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Abstract
Through the Lie symmetry analysis method, the axisymmetric, incompressible, and
inviscid fluid is studied. The governing equations that describe the flow are the Euler
equations. Under intensive observation, these equations do not have a certain
solution localized in all directions (r, t, z) due to the presence of the term 1

r , which
leads to the singularity cases. The researchers avoid this problem by truncating this
term or solving the equations in the Cartesian plane. However, the Euler equations
have an infinite number of Lie infinitesimals; we utilize the commutative product
between these Lie vectors. The specialization process procures a nonlinear system of
ODEs. Manual calculations have been done to solve this system. The investigated Lie
vectors have been used to generate new solutions for the Euler equations. Some
solutions are selected and plotted as two-dimensional plots.
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1 Introduction
Suppose that the Euler equations have the form [1–4]
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∂t

+ w
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∂r
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∂z

–
v2

r
+

∂p
∂r

= 0,

∂v
∂t

+ w
∂v
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+ u
∂v
∂z

–
vw
r
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∂u
∂t

+ w
∂u
∂r

+ u
∂u
∂z

+
∂p
∂z

= 0,

∂w
∂r

+
w
r

+
∂u
∂z

= 0.

(1)

That describes the dynamics of incompressible, axisymmetric flow with swirl [3], where
w(r, t, z), u(r, t, z), and v(r, t, z) are the components of the velocity in the cylindrical coor-
dinates (r,φ, and z), and p(r, t, z) is the pressure. The flow is called axisymmetric flow if
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the velocity component and the pressure are independent of φ. Navier–Stokes and Euler
equations in the cylindrical coordinates can describe any pipe fluid flow that has more
applications, especially in the medical field. For example, blood flow in stenoses narrow
artery [5–8]. System (1) had been solved using numerical methods in [1, 2, 9]. Manipula-
tion of the results in most applications needs explicit solutions. The Lie symmetry analysis
is one of the most important and powerful methods for obtaining closed-form solutions
[10, 11]. The method proves its dependence in the fluid mechanics, turbulence field, and
turbulent plane jet model [12–18]. Other researchers apply the method to other applica-
tions [19–25]. In (2007), Oberlack et al. [3] deduced five Lie point symmetries for Euler
equations. Here, we use the commutative product to explore new Lie infinitesimals for
system (1), then we use the investigated Lie vectors to reduce system (1) to the system of
ODEs. By solving these ODEs, we explore new analytical solutions for Euler equations.

2 Investigation of Lie infinitesimals for Euler equations
System (1) possesses Lie infinitesimals as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X1 = ∂
∂t + f1(t) ∂

∂z + f ′
1(t) ∂

∂u + (–f ′′
1 (t)z + f2(t)) ∂

∂p ,

X2 = f3(t) ∂
∂z + f ′

3(t) ∂
∂u + 1

r2v
∂
∂v + ( –1

r2 – f ′′
3 (t)z + f4(t)) ∂

∂p ,

X3 = t ∂
∂t + f5(t) ∂

∂z + (f ′
5(t) – u) ∂

∂u – w ∂
∂w – v ∂

∂v + (–2p – f ′′
5 (t)z + f6(t)) ∂

∂p ,

X4 = r ∂
∂r + (z + f7(t)) ∂

∂z + (u + f ′
7(t)) ∂

∂u + w ∂
∂w + v ∂

∂v (2p – f ′′
7 (t)z + f8(t)) ∂

∂p .

(2)

There are an infinite number of possibilities for these vectors as the presence of arbi-
trary functions fi(t), i = 1 . . . 8. Using the commutative product between these infinitesi-
mals listed in Table 1 authorizes us to specialize these vectors through the same procedure
as in [10, 26]. Firstly, we generate the commutator table as follows in Table 1, where

