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1 Introduction and motivation
There has always been a strong interest in discovering novel summation formulae for (gen-
eralized) hypergeometric series due to their broad variety of applications in mathematics,
physics, and computer science (see [5–7, 13, 14, 19–21, 23]). The purpose of this paper is
to evaluate, in closed forms, the following class of nonterminating 3F2-series with a free
variable x (with |x| < 1 for convergence) and two perturbing integer parameters m and n:

�m,n(a, x) := 3F2

[
a, a + 1

3 , a – 1
3

1
2 + m, 3a + n

∣∣∣∣x2

]
, (1)

where, according to Bailey [2, §2.1], the classical hypergeometric series reads as

1+pFp

[
a0, a1, . . . , ap

b1, . . . , bp

∣∣∣∣z
]

=
∞∑

k=0

(a0)k(a1)k · · · (ap)k

k!(b1)k · · · (bp)k
zk .

Denote by Z and N, respectively, sets of integers and natural numbers with N0 = {0} ∪N.
For indeterminate y and n ∈ Z, the rising and falling factorials are defined by the following
quotients of Euler’s �-function:

(x)n =
�(x + n)

�(x)
and 〈x〉n =

�(1 + x)
�(1 + x – n)

,

where the multiparameter notation for the former one will be abbreviated to

[
A, B, . . . , C
α,β , . . . ,γ

]
n

=
(A)n(B)n · · · (C)n

(α)n(β)n · · · (γ )n
.
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Our work is motivated by Lambert’s binomial series (see Riordan [22, §4.5] and [1, 8–
10, 15, 20]) which is well known in classical analysis. Let u and v be the two variables
related through the equation u = v/(1 + v)β . Then

φα(u) := (1 + v)α =
∞∑

k=0

α

α + kβ

(
α + kβ

k

)
uk ,

ψα(u) :=
(1 + v)α+1

1 + v – βv
=

∞∑
k=0

(
α + kβ

k

)
uk .

By the bisection of series, we have further four generating functions

∞∑
k=0

α

α + 2βk

(
α + 2βk

2k

)
u2k =

φα(u) + φα(–u)
2

,

∞∑
k=0

(
α + 2βk

2k

)
u2k =

ψα(u) + ψα(–u)
2

;

∞∑
k=0

α

α + β(2k + 1)

(
α + β(2k + 1)

2k + 1

)
u2k+1 =

φα(u) – φα(–u)
2

,

∞∑
k=0

(
α + β(2k + 1)

2k + 1

)
u2k+1 =

ψα(u) – ψα(–u)
2

.

Specifying with β = 3
2 , making the replacements u → 2x

3
√

3 , v → y, and then letting

α → 3a – 1,α → 3a – 2,α → 3a –
5
2

,α → 3a –
7
2

,

respectively, in the above four equations, we get four hypergeometric formulae:

3F2

[
a, a – 1

3 a + 1
3

1
2 , 3a

∣∣∣∣x2

]
=

1
2
{

(1 + y+)3a–1 + (1 + y–)3a–1}, [�0,0]

3F2

[
a, a – 1

3 , a + 1
3

1
2 , 3a – 1

∣∣∣∣x2

]
=

(1 + y+)3a–1

2 – y+
+

(1 + y–)3a–1

2 – y–
; [�0,–1]

3F2

[
a, a – 1

3 , a + 1
3

3
2 , 3a – 1

∣∣∣∣x2

]
=

(1 + y+)3a–1

(6a – 5)y+
+

(1 + y–)3a–1

(6a – 5)y–
, [�1,–1]

3F2

[
a, a – 1

3 , a + 1
3

3
2 , 3a – 2

∣∣∣∣x2

]
=

(1 + y+)3a–1

(3a – 2)(2 – y+)y+
+

(1 + y–)3a–1

(3a – 2)(2 – y–)y–
. [�1,–2]

Here and forth, x and y are two variables related via equations

±x =
3
√

3y±
2
√

(1 + y±)3
, (2)

where y± are computed from x through the fundamental algebraic relationship

2x
3
√

3
=

y
(1 + y)3/2 or equivalently

(
2x
y

)2

=
(

3
1 + y

)3

.
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Figure 1 The “x – y” curve

Recall that the hypergeometric 3F2(x2)-series converge (generically) only if their argument
is less than 1 in magnitude. Therefore x is restricted to (–1, 1). There are exactly two solu-
tions y+ and y– of the above equation in the region (–1/4, 2) whenever x satisfies –1 < x < 1.
By equating both members of the last equation to t6, we can parameterize the algebraic
“x–y curve” by rational functions:

x =
t
2
(
3 – t2) and y =

3 – t2

t2 .

