [1]) Let θ > 0. If we assume x ∈ C(0, 1)
⋂

L(0, 1), then the fractional dif-
ferential equation

cDθ x(t) = 0

has the general solution x(t) = C0 + C1t + · · · + Cn–1tn–1, Ci ∈ R, i = 0, 1, . . . , n – 1.

Lemma 2.2 (see [1]) Suppose that x ∈ C(0, 1)
⋂

L(0, 1) with a fractional derivative of order
θ that belongs to C(0, 1)

⋂
L(0, 1). Then Iθ cDθ x(t) = x(t) + C0 + C1t + · · · + Cn–1tn–1, for

Ci ∈ R, i = 0, 1, . . . , n – 1.
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Lemma 2.3 (see [12]) Let x ∈ C[0, 1] and θ1, θ2 ∈ (2, 3). Then p is a solution of the linear
Caputo fractional differential equation

⎧
⎪⎪⎨

⎪⎪⎩

cDθi p(t) + x(t) = 0, t ∈ [0, 1],
p(0) = p′′(0) = 0,
p(1) =

∫ 1
0 p(t) dAi(t),

if and only if p is the solution of the integral equation

p(t) =
∫ 1

0
Gi(t, s)x(s) ds,

where

Gi(t, s) =
1

�(θi)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t
1–Bi

[(1 – s)θi–1 –
∫ 1

s (t – s)θi–1 dAi(t)] – (t – s)θi–1,
0 ≤ s ≤ t ≤ 1,

t
1–Bi

[(1 – s)θi–1 –
∫ 1

s (t – s)θi–1 dAi(t)],
0 ≤ t ≤ s ≤ 1,

(2.1)

and Bi =
∫ 1

0 t dAi(t) < 1, i = 1, 2.

Lemma 2.4 (see [12]) Green’s function Gi(t, s) (i = 1, 2) defined by (2.1) has the following
properties:

(i) �(θi)Gi(t, s) ≤ 1
1–Bi

(1 – s)θi–1 for t, s ∈ [0, 1];
(ii) �(θi)Gi(t, s) ≥ Ni(1 – s)θi–1 for t ∈ [ 1

4 , 3
4 ], s ∈ [0, 1],

where

Ni = min

{1 –
∫ 1

0 tθi–1 dAi(t)
4(1 – Bi)

, min
t∈[ 1

4 , 3
4 ]

t
(
1 – tθi–2)

}

, i = 1, 2. (2.2)

Lemma 2.5 (see [28]) Let P be a cone of the Banach space X and 
1 and 
2 be two bounded
open sets in X with θ ⊂ 
1, 
1 ⊂ 
2. Let A : P ∩ (
2\
1) → P be a completely continuous
operator. If one of the following two conditions holds:

(1) ‖Ap‖ ≤ ‖p‖ for all p ∈ P ∩ ∂
1, ‖Ap‖ ≥ ‖p‖ for all p ∈ P ∩ ∂
2;
(2) ‖Ap‖ ≥ ‖p‖ for all p ∈ P ∩ ∂
1, ‖Ap‖ ≤ ‖p‖ for all p ∈ P ∩ ∂
2,

then A has at least one fixed point in P ∩ (
2\
1).

3 Main results
Let X = C[0, 1] × C[0, 1]. Define the norm ‖(x, y)‖X = ‖x‖ + ‖y‖ on X,where ‖x‖ =
max0≤t≤1 |x(t)|, then X is a Banach space.