a1 = –zf ′′′
3 + f ′

4 – f1f ′′
3 + f3f ′′

1 ,

a2 = f ′
5 – tf ′

1,

a3 = f ′′
5 – f ′

1 – tf ′′
1 ,

a4 = –zf ′′′
5 + f ′

6 – f1f ′′
5 + f5f ′′

1 + 2zf ′′
1 – 2f2 + tzf ′′′

1 – tf ′
2,

a5 = f ′
7 + f1,

a6 = f ′′
7 + f ′

1,

a7 = –zf ′′′
7 + f ′

8 – f1f ′′
7 – zf ′′

1 + 2f2 + f7f ′′
1 ,

a8 = tf ′′
3 – f ′

3,

a9 = –f3f ′′
5 + 2zf ′′

3 – 2f4 +
2
r2 + tzf ′′′

3 – tf ′
4,

a10 =
–4
r2 + f7f ′′

3 – f3f ′′
7 – zf ′′

3 + 2f4,

a11 = tf ′
7 + f5,

a12 = tf ′′
7 + f ′

7 + f ′
5,

a13 = –tzf ′′′
7 + tf ′

8 + f7f ′′
5 – f5f ′′

7 – zf ′′
5 + 2f6 + 2f8 – 2zf ′′

7 .

(3)
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Table 1 Commutator table

[V1 ,V2] X1 X2 X3 X4

X1 0 f ′3
∂
∂z + f ′′3

∂
∂u + a1 ∂

∂p
∂
∂t + a2 ∂

∂z + a3 ∂
∂u + a4 ∂

∂p a5 ∂
∂z + a6 ∂

∂u + a7 ∂
∂p

X2 –(f ′3
∂
∂z + f ′′3

∂
∂u + a1 ∂

∂p ) 0 –tf ′3
∂
∂z + a8 ∂

∂u – 2
r2v

∂
∂v +

a9 ∂
∂p

f3 ∂
∂z + f ′3

∂
∂u + 4

r2v
∂
∂v +

a10 ∂
∂p

X3 –( ∂
∂t + a2 ∂

∂z + a3 ∂
∂u +

a4 ∂
∂p )

–(–tf ′3
∂
∂z + a8 ∂

∂u –
2
r2v

∂
∂v + a9 ∂

∂p )

0 a11 ∂
∂z + a12 ∂

∂u + a13 ∂
∂p

X4 –(a5 ∂
∂z + a6 ∂

∂u + a7 ∂
∂p ) –(f3 ∂

∂z + f ′3
∂
∂u + 4

r2v
∂
∂v +

a10 ∂
∂p )

–(a11 ∂
∂z +a12

∂
∂u +a13

∂
∂p ) 0

Table 2 Commutator table after optimization

[V1 ,V2] X1 X2 X3 X4

X1 0 0 X1 0
X2 0 0 –2X2 4X2
X3 –X1 2X2 0 0
X4 0 –4X2 0 0

The specialization process generates a nonlinear system of ODEs:

tf ′′
1 + 2f ′

1 = f ′′
5 ,

–zf ′′′′
5 + 3zf ′′

1 + tzf ′′′′
1 – tf ′

2 – 3f2 + f ′
6 – f1f ′′

5 + f5f ′′
1 = 0,

f ′′
7 + f ′

1 = 0, –zf ′′′
7 + f ′

8 – f1f ′′
7 – zf ′′

1 + 2f2 + f7f ′′
1 = 0,

tf ′′
3 – f ′

3 = 0,

–f3f ′′
5 + tzf ′′′

3 – tf ′
5 = 0, f7f ′′

3 – f3f ′′
7 + 3zf ′′

3 – 2f4 = 0,

–tzf ′′′
7 + tf ′

8 + f7f ′′
5 – f5f ′′

7 – zf ′′
5 + 2f6 + 2f8 – 2zf ′′

7 = 0,

tf ′′
7 + f5 – f ′

7 = 0.

(4)

Through manual calculations this system has been solved, and the results are

f1 =
1
t

, f2 =
1
t3 , f3 = f4 = 0,

f5 = 1, f6 =
1
t2 , f7 = – ln(t), f8 =

– ln(t)
t2 .