The portions of the curve with t ∈ (–2, –1) and t ∈ (1, 2) lie, in the “x–y plane”, in the
abovementioned region. For any x, the corresponding y± are the y-coordinates of the
points (x, y) that lie on these two branches that are illustrated in the Fig. 1.

The four identities of 3F2-series highlighted in the last page are not isolated examples.
As we shall show, there exists a large number of closed formulae for the series �m,n. By
means of the linearization method (cf. [3, 4, 11, 12, 16–18]), we shall reduce in the next
section, for m, n ∈ Z, the series �m,n to �m′ ,0 with m′ < 0. Then this last series will be
evaluated in Sect. 3 via differential operators. The conclusive theorem affirms that, for all
the m, n ∈ Z, the nonterminating �m,n-series can be always evaluated explicitly in terms
of a finite number of algebraic functions in y±. Finally, by making use of Mathematica
commands, 26 closed formulae are presented as exemplification.

2 Linearization method
By means of the linearization method, we shall establish, in this section, three reduction
formulae that express ultimately the series �m,n with m, n ∈ Z in terms of the series �m′ ,0,
but with m′ < 0.

2.1 m > 0
By employing the Chu–Vandermonde formula on binomial convolutions, it is routine to
prove the following linear representation lemma.
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Lemma 1 (Linear representation) For a natural number m and a variable y, the following
linear relation holds:

〈y〉m =
m∑

i=0

(–1)i
(

m
i

)
〈A + y〉m–i(A)i.

Now specifying in this lemma the parameters

y = k and A = 3a – m + n – 1,

we get the equality

〈k〉m =
m∑

i=0

(–1)i
(

m
i

)
〈3a – m + n – 1 + k〉m–i(3a – m + n – 1)i.

By inserting this relation in the �m,n-series, we have

�m,n(a, x) =
∞∑

k=0

(a)k(a – 1
3 )k(a + 1

3 )k

k!( 1
2 + m)k(3a + n)k

x2k

=
∞∑

k=m

(a)k–m(a – 1
3 )k–m(a + 1

3 )k–m

(k – m)!( 1
2 + m)k–m(3a + n)k–m

x2k–2m

×
m∑

i=0

(–1)i
(

m
i

) 〈3a – m + n – 1 + k〉m–i(3a – m + n – 1)i

〈k〉m
.

Observing that

〈3a – m + n – 1 + k〉m–i

(3a + n)k–m
=

(1 – 3a – n)2m

(3a – 2m + n)k+i
,

(a)k–m(a – 1
3 )k–m(a + 1

3 )k–m

(k – m)!〈k〉m
= (–27)m (a – m)k(a – m – 1

3 )k(a – m + 1
3 )k

k!(2 – 3a)3m
;

we can reformulate the double sum

�m,n(a, x) =
(

–
27
x2

)m ( 1
2 )m(1 – 3a – n)2m

(2 – 3a)3m

m∑
i=0

(–1)i
(

m
i

)
(3a – m + n – 1)i

(3a – 2m + n)i

×
∞∑

k=m

[
a – m, a – m – 1

3 , a – m + 1
3

1, 1
2 , 3a – 2m + n + i

]
k

x2k .

Expressing the last sum with respect to k in terms of �0,m+n+i(a – m, x), we derive the first
reduction formula.