We define the cone

P =
{

(u, v) ∈ X : u ≥ 0, v ≥ 0, min
1
4 ≤t≤ 3

4

(
u(t) + v(t)

) ≥ K
∥
∥(u, v)

∥
∥

X

}
,

where

K = min
{

N1(1 – B1), N2(1 – B2)
}

< 1, (3.1)

N1, N2 are defined by (2.2).
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We define the operators L1, L2, and L as follows:

L1(u, v)(t) = λ

∫ 1

0
G1(t, s)f1

(
s, u(s), v(s)

)
ds, t ∈ [0, 1],

L2(u, v)(t) = μ

∫ 1

0
G2(t, s)f2

(
s, u(s), v(s)

)
ds, t ∈ [0, 1],

L(u, v) =
(
L1(u, v), L2(u, v)

)
, ∀(u, v) ∈ X,

where Gi(t, s)(i = 1, 2) is defined by (2.1).
Obviously, fixed points of the operator L in P are positive solutions of system (1.1).

Lemma 3.1 L : P → P is completely continuous.

Proof We easily know that L1(u, v)(t) ≥ 0, L2(u, v)(t) ≥ 0 for (u, v) ∈ P, t ∈ [0, 1].
Obviously, by Lemma 2.4, for (u, v) ∈ P, when t ∈ [ 1

4 , 3
4 ], we have

L1(u, v)(t) = λ

∫ 1

0
G1(t, s)f1

(
s, u(s), v(s)

)
ds

≥ λN1

�(θ1)

∫ 1

0
(1 – s)θ1–1f1

(
s, u(s), v(s)

)
ds

=
λN1(1 – B1)

�(θ1)

∫ 1

0

(1 – s)θ1–1

(1 – B1)
f1

(
s, u(s), v(s)

)
ds

≥ λN1(1 – B1) max
t∈[0,1]

∫ 1

0
G1(t, s)f1

(
s, u(s), v(s)

)
ds

= N1(1 – B1)
∥
∥L1(u, v)

∥
∥. (3.2)

Similarly, we get

L2(u, v)(t) ≥ N2(1 – B2)
∥
∥L2(u, v)

∥
∥, (u, v) ∈ P, t ∈

[
1
4

,
3
4

]

. (3.3)

From (3.2) and (3.3), we have

min
t∈[ 1

4 , 3
4 ]

(
L1(u, v)(t) + L2(u, v)(t)

)

≥ N1(1 – B1)
∥
∥L1(u, v)

∥
∥ + N2(1 – B2)

∥
∥L2(u, v)

∥
∥

≥ K
∥
∥L(u, v)

∥
∥

X . (3.4)

By (3.4), we get L(P) ⊂ P. From the paper [12], we know that L1, L2 are completely contin-
uous. So L is completely continuous. The proof is completed. �

For convenience, we first list the following denotations:

z0 = lim
(u,v)→(0+,0+)

sup
t∈[0,1]

f1(t, u, v)
u + v

, z∗
0 = lim

(u,v)→(0+,0+)
sup

t∈[0,1]

f2(t, u, v)
u + v

, (3.5)
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z∞ = lim
(u,v)→(+∞,+∞)

inf
t∈[ 1

4 , 3
4 ]

f1(t, u, v)
u + v

, z∗
∞ = lim

(u,v)→(+∞,+∞)
inf

t∈[ 1
4 , 3

4 ]

f2(t, u, v)
u + v

, (3.6)

P1 =
1

�(θ1)(1 – B1)

∫ 1

0
(1 – s)θ1–1 ds, P2 =

1
�(θ2)(1 – B2)

∫ 1

0
(1 – s)θ2–1 ds, (3.7)

P3 =
N1K
�(θ1)

∫ 3
4

1
4

(1 – s)θ1–1 ds, P4 =
N2K
�(θ2)

∫ 3
4

1
4

(1 – s)θ2–1 ds. (3.8)

Theorem 3.1 Let z0, z∗
0, z∞, z∗∞ ∈ (0, +∞), Q1 < Q2, Q3 < Q4. Then when λ ∈ (Q1, Q2) and

μ ∈ (Q3, Q4) hold, we get that system (1.1) has at least one positive solution, where

Q1 =
1

2z∞P3
, Q2 =

1
2z0P1

, Q3 =
1

2z∗∞P4
, Q4 =

1
2z∗

0P2
.