(5)

Substituting from (5) into (2), we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X1 = ∂
∂t + 1

t
∂
∂z – 1

t2
∂
∂u + (– 2

t3 z + 1
t3 ) ∂

∂p ,

X2 = 1
r2v

∂
∂v + ( –1

r2 ) ∂
∂p ,

X3 = t ∂
∂t + ∂

∂z + –u ∂
∂u – w ∂

∂w – v ∂
∂v + (–2p + 1

t2 ) ∂
∂p ,

X4 = r ∂
∂r + (z – ln(t)) ∂

∂z + (u – 1
t ) ∂

∂u + w ∂
∂w + v ∂

∂v (2p – Z
t2 – ln(t)

t2 ) ∂
∂p .

(6)

We use these vectors (6) to reproduce the commutator table (Table 2).
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3 Reduction of the independent variables in Euler equations
3.1 Using Lie vector X1

To snaffle the similarity variables, we solve the associated Lagrange system

dt
1

=
dz
1
t

= –
du

1
t2

=
dp

(– 2
t3 z + 1

t3 )
. (7)

The similarity variables of system (1) are

u(r, t, z) = R(y, x) +
1
t

, w(r, t, z) = F(y, x), v(r, t, z) = G(y, x),

p(r, t, z) = H(y, x) +
z
t2 ,

where, y = r, x = z – ln(t).

(8)

Substituting from (8) into (1), we get the following system with two independent variables:

y
∂F
∂y

+ y
∂R
∂x

+ F = 0,

F
∂G
∂y

y + R
∂G
∂x

y + FG = 0,

–F
∂F
∂y

y – R
∂F
∂x

y + G2 – y
∂H
∂y

= 0,

F
∂R
∂y

+ R
∂R
∂x

+
∂H
∂x

= 0.

(9)

System (9) has five Lie vectors as follows:

V1 =
∂

∂x
, V2 =

∂

∂H
, V3 = y

∂

∂y
+ x

∂

∂x
,

V4 =
1

y2G
∂

∂G
–

1
y2

∂

∂H
, V5 = F

∂

∂F
+ G

∂

∂G
+ 2H

∂

∂H
+ R

∂

∂R
.

(10)

3.1.1 Using vector V3

This Lie vector will reduce system (9) to

–ηT
dθ

dη
+ θ

dθ

dη
+

dβ

dη
= 0,

–ηT
dE
dη

+ θ
dE
dη

+ ET = 0,

η
dT
dη

– T –
dθ

dη
= 0,

ηT
dT
dη

– θ
dT
dη

+ E2 + η
dβ

dη
= 0,

(11)
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where the new dependent variables have been obtained from solving the characteristic
equation that the V3 was generated.

E(η) = G(y, x), T(η) = F(y, x), β(η) = H(y, x),

θ (η) = R(y, x), η =
x
y

.
(12)

The solutions for system (11) are as follows:

T(η) = c3η + c4
√

1 + η2,

θ (η) = –c4 sinh–1(η),

E(η) = ∓
√
√
√
√–c3(c4η3 + c3η2

√
1 + η2 + c4η + c4 sinh–1(η)

√
1 + η2 – c2

√
1 + η2)

√
1 + η2

,

β(η) =
–1
2

(
c4 sinh–1(η)

)2

– c4

(

c3

(
1
2
η
√

1 + η2 –
1
2

sinh–1(η)
)

– c2 sinh–1(η) +
1
2

c4η

)

+ c1.

(13)

Back substitution to the original variables using similarity variables in (8) and (12) leads
to

w(r, t, z) = c3
(z – ln(t))

r
+ c4

√

1 +
(

(z – ln(t))
r

)2

,

u(r, t, z) = –c4 sinh–1
(

(z – ln(t))
r

)

, (14)

v(r, t, z)

= ∓
√
√
√
√–c3(c4(δ)3 + c3(δ)2

√
1 + (δ)2 + c4(δ) + c4 sinh–1(δ)

√
1 + (δ)2 – c2

√
1 + (δ)2)

√
1 + (δ)2

,

p(r, t, z) =
–1
2

(
c4 sinh–1(δ)

)2

– c4

(

c3

(
1
2

(δ)
√

1 + (δ)2 –
1
2

sinh–1(δ)
)

– c2 sinh–1(δ) +
1
2

c4(δ)
)

+ c1,

where δ = (z–ln(t))
r .