Proposition 2 (m ∈N0 and n ∈ Z)

�m,n(a, x) =
(

–
27
x2

)m ( 1
2 )m(1 – 3a – n)2m

(2 – 3a)3m

m∑
i=0

(–1)i
(

m
i

)
(3a – m + n – 1)i

(3a – 2m + n)i
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×
{

�0,m+n+i(a – m, x) –
m–1∑
k=0

(3a – 3m – 1)3k

(2k)!(3a – 2m + n + i)k

(
4x2

27

)k
}

.

2.2 n < 0
Analogously, we can also prove, without difficulty, another linear representation lemma.

Lemma 3 (Linear representation) For a negative integer n and a variable y, the following
linear relation holds:

(A + y)–n =
–n∑
i=0

(
–n
i

)
〈B + y〉i(A – B + i)–n–i.

Under the parameter specification

y = k, A = 3a + n, B = m –
1
2

,

the equality in Lemma 3 can be restated as

(3a + n + k)–n =
–n∑
i=0

(
–n
i

)〈
m + k –

1
2

〉
i

(
3a + n – m +

1
2

+ i
)

–n–i
.

By putting this relation inside the �m,n-series, we can manipulate the double sum

�m,n(a, x) =
∞∑

k=0

(a)k(a – 1
3 )k(a + 1

3 )k

k!( 1
2 + m)k(3a + n)k–n

x2k

×
–n∑
i=0

(
–n
i

)〈
m + k –

1
2

〉
i

(
3a + n – m +

1
2

+ i
)

–n–i

=
–n∑
i=0

(
–n
i

)(
3a + n – m +

1
2

+ i
)

–n–i

×
∞∑

k=0

〈
m + k –

1
2

〉
i

(a)k(a – 1
3 )k(a + 1

3 )k

k!( 1
2 + m)k(3a + n)k–n

x2k

=
–n∑
i=0

(
–n
i

) ( 1
2 + m – i)i(3a)n

(3a – m + 1
2 )n+i

×
∞∑

k=0

(a)k(a – 1
3 )k(a + 1

3 )k

k!( 1
2 + m – i)k(3a)k

x2k .

Writing the last sum by �m–i,0(a, x), we get the second reduction formula.

Proposition 4 (m, n ∈ Z with n < 0)

�m,n(a, x) =
–n∑
i=0

(–1)i
(

–n
i

) ( 1
2 – m)i(3a)n

(3a – m + 1
2 )n+i

�m–i,0(a, x).
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2.3 n > 0
The next linear relation comes from a limiting case of a known one. Dividing by Am equa-
tion (3.1) in [17, Lemma 3.1] and then letting A → ∞, we get the following linearization
lemma.

Lemma 5 (Linear representation) For a natural number n and a variable y, the following
linear relation holds:

1 =
n∑

i=0

〈B + y〉n–i(3C + 3y)iXi
n, (3)

where the coefficients Xi
n are independent of the variable y and given explicitly by the two

expressions

Xi
n =

i∑
j=0

(–1)n–i+j

i!

(
i
j

)
3C – 3B + 3n – 2i
3(C – B + j

3 )n–i+1

=
n–i∑
j=0

(–1)n–i+j

(n – i)!

(
n – i

j

)
3C – 3B + 3n – 2i
(3C – 3B + 3j)i+1

.

Specifying in Lemma 5 the parameters

y = k, B = 3a + n – 1, C = a –
1
3

,

the equality corresponding to (3) becomes

1 =
n∑

i=0

〈3a + n + k – 1〉n–i(3a – 1 + 3k)iX i
n (4)

with the coefficients X i
n being determined by

X i
n =

i∑
j=0

(–1)n–i+j

i!

(
i
j

)
2 – 6a – 2i

3( 2
3 – 2a – n + j

3 )n–i+1

=
n–i∑
j=0

(–1)n–i+j

(n – i)!

(
n – i

j

)
2 – 6a – 2i

(2 – 6a – 3n + 3j)i+1
.