Proof It is easy to see that there exists ε > 0 such that, for λ ∈ (Q1, Q2) and μ ∈ (Q3, Q4),
we have

1
2(z∞ – ε)P3

≤ λ ≤ 1
2(z0 + ε)P1

,
1

2(z∗∞ – ε)P4
≤ μ ≤ 1

2(z∗
0 + ε)P2

.

By (3.5), for the above ε > 0, there exists a constant R1 > 0 such that

f1(t, u, v) ≤ (z0 + ε)(u + v), 0 ≤ u + v ≤ R1, t ∈ [0, 1],

f2(t, u, v) ≤ (
z∗

0 + ε
)
(u + v), 0 ≤ u + v ≤ R1, t ∈ [0, 1].

Let 
1 = {(u, v) ∈ X| ‖(u, v)‖X < R1}. For any (u, v) ∈ P
⋂

∂
1, by Lemma 2.4 and (3.1), we
have

L1(u, v)(t) = λ

∫ 1

0
G1(t, s)f1

(
s, u(s), v(s)

)
ds

≤ λ

�(θ1)(1 – B1)

∫ 1

0
(1 – s)θ1–1(z0 + ε)

(
u(s) + v(s)

)
ds

≤ λ(z0 + ε)
�(θ1)(1 – B1)

∫ 1

0
(1 – s)θ1–1 ds

(‖u‖ + ‖v‖)

= λ(z0 + ε)P1
(‖u‖ + ‖v‖)

≤ 1
2
∥
∥(u, v)

∥
∥

X .

Also, we get

L2(u, v)(t) = μ

∫ 1

0
G2(t, s)f2

(
s, u(s), v(s)

)
ds

≤ μ

�(θ2)(1 – B2)

∫ 1

0
(1 – s)θ2–1(z∗

0 + ε
)(

u(s) + v(s)
)

ds

≤ μ(z∗
0 + ε)

�(θ2)(1 – B2)

∫ 1

0
(1 – s)θ2–1 ds

(‖u‖ + ‖v‖)

= μ
(
z∗

0 + ε
)
P2

(‖u‖ + ‖v‖)

≤ 1
2
∥
∥(u, v))

∥
∥

X .
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So

∥
∥L(u, v)

∥
∥ =

∥
∥L1(u, v)

∥
∥ +

∥
∥L2(u, v)

∥
∥ ≤ ∥

∥(u, v)
∥
∥

X , ∀(u, v) ∈ P ∩ ∂
1. (3.9)

From (3.6), we know that there exist ε > 0 and R2 > 0 such that

f1(t, u, v) ≥ (z∞ – ε)(u + v), u + v ≥ R2, t ∈
[

1
4

,
3
4

]

,

f2(t, u, v) ≥ (
z∗
∞ – ε

)
(u + v), u + v ≥ R2, t ∈

[
1
4

,
3
4

]

.

Let 
2 = {(u, v) ∈ X| ‖(u, v)‖X < R2}, where R2 = max{2R1, R2
K }. From (3.1) and Lemma 2.4,

for any (u, v) ∈ P ∩ ∂
2, we have

L1(u, v)
(

3
4

)

= λ

∫ 1

0
G1

(
3
4

, s
)

f1
(
s, u(s), v(s)

)
ds

≥ λN1

�(θ1)

∫ 3
4

1
4

(1 – s)θ1–1(z∞ – ε)
(
u(s) + v(s)

)
ds

≥ λN1K(z∞ – ε)
�(θ1)

∫ 3
4

1
4

(1 – s)θ1–1 ds
(‖u‖ + ‖v‖)

= λ(z∞ – ε)P3
(‖u‖ + ‖v‖)

≥ 1
2
∥
∥(u, v)

∥
∥

X ,

and

L2(u, v)
(

3
4

)

= μ

∫ 1

0
G2

(
3
4

, s
)

f2
(
s, u(s), v(s)

)
ds

≥ μN2

�(θ2)

∫ 3
4

1
4

(1 – s)θ2–1(z∗
∞ – ε

)(
u(s) + v(s)

)
ds

≥ μN2K(z∗∞ – ε)
�(θ2)

∫ 3
4

1
4

(1 – s)θ2–1 ds
(‖u‖ + ‖v‖)

= μ
(
z∗
∞ – ε

)
P4

(‖u‖ + ‖v‖)

≥ 1
2
∥
∥(u, v)

∥
∥

X .