The solutions have been plotted for different values of time as depicted in Figs. 1–4.
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Figure 1 Velocity component w(r, t, z) at z = 2, c3 = 1, and c4 = 1

Figure 2 Positive case of velocity component v(r, t, z) at z = 2 and c4 = –1
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Figure 3 Velocity component u(r, t, z) at z = 5, c2 = 1, and c4 = –1

Figure 4 The pressure p(r, t, z) at z = 5, c1 = 1, c2 = 1, c3 = 1, and c4 = 1
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3.1.2 Using V = V1 + V4

This vector produces a system of nonlinear ODEs as follows:

η
dT
dη

+ T = 0,

η2T
dθ

dη
– 1 = 0,

–ηT
dT
dη

+ E – η
dβ

dη
= 0,

η2T
dE
dη

+ 2ηTE + 2θ = 0,

(15)

where the new dependent variables are

E(η) =
–2x + y2G(y, x)2

y2 , T(η) = F(y, x), β(η) = H(y, x) +
x
y2 ,

θ (η) = R(y, x) where η = y.
(16)

By solving system (15), new solutions for Euler equations have been produced:

T(η) =
c4

η
,

θ (η) =
ln(η)

c4
+ c3,

E(η) =
–η2 ln(η) + 0.5η2 – c3c4η

2 + c2c2
4

(c4η)2 ,

β(η) = –0.5
(

c2
4

η2 +
(ln(η))2

c2
4

–
ln(η)

c2
4

+ 2
c3 ln(η)

c4
+

c2

η2 – 2c1

)

.

(17)

Using the similarity variables in (8) and (16) leads to back substitution to the original
variables:

w(r, t, z) =
c4

r
,

u(r, t, z) =
ln(r)

c4
+ c3 + t–1,

v(r, t, z) =

√

–r2 ln(r) + 0.5r2 – c3c4r2 + c2c2
4

(c4r)2 + 2
(

(z – ln(t))
r2

)

,

p(r, t, z) = –0.5
(

c2
4

r2 +
(ln(r))2

c2
4

–
ln(r)

c2
4

+ 2
c3 ln(r)

c4
+

c2

r2 – 2c1

)

–
(

(z – ln(t))
r2

)

+ zt–2.

(18)
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3.1.3 Using Lie vector V = V1 + V5

Through the same previous procedure system (9) has been reduced to

T
dθ

dη
+ θ2 + 2β = 0,

η
dT
dη

+ T + ηθ = 0,

ηT
dE
dη

+ ηθE + ET = 0,

–ηT
dT
dη

+ E2 – ηTθ – η
dβ

dη
= 0,

(19)

where the similarity variables are

E(η) = G(y, x), e–x, T(η) = F(y, x), e–x,

β(η) = H(y, x), e–2x, θ (η) = R(y, x), e–x, η = y.
(20)

System (19) has closed form solutions as follows:

T(η) =
–c3e– 0.5Iη2

c1 + c3e
0.5Iη2

c1 + c4e– 0.5Iη2
c1

η
,

θ (η) = –
I(c3e– 0.5Iη2

c1 + c3e
0.5Iη2

c1 – c4e– 0.5Iη2
c1 )

c1
,

E(η) = ±

√

2c2
3 + 2c3c4e– Iη2

c1 – 2c3c4 – c2
3e– Iη2

c1 – c2
3e

Iη2
c1 – c2

4e– Iη2
c1

η
,

β(η) =
2c3(c3 – c4)

c2
1

.

(21)

Back substitution using the similarity variables in (20) and (8) is as follows:

w(r, t, z) =
–c3e– 0.5Ir2

c1 + c3e
0.5Ir2

c1 + c4e– 0.5Ir2
c1

r
e(z–ln(t)),

u(r, t, z) = –
I(c3e– 0.5Iη2

c1 + c3e
0.5Iη2

c1 – c4e– 0.5Iη2
c1 )

c1
e(z–ln(t)) + t–1,

v(r, t, z) = ±
√

2c2
3 + 2c3c4e– Ir2

c1 – 2c3c4 – c2
3e– Ir2

c1 – c2
3e

Ir2
c1 – c2

4e– Ir2
c1

re–(z–ln(t)) ,

p(r, t, z) =
2c3(c3 – c4)

c2
1

e(z–ln(t)) + zt–2.