(5)

By inserting this relation (5) in the �m,n-series, we get the double sum

�m,n(a, x) =
∞∑

k=0

(a)k(a – 1
3 )k(a + 1

3 )k

k!( 1
2 + m)k(3a + n)k

x2k

×
n∑

i=0

〈3a + n + k – 1〉n–i(3a – 1 + 3k)iX i
n

=
n∑

i=0

(3a – 1)i(3a + i)n–iX i
n
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×
∞∑

k=0

[
a + i

3 – 1
3 , a + i

3 , a + i
3 + 1

3
1, 1

2 + m, 3a + i

]
k

x2k .

Expressing the last sum by �m,0(a + i
3 , x), we have the third reduction formula.

Proposition 6 Let n ∈ N and the connection coefficients {X i
n} be given by (5). Then the

following formula holds:

�m,n(a, x) =
n∑

i=0

X i
n(3a – 1)i(3a + i)n–i�m,0

(
a +

i
3

, x
)

.

3 Conclusive theorem and examples
For a given integer pair {m, n}, we can express the �m,n-series, by making use of Propo-
sitions 2, 4, and 6, in terms of �m′ ,0-series with m′ ≤ 0. Therefore it remains to evaluate
this last series. This will be done by utilizing differential operations. Suppose that f (x) is a
differentiable function. Define the operator δ by

δf (x) =
d

dx

{
f (x)

x

}
.

Then it is not hard to check that

δ�0,0(a, x) =
∞∑

k=0

(2k – 1)

[
a, a – 1

3 , a + 1
3

1, 1
2 , 3a

]
k

x2k–2 =
–1
x2 �–1,0(a, x),

δ2�0,0(a, x) =
∞∑

k=0

(3 – 2k)

[
a, a – 1

3 , a + 1
3

1, – 1
2 , 3a

]
k

x2k–4 =
3
x4 �–2,0(a, x).

Proceeding by induction, we can show that

δn�0,0(a, x) = (–1)n–1(2n – 3)!!
∞∑

k=0

[
a, a – 1

3 , a + 1
3

1, 3
2 – n, 3a

]
k

(2k – 2n + 1)x2k–2n

=
(–1)n(2n – 1)!!

x2n �–n,0(a, x).

Recalling that

�0,0(a, x) =
1
2
{

(1 + y+)3a–1 + (1 + y–)3a–1}

and then relabeling n by –m, we get the following expression.

Proposition 7 For m < 0 and the three variables {x, y±} related by (2), the following for-
mula holds:

�m,0(a, x) =
(–2/x2)m

2( 1
2 )–m

δ–m{
(1 + y+)3a–1 + (1 + y–)3a–1}.
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As an anonymous referee pointed out, instead of Proposition 4 the case n < 0 can
be alternatively treated by repeatedly applying the operator δ to the initial function
x6a–1�0,0(a, x).

Summing up, for any given pair of integers m and n, the series �m,n(a, x) can be evaluated
by carrying out the following procedure:

• Step-A: If m > 0, write �m,n(a, x), by means of Proposition 2, in terms of
�0,n′ (a – m, x); then go to Step-B.

• Step-B: For m ≤ 0 and n �= 0, apply Propositions 4 and 6 to express �m,n(a, x) as
�m′ ,0(a′, x) with m′ ≤ m; then go to Step-C.

• Step-C: Finally, for m ≤ 0 and n = 0, evaluate �m,0(a, x), according to Proposition 7, by
differentiating �0,0(a, x).

Therefore, we have shown the following general conclusion.

Theorem 8 For all the m, n ∈ Z, the nonterminating �m,n-series are always evaluable ex-
plicitly in a finite number of terms of algebraic functions in y±.

Based on Propositions 2, 4, 6, and 7, we have devised appropriately Mathematica com-
mands that are employed to evaluate �m,n in closed forms for any specific integer pair
“m, n”. Apart from the four formulae anticipated in the Introduction, we highlight further
26 elegant formulae as exemplification.

Example 1 (m = 0 and n = 1)

3F2

[
a, a + 1

3 , a – 1
3

1
2 , 3a + 1

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

2(6a + 1)
{1 + 6a + y – 3ay}.

Example 2 (m = 0 and n = 2)

3F2

[
a, a + 1

3 , a – 1
3

1
2 , 3a + 2

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

4(2a + 1)(3a + 2)(6a + 1)

{
4 + 96a2 + 72a3 + 4y + 10ay – 42a2y
+38a – 72a3y – ay2 – 3a2y2 + 18a3y2

}
.