So

∥
∥L(u, v)

∥
∥ =

∥
∥L1(u, v)

∥
∥ +

∥
∥L2(u, v)

∥
∥ ≥ ∥

∥(u, v)
∥
∥

X , ∀(u, v) ∈ P ∩ ∂
2. (3.10)

By virtue of (3.9), (3.10), and Lemma 2.5, we know that L has at least a fixed point (u, v) ∈
P ∩ (
2\
1). Therefore, (u, v) is one positive solution of system (1.1). �

Since the proofs of the following theorems are similar to Theorem 3.1, we only give the
results as follows.
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Theorem 3.2 Let z0 = 0, z∗
0, z∞, z∗∞ ∈ (0, +∞), Q3 < Q4. Then when λ ∈ (Q1, +∞) and μ ∈

(Q3, Q4) hold, we get that system (1.1) has at least one positive solution.

Theorem 3.3 Let z∗
0 = 0, z0, z∞, z∗∞ ∈ (0, +∞), Q1 < Q2. Then when λ ∈ (Q1, Q2) and μ ∈

(Q3, +∞) hold, we get that system (1.1) has at least one positive solution.

Theorem 3.4 Let z0 = 0, z∗
0 = 0, z∞, z∗∞ ∈ (0, +∞). Then when λ ∈ (Q1, +∞) and μ ∈

(Q3, +∞) hold, we get that system (1.1) has at least one positive solution.

Theorem 3.5 Let z0, z∗
0 ∈ (0, +∞), z∞ = +∞, and z∗∞ = +∞. Then when λ ∈ (0, Q2), μ ∈

(0, Q4) hold, we get that system (1.1) has at least one positive solution.

Theorem 3.6 Let z0 ∈ (0, +∞), z∗
0 = 0, z∗∞ = +∞, and z∞ = +∞. Then when λ ∈ (0, Q2),

μ ∈ (0, +∞) hold, we get that system (1.1) has at least one positive solution.

Theorem 3.7 Let z0 = 0, z∗
0 ∈ (0, +∞), z∗∞ = +∞, and z∞ = +∞. Then when λ ∈ (0, +∞),

μ ∈ (0, Q4) hold, we get that system (1.1) has at least one positive solution.

Theorem 3.8 Let z0 = z∗
0 = 0, z∞ = +∞, and z∗∞ = +∞. Then when λ ∈ (0, +∞) and μ ∈

(0, +∞) hold, we get that system (1.1) has at least one positive solution.

For convenience, we give the other denotations as follows:

z0 = lim
(u,v)→(0+,0+)

inf
t∈[ 1

4 , 3
4 ]

f1(t, u, v)
u + v

, z∗
0 = lim

(u,v)→(0+,0+)
inf

t∈[ 1
4 , 3

4 ]

f2(t, u, v)
u + v

, (3.11)

z∞ = lim
(u,v)→(+∞,+∞)

sup
t∈[0,1]

f1(t, u, v)
u + v

, z∗
∞ = lim

(u,v)→(+∞,+∞)
sup

t∈[0,1]

f2(t, u, v)
u + v

. (3.12)

Theorem 3.9 Let z0, z∗
0, z∞, z∗

∞ ∈ (0, +∞), Q1 < Q2, Q3 < Q4. Then when λ ∈ (Q1, Q2), μ ∈
(Q3, Q4) hold, we have that system (1.1) has at least one positive solution, where

Q1 =
1

2z̄0P3
, Q2 =

1
2z∞P1

, Q3 =
1

2z∗
0P4

, Q4 =
1

2z∗
∞P2

.