(22)

The solutions have been plotted in Figs. 5–8.
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Figure 5 Velocity component w(r, t, z) at z = 2, c1 = 1, c3 = 1, and c4 = 2

Figure 6 Positive case velocity component v(r, t, z) at z = 2, c1 = 1, c3 = I, and c4 = 2I
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Figure 7 Velocity component u(r, t, z) at z = 2, c1 = 1, c3 = 1, and c4 = 2

Figure 8 The pressure p(r, t, z) at c1 = 1, c3 = 1, and c4 = 2
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3.2 Using Lie vector X = X3 + X4

By solving the subsidiary equation, we explore the similarity variables

u(r, t, z) = R(y, x) +
1
t

, w(r, t, z) = F(y, x), v(r, t, z) = G(y, x),

p(r, t, z) = H(y, x) +
z
t2 ,

where y =
t
r

, x =
z – ln(t)

r
,

(23)

which reduce system (1) to

–
∂G
∂y

+ xF
∂G
∂x

+ yF
∂G
∂y

– R
∂G
∂x

– FG = 0,

x
∂F
∂x

+ y
∂F
∂y

– F +
∂R
∂x

= 0,

–
∂R
∂y

+ xF
∂R
∂x

+ yF
∂R
∂y

– R
∂R
∂x

–
∂H
∂x

= 0,

–
∂F
∂y

+ xF
∂F
∂x

+ yF
∂F
∂y

– R
∂F
∂x

+ G2 +
∂H
∂x

x +
∂H
∂y

y = 0.

(24)

This system possesses three Lie vectors as follows:

V1 =
∂

∂H
, V2 = y

∂

∂x
+

∂

∂R
, V3 = y

∂

∂y
– F

∂

∂F
– G

∂

∂G
– 2H

∂

∂H
– R

∂

∂R
. (25)

• Using V = V1 + V2

Following the same procedure system (24) will be reduced to

–
dE
dη

+ ηT
dE
dη

– ET = 0,

–
dT
dη

+ ηT
dT
dη

+ E2 + η
dβ

dη
= 0,

–η
dθ

dη
– θ + η2T

dθ

dη
– 1 = 0,

η2 dT
dη

– ηT – 1 = 0

(26)

with new variables

E(η) = G(y, x), T(η) = F(y, x), β(η) = –H(y, x) +
x
y

,

θ (η) = R(y, x) –
x
y

, η = y.
(27)
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By solving system (26), we have

T(η) =
–1
2η

,

θ (η) = –1 +
c3

η2/3 ,

E(η) = c2η
2/3,

β(η) =
–3c2

2
2

η2/3 –
3

8η2 + c1.

(28)

Using the similarity variables in (23) and (27) authorizes us to back substitution to the
original variables

w(r, t, z) =
–r
2t

,

u(r, t, z) = –1 +
c3

( t
r ) 2

3
–

z – ln(t)
t

+ t–1,

v(r, t, z) = c2

(
t
r

)2/3

,

p(r, t, z) =
–3c2

2
2

(
t
r

)2/3

–
3

8( t
r )2 –

z – ln(t)
t

+ c1 + zt–2.

(29)

The results have been plotted as shown in Figs. 9–12.

Figure 9 Velocity component w(r, t, z)
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Figure 10 Velocity component v(r, t, z) at c2 = 1

Figure 11 Velocity component u(r, t, z) at z = 5 and c3 = –1

4 Conclusions
We deduce an infinite number of Lie infinitesimals, and through commutative product
properties, we minimize these vectors to four Lie vectors. Through some combinations
between these vectors, we explore exact solutions for Euler equations. The results illus-
trate that the velocity components decrease with increasing the spatial or temporal coordi-
nates. The pressure may be appearing as a negative value, and this is reasonable according
to the human pressure in the case of the tapered artery [6].
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Figure 12 The pressure p(r, t, z) at z = 1, c1 = 1, and c4 = 1
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