Example 3 (m = 0 and n = –2)

3F2

[
a, a + 1

3 , a – 1
3

1
2 , 3a – 2

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1(8 – 12a – 7y + 6ay)

(3a – 2)(y – 2)3 .
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Example 4 (m = 0 and n = –3)

3F2

[
a, a + 1

3 , a – 1
3

1
2 , 3a – 3

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
2(1 + y)3a–1

(a – 1)(3a – 2)(2 – y)5

{
16 – 40a + 24a2 – 29y + 58ay

–24a2y + 15y2 – 19ay2 + 6a2y2

}
.

Example 5 (m = 1 and n = 0)

3F2

[
a, a + 1

3 , a – 1
3

3
2 , 3a

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1(4 – 12a – 5y + 6ay)

6(1 – 2a)(6a – 5)y
.

Example 6 (m = 1 and n = 1)

3F2

[
a, a + 1

3 , a – 1
3

3
2 , 3a + 1

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
–3(1 + y)3a–1

32y(3a – 5
2 )4

{
8a + 24a2 – 144a3 + 5y + 4ay – 132a2y

+144a3y + 5y2 – 31ay2 + 60a2y2 – 36a3y2

}
.

Example 7 (m = 1 and n = –3)

3F2

[
a, a + 1

3 , a – 1
3

3
2 , 3a – 3

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
2(1 + y)3a–1(7 – 6a – 5y + 3ay)

3y(a – 1)(3a – 2)(y – 2)3 .

Example 8 (m = –1 and n = 0)

3F2

[
a, a + 1

3 , a – 1
3

– 1
2 , 3a

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

2(2 – y)
{2 + y – 6ay}.
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Example 9 (m = –1 and n = 1)

3F2

[
a, a + 1

3 , a – 1
3

– 1
2 , 3a + 1

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
1
2

(1 + y)3a–1{1 + y – 3ay}.

Example 10 (m = –1 and n = 2)

3F2

[
a, a + 1

3 , a – 1
3

– 1
2 , 3a + 2

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

4(3a + 2)
{

4 + 6a + 4y – 6ay – 18a2y – 3ay2 + 9a2y2}.

Example 11 (m = –1 and n = 3)

3F2

[
a, a + 1

3 , a – 1
3

– 1
2 , 3a + 3

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

4(a + 1)(6a + 7)

{
14 – 16ay – 66a2y – 36a3y – 14ay2 + 30a2y2

+26a + 12a2 + 14y + 36a3y2 + ay3 – 9a3y3

}
.

Example 12 (m = –1 and n = –1)

3F2

[
a, a + 1

3 , a – 1
3

– 1
2 , 3a – 1

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

(2 – y)3

{
4 – 2y – 12ay – 3y2 + 6ay2}.

Example 13 (m = –1 and n = –2)

3F2

[
a, a + 1

3 , a – 1
3

– 1
2 , 3a – 2

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

(3a – 2)(y – 2)5

{
32 – 24ay + 144a2y + 168ay2 – 144a2y2

–48a – 48y + 35y3 – 72ay3 + 36a2y3

}
.
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Example 14 (m = 2 and n = –1)

3F2

[
a, a + 1

3 , a – 1
3

5
2 , 3a – 1

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
3(1 + y)3a–1

16y3(3a – 11
2 )4

{
20 – 192ay + 72a2y + 120ay2

–24a + 110y – 99y2 – 36a2y2

}
.

Example 15 (m = 2 and n = –2)

3F2

[
a, a + 1

3 , a – 1
3

5
2 , 3a – 2

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
3(1 + y)3a–1(2 + 11y – 6ay)

4y3(2 – 3a)(3a – 11
2 )2

.

Example 16 (m = 2 and n = –3)

3F2

[
a, a + 1

3 , a – 1
3

5
2 , 3a – 3

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
6(1 + y)3a–1(1 + 5y – 3ay)

(3a – 3)2(6a – 11)(y – 2)y3 .