Proof Since λ ∈ (Q1, Q2), μ ∈ (Q3, Q4), so we can choose ε > 0 such that

1
2(z0 – ε)P3

≤ λ ≤ 1
2(z∞ + ε)P1

,
1

2(z∗
0 – ε)P4

≤ μ ≤ 1
2(z∗

∞ + ε)P2
. (3.13)

By (3.11)–(3.13), for the above ε > 0, there exists a constant R3 > 0 such that

f1(t, u, v) ≥ (z0 – ε)(u + v), 0 < u + v ≤ R3, t ∈
[

1
4

,
3
4

]

,

f2(t, u, v) ≥ (
z∗

0 – ε
)
(u + v), 0 < u + v ≤ R3, t ∈

[
1
4

,
3
4

]

.
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Set 
3 = {(u, v) ∈ X| ‖(u, v)‖X < R3}. From Lemma 2.4 and (3.1), for any (u, v) ∈ P
⋂

∂
3,
we have

L1(u, v)
(

1
4

)

= λ

∫ 1

0
G1

(
1
4

, s
)

f1
(
s, u(s), v(s)

)
ds

≥ λN1

�(θ1)

∫ 3
4

1
4

(1 – s)θ1–1(z0 – ε)
(
u(s) + v(s)

)
ds

≥ λN1K(z0 – ε)
�(θ1)

∫ 3
4

1
4

(1 – s)θ1–1 ds
(‖u‖ + ‖v‖)

= λ(z0 – ε)P3
(‖u‖ + ‖v‖)

≥ 1
2
∥
∥(u, v)

∥
∥

X ,

and

L2(u, v)
(

1
4

)

= μ

∫ 1

0
G2

(
1
4

, s
)

f2
(
s, u(s), v(s)

)
ds

≥ μN2

�(θ2)

∫ 3
4

1
4

(1 – s)θ2–1(z∗
0 – ε

)(
u(s) + v(s)

)
ds

≥ μN2K(z∗
0 – ε)

�(θ2)

∫ 3
4

1
4

(1 – s)θ2–1 ds
(‖u‖ + ‖v‖)

= μ
(
z∗

0 – ε
)
P4

(‖u‖ + ‖v‖)

≥ 1
2
∥
∥(u, v)

∥
∥

X .

Then we have

∥
∥L(u, v)

∥
∥ =

∥
∥L1(u, v)

∥
∥ +

∥
∥L2(u, v)

∥
∥ ≥ ∥

∥(u, v)
∥
∥

X , ∀(u, v) ∈ P ∩ ∂
3. (3.14)

Let f̃1(t, w) = max0≤u+v≤w f1(t, u, v), f̃2(t, w) = max0≤u+v≤w f2(t, u, v). Obviously, f̃1, f̃2 : [0,
1] × [0, +∞) → [0, +∞), f1(t, u, v) ≤ f̃1(t, w), f2(t, u, v) ≤ f̃2(t, w), u ≥ 0, v ≥ 0, u + v ≤ w,
t ∈ [0, 1]; f̃1(t, w) and f̃2(t, w) are nondecreasing on w, and

lim sup
w→+∞

max
t∈[0,1]

f̃1(t, w)
w

≤ z∞, (3.15)

lim sup
w→+∞

max
t∈[0,1]

f̃2(t, w)
w

≤ z∗
∞. (3.16)

By (3.15) and (3.16), there exist ε > 0 and R4 > 0 such that

f̃1(t, w) ≤ (z∞ + ε)w, f̃2(t, w) ≤ (
z∗
∞ + ε

)
w, t ∈ [0, 1], w ≥ R4. (3.17)