Example 17 (m = –2 and n = 0)

3F2

[
a, a + 1

3 , a – 1
3

– 3
2 , 3a

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

6(2 – y)3

{
24 – 12y – 72ay – 14y2 + y3

+72ay2 + 72a2y2 – 36a2y3

}
.

Example 18 (m = –2 and n = 1)

3F2

[
a, a + 1

3 , a – 1
3

– 3
2 , 3a + 1

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

2(2 – y)
{

2 + y – 6ay – y2 + ay2 + 6a2y2}.
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Example 19 (m = –2 and n = –1)

3F2

[
a, a + 1

3 , a – 1
3

– 3
2 , 3a – 1

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

(2 – y)5

{
16 – 24y – 48ay + 88ay2 + 48a2y2 + 20y3

–16ay3 – 48a2y3 + y4 – 8ay4 + 12a2y4

}
.

Example 20 (m = –2 and n = 2)

3F2

[
a, a + 1

3 , a – 1
3

– 3
2 , 3a + 2

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

4(3a + 2)

{
4 + 6a + 4y – 6ay – 18a2y
–5ay2 + 9a2y2 + 18a3y2

}
.

Example 21 (m = –2 and n = 3)

3F2

[
a, a + 1

3 , a – 1
3

– 3
2 , 3a + 3

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

12(a + 1)

{
6 + 6a + 6y – 12ay – 18a2y – 8ay2

+18a2y2 + 18a3y2 + ay3 – 9a3y3

}
.

Example 22 (m = –3 and n = 1)

3F2

[
a, a + 1

3 , a – 1
3

– 5
2 , 3a + 1

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

10(2 – y)3

{
40 – 120ay – 30y2 + 132ay2 + 144a2y2 + 25y3 – 22ay3

–20y – 180a2y3 – 72a3y3 – 5y4 – ay4 + 36a2y4 + 36a3y4

}
.

Example 23 (m = –3 and n = 2)

3F2

[
a, a + 1

3 , a – 1
3

– 5
2 , 3a + 2

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

20(3a + 2)(2 – y)

{
40 – 90ay – 180a2y – 20y2 – 24ay2 + 180a2y2 + 35ay3

+60a + 20y + 216a3y2 – 33a2y3 – 180a3y3 – 108a4y3

}
.
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Example 24 (m = –3 and n = 3)

3F2

[
a, a + 1

3 , a – 1
3

– 5
2 , 3a + 3

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
(1 + y)3a–1

20(a + 1)

{
10 – 20ay – 30a2y – 14ay2 + 30a2y2 + 36a3y2

+10a + 10y + 3ay3 + 2a2y3 – 27a3y3 – 18a4y3

}
.

Example 25 (m = 3 and n = –3)

3F2

[
a, a + 1

3 , a – 1
3

7
2 , 3a – 3

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
–45(1 + y)3a–1

8y5(3a – 3)2(3a – 17
2 )4

{
22 + 187y – 168ay + 36a2y + 425y2

–12a – 575ay2 + 252a2y2 – 36a3y2

}
.

Example 26 (m = 3 and n = –2)

3F2

[
a, a + 1

3 , a – 1
3

7
2 , 3a – 2

∣∣∣∣x2

]
= w(y+) + w(y–),

where

w(y) =
45(1 + y)3a–1

32y5(2 – 3a)(3a – 17
2 )5

×
{

72 – 48a – 624ay + 144a2y + 1190y2 – 1916ay2 + 936a2y2

+612y – 144a3y2 – 1105y3 + 1342ay3 – 540a2y3 + 72a3y3

}
.

These identities are valid for all the x and y tied by (2) under the conditions |x| < 1 and
–1/4 < y < 2. When x is assigned to particular values, they may produce strange evaluation
formulae. We limit ourselves to recording three groups of such formulae.

• Series with {x, y+, y–} = {
√

35

73 , 3
4 , – 2

9 }.