Let 
4 = {(u, v) ∈ X| ‖(u, v)‖X < R4}, where R4 = max{2R3, 3R4}. For any (u, v) ∈ P ∩ ∂
4,
we have f1(t, u, v) ≤ f̃1(t,‖(u, v)‖X), f2(t, u, v) ≤ f̃2(t,‖(u, v)‖X). So, by (3.13) and (3.17), we
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get that

L1(u, v)(t) = λ

∫ 1

0
G1(t, s)f1

(
s, u(s), v(s)

)
ds

≤ λ

�(θ1)(1 – B1)

∫ 1

0
(1 – s)θ1–1(z∞ + ε)

(∥
∥(u, v)

∥
∥

X

)
ds

= λ(z∞ + ε)P1
(∥
∥(u, v)

∥
∥

X

)

≤ 1
2
∥
∥(u, v)

∥
∥

X ,

and

L2(u, v)(t) = μ

∫ 1

0
G2(t, s)f2

(
s, u(s), v(s)

)
ds

≤ μ

�(θ2)(1 – B2)

∫ 1

0
(1 – s)θ2–1(z∗

∞ + ε
)(∥

∥(u, v)
∥
∥

X

)
ds

= μ
(
z∗
∞ + ε

)
P2

(∥
∥(u, v)

∥
∥

X

)

≤ 1
2
∥
∥(u, v)

∥
∥

X .

Then we get

∥
∥L(u, v)

∥
∥ =

∥
∥L1(u, v)

∥
∥ +

∥
∥L2(u, v)

∥
∥ ≤ ∥

∥(u, v)
∥
∥

X , ∀(u, v) ∈ P ∩ ∂
4. (3.18)

By virtue of (3.14)(3.18) and Lemma 2.5, we know that L has at least a fixed point (u, v) ∈
P ∩ (
4\
3). Therefore, (u, v) is one positive solution of system (1.1). �

Since the proofs of the following theorems are similar to Theorem 3.9, we only give the
results as follows.

Theorem 3.10 Let z0, z∗
0, z∞ ∈ (0, +∞), z∗

∞ = 0, Q1 < Q2. Then when λ ∈ (Q1, Q2), μ ∈
(Q3, +∞) hold, we get that system (1.1) has at least one positive solution.

Theorem 3.11 Let z0, z∗
0, z∗

∞ ∈ (0, +∞), z∞ = 0, Q3 < Q4. Then when λ ∈ (Q1, +∞), μ ∈
(Q3, Q4) hold, we get that system (1.1) has at least one positive solution.

Theorem 3.12 Let z0, z∗
0 ∈ (0, +∞), z∞ = z∗

∞ = 0. Then when λ ∈ (Q1, +∞), μ ∈ (Q3, +∞)
hold, we get that system (1.1) has at least one positive solution.

Theorem 3.13 Let z∞, z∗
∞ ∈ (0, +∞), z0 = +∞, and z∗

0 = +∞. Then when λ ∈ (0, Q2), μ ∈
(0, Q4) hold, we get that system (1.1) has at least one positive solution.

Theorem 3.14 Let z̄0 = +∞, z̄∞ ∈ (0, +∞), z∗
0 = +∞, and z∗

∞ = 0. Then when λ ∈ (0, Q2),
μ ∈ (0, +∞) hold, we get that system (1.1) has at least one positive solution.

Theorem 3.15 Let z∗
∞ ∈ (0, +∞), z∞ = 0, z0 = +∞, and z∗

0 = +∞. Then when λ ∈ (0, +∞),
μ ∈ (0, Q4) hold, we get that system (1.1) has at least one positive solution.
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Theorem 3.16 Let z∞ = z∗
∞ = 0, z0 = +∞, and z∗

0 = +∞. Then when λ ∈ (0, +∞), μ ∈
(0, +∞) hold, we get that system (1.1) has at least one positive solution.