3F2

[
a, a – 1

3 , a + 1
3

1
2 , 3a

∣∣∣∣35

73

]
=

1
2

{(
7
4

)3a–1

+
(

7
9

)3a–1}
, [�0,0]

3F2

[
a, a – 1

3 , a + 1
3

3
2 , 3a – 1

∣∣∣∣35

73

]
=

73a–1

6(6a – 5)
{

25–6a – 35–6a}, [�1,–1]

3F2

[
a, a + 1

3 , a – 1
3

1
2 , 3a + 1

∣∣∣∣35

73

]
=

73a–1

2(6a + 1)

{
15a + 7

26a +
60a + 7

36a

}
, [�0,1]

3F2

[
a, a + 1

3 , a – 1
3

– 1
2 , 3a + 1

∣∣∣∣35

73

]
=

73a–1

2

{
6a + 7

36a –
9a – 7

26a

}
. [�–1,1]
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• Series with {x, y+, y–} = {2
√

35

133 , 4
9 , – 3

16 }.

3F2

[
a, a – 1

3 , a + 1
3

1
2 , 3a – 1

∣∣∣∣4 · 35

133

]
=

9
14

(
13
9

)3a–1

+
16
35

(
13
16

)3a–1

, [�0,–1]

3F2

[
a, a – 1

3 , a + 1
3

3
2 , 3a – 2

∣∣∣∣4 · 35

133

]
=

133a–1

3a – 2

{
36–6a

56
–

46–6a

105

}
, [�1,–2]

3F2

[
a, a + 1

3 , a – 1
3

3
2 , 3a

∣∣∣∣4 · 35

133

]
=

133a–1

24(3a – 5
2 )2

{
63a – 12

93a–1 –
210a – 79

163a–1

}
, [�1,0]

3F2

[
a, a + 1

3 , a – 1
3

5
2 , 3a – 2

∣∣∣∣4 · 35

133

]
=

133a–1/(3a – 2)
2304(3a – 11

2 )2

{
24a – 62

272a–3 +
18a – 1
642a–3

}
. [�2,–2]

• Series with {x, y+, y–} = {5
√

35

193 , 10
9 , – 6

25 }.

3F2

[
a, a + 1

3 , a – 1
3

1
2 , 3a – 2

∣∣∣∣25 · 35

193

]
=

193a–1

3a – 2

{
24a – 1

256 · 36a–6 +
168a – 121

87,808 · 56a–6

}
, [�0,–2]

3F2

[
a, a + 1

3 , a – 1
3

3
2 , 3a – 3

∣∣∣∣25 · 35

193

]

=
193a–1

(3a – 2)(a – 1)

{
24a – 13

2560 · 36a–7 +
205 – 168a

1,580,544 · 56a–8

}
, [�1,–3]

3F2

[
a, a + 1

3 , a – 1
3

– 1
2 , 3a

∣∣∣∣25 · 35

193

]
= 193a–1

{
7 – 15a
4 · 93a–1 +

9a + 11
28 · 253a–1

}
, [�–1,0]

3F2

[
a, a + 1

3 , a – 1
3

5
2 , 3a – 3

∣∣∣∣25 · 35

193

]

=
193a–1

(3a – 3)2(6a – 11)

{
30a – 59

4000 · 36a–9 +
18a – 5

2016 · 56a–8

}
. [�2,–3]

To our knowledge, the formulae presented in this paper for �m,n(a, x) (when x is a free
variable) have not appeared previously. Exceptions are about �0,0, �1,–1, and �0,1. Their
particular cases with {x, y+, y–} = {1, 2, –1/4} have been recorded by Milgram in his com-
pendium [21, Equations 25, 30, 31]:

3F2

[
a, a + 1

3 , a – 1
3

1
2 , 3a

∣∣∣∣1
]

=
33a–1(1 + 41–3a)

2
,

3F2

[
a, a + 1

3 , a – 1
3

3
2 , 3a – 1

∣∣∣∣1
]

=
33a–1

(6a – 5)

{
1
2

– 42–3a
}

,

3F2

[
a, a + 1

3 , a – 1
3

1
2 , 3a + 1

∣∣∣∣1
]

=
27a

6a + 1

{
1
2

+
9a + 1
26a+1

}
.
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