4 Applications
Example 4.1 Consider the following Caputo-type fractional system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–cD 5
2 u(t) = λf1(t, u(t), v(t)), t ∈ [0, 1],

–cD 5
2 u(t) = μf2(t, u(t), v(t)), t ∈ [0, 1],

u(0) = u′′(0) = 0, u(1) = 1
2
∫ 1

0 u(t) dt,

v(0) = v′′(0) = 0, v(1) = 1
2
∫ 1

0 v(t) dt.

(4.1)

Take

f1 = t(u + v)3 + (u + v)e(u+v) + (u + v),

f2 = t(u + v)3,

where θ1 = θ2 = 5
2 , A1(t) = A2(t) = 1

2 t, B1 = B2 = 1
4 .

We can get P1 = P2 = 32
45

√
π

, P3 = P4 = 9(9
√

3–1)
327680

√
π

. Obviously, we can infer that

z0 = lim
(u,v)→(0+,0+)

sup
t∈[0,1]

f1(t, u, v)
u + v

= lim
(u,v)→(0+,0+)

(u + v)2 + e(u+v) + 1 = 2,

z∗
0 = lim

(u,v)→(0+,0+)
sup

t∈[0,1]

f2(t, u, v)
u + v

= lim
(u,v)→(0+,0+)

(u + v)2 = 0,

z∞ = lim
(u,v)→(+∞,+∞)

inf
t∈[ 1

4 , 3
4 ]

f1(t, u, v)
u + v

= lim
(u,v)→(+∞,+∞)

1
4

(u + v)2 + e(u+v) + 1 = +∞,

z∗
∞ = lim

(u,v)→(+∞,+∞)
inf

t∈[ 1
4 , 3

4 ]

f2(t, u, v)
u + v

= lim
(u,v)→(+∞,+∞)

1
4

(u + v)2 = +∞.

Then, for each λ ∈ (0, 45
√

π

8 ) and μ ∈ (0, +∞), from Theorem 3.6, system (4.1) has at least
a positive solution.

Example 4.2 Consider the following Caputo-type fractional system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–cD 5
2 u(t) = λf1(t, u(t), v(t)), t ∈ [0, 1],

–cD 5
2 u(t) = μf2(t, u(t), v(t)), t ∈ [0, 1],

u(0) = u′′(0) = 0, u(1) = 1
2
∫ 1

0 u(t) dt,

v(0) = v′′(0) = 0, v(1) = 1
2
∫ 1

0 v(t) dt.

(4.2)

Take

f1(t, u, v) =
t

u + v
,

f2(t, u, v) =
t

u + v
+ 6,

where θ1 = θ2 = 5
2 , A1(t) = A2(t) = 1

2 t, B1 = B2 = 1
4 .
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We can get P1 = P2 = 32
45

√
π

, P3 = P4 = 9(9
√

3–1)
327680

√
π

, and

z0 = lim
(u,v)→(0+,0+)

inf
t∈[ 1

4 , 3
4 ]

f1(t, u, v)
u + v

= lim
(u,v)→(0+,0+)

1
4(u + v)2 = +∞,

z∗
0 = lim

(u,v)→(0+,0+)
inf

t∈[ 1
4 , 3

4 ]

f2(t, u, v)
u + v

= lim
(u,v)→(0+,0+)

1
4(u + v)2 +

6
(u + v)

= +∞,

z∞ = lim
(u,v)→(+∞,+∞)

sup
t∈[0,1]

f1(t, u, v)
u + v

= lim
(u,v)→(+∞,+∞)

1
(u + v)2 = 0,

z∗
∞ = lim

(u,v)→(+∞,+∞)
sup

t∈[0,1]

f2(t, u, v)
u + v

= lim
(u,v)→(+∞,+∞)

1
(u + v)2 +

1
(u + v)

= 0.

Then, for each λ ∈ (0, +∞) and μ ∈ (0, +∞), from Theorem 3.16, system (4.2) has at least
a positive solution.
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