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Abstract
In this article, we construct a family of iterative methods for finding a single root of
nonlinear equation and then generalize this family of iterative methods for
determining all roots of nonlinear equations simultaneously. Further we extend this
family of root estimating methods for solving a system of nonlinear equations.
Convergence analysis shows that the order of convergence is 3 in case of the single
root finding method as well as for the system of nonlinear equations and is 5 for
simultaneous determination of all distinct and multiple roots of a nonlinear equation.
The computational cost, basin of attraction, efficiency, log of residual and numerical
test examples show that the newly constructed methods are more efficient as
compared to the existing methods in literature.
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1 Introduction
To solve the nonlinear equation

f (x) = 0 (1)

is the oldest problem of science in general and in mathematics in particular. These non-
linear equations have diverse applications in many areas of science and engineering. In
general, to find the roots of (1), we look towards iterative schemes, which can be further
classified as to approximate a single root and all roots of (1). There exists another class of
iterative methods in literature which solves nonlinear systems. In this article, we are going
to work on all these three types of iterative methods. A lot of iterative methods for finding
roots of nonlinear equations and their system of different convergence order already exist
in the literature (see [1–12]). The aforementioned methods are used to approximate one
root at a time. But mathematician are also interested in finding all roots of (1) simulta-
neously. This is due to the fact that simultaneous iterative methods are very popular due
to their wider region of convergence, are more stable as compared to single root finding
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methods, and implemented for parallel computing as well. More details on simultaneous
determination of all roots can be found in [13–25] and the references cited therein.

The main aim of this paper to construct a family of optimal third order iterative meth-
ods and then convert them into simultaneous iterative methods for finding all distinct as
well as multiple roots of nonlinear equation (1). We further extend this family of iterative
methods for solving a system of nonlinear equations. Basins of attractions of single roots
finding methods are also given to show the convergence behavior of iterative methods.

2 Constructions of a family of methods for single root and convergence
analysis

Here, we present some well-known existing methods of third order iterative methods.
Singh et al. [4] presented the following optimal third order method (abbreviated as E1):

⎧
⎨

⎩

y(k) = x(k) – 2
3 ( f (x(k))

f ′(x(k)) ),

z(k) = x(k) – 4f (x(k))
f ′(x(k))+3f ′(y(k)) .

Huen et al. [26] gave the third order optimal method as follows (abbreviated as E2):

⎧
⎨

⎩

y(k) = x(k) – 2
3 ( f (x(k))

f ′(x(k)) ),

z(k) = x(k) – f (x(k))
4 ( 1

f ′(x(k)) + 3
f ′(y(k)) ).

Amat et al. [5] in (2007) gave the following third order optimal method (abbreviated as
E3):

⎧
⎨

⎩

y(k) = x(k) – ( f (x(k))
f ′(x(k)) ),

z(k) = y(k) – ( f (y(k))
f ′(x(k)) ).

Chun et al. [27] gave the third order optimal method as follows (abbreviated as E4):

⎧
⎨

⎩

y(k) = x(k) – ( f (x(k))
f ′(x(k)) ),

z(k) = x(k) – 1
2 (3 – f ′(y(k))

f ′(x(k)) )( f (x(k))
f ′(x(k)) ).

Kou et al. [28] gave the third order optimal method as follows (abbreviated as E5):

⎧
⎨

⎩

y(k) = x(k) + ( f (x(k))
f ′(x(k)) ),

z(k) = y(k) – ( f (y(k))
f ′(x(k)) ).

Chun et al. [27] gave the following third order optimal method (abbreviated as E6):

⎧
⎨

⎩

y(k) = x(k) – ( f (x(k))
f ′(x(k)) ),

z(k) = x(k) – f (x(k))(2+3(f ′(x(k)))2–f ′(x(k))f ′(y(k)))
f ′(x(k))+2(f ′(x(k)))3+f ′(y(k)) .
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Here, we propose the following families of iterative methods (abbreviated as Q1):

⎧
⎨

⎩

y(k) = x(k) – ( f (x(k))
f ′(x(k)) ),

z(k) = y(k) – ( f ′(x(k))–f ′(y(k))
αf ′(y(k))+(2–α)f ′(x(k)) )( f (x(k))

f ′(x(k)) ),
(2)

where α ∈ R. For iteration schemes (2), we have the following convergence theorem by
using CAS Maple 18 and the error relation of the iterative schemes defined in (2).

Theorem 1 Let ζ ∈ I be a simple root of a sufficiently differential function f : I ⊆ R −→ R
in an open interval I. If x0 is sufficiently close to ζ , then the convergence order of the family
of iterative methods (2) is three and the error equation is given by

e(k+1) =
(

2c2
2 +

1
2

c3 – αc2
2

)
(
e(k))3 + O

((
e(k))4), (3)

where cm = f m(ζ )
m!f ′(ζ ) , m ≥ 2.

Proof Let ζ be a simple root of f and x(k) = ζ + e(k). By Taylor’s series expansion of f (x(k))
around x(k) = ζ , taking f (ζ ) = 0, we get

f
(
x(k)) = f ′(ζ )

(
e(k) + c2

(
e(k))2 + c3

(
e(k))3 + c4

(
e(k))4 + O

(
e(k))5) (4)

and

f ′(x(k)) = f ′(ζ )(1 + 2c2
(
e(k)) + 3c3

(
e(k))2 + 4c4

(
e(k))3 + O

((
e(k))4). (5)

Dividing (4) by (5), we have

f (x(k))
f ′(x(k))

= e(k) – c2
(
e(k))2 +

(
2c2

2 – 2c3
)(

e(k))3 + O
((

e(k))4) (6)

and

y(k) = c2
(
e(k))2 +

(
–2c2

2 + 2c3
)(

e(k))3 + · · · , (7)

f ′(y(k)) = 1 + 2c2
2
(
e(k))2 + 2c2

(
–2c2

2 + 2c3
)(

e(k))3 + · · · . (8)

We have

f ′(x(k)) – f ′(y(k))
αf ′(y(k)) + (2 – α)f ′(x(k))

= –c2
(
e(k))2 +

(

4c2
2 –

3
2

c3 – αc2
2

)
(
e(k))3 + · · · . (9)

From the second step of (2), we have

e(k+1) = y(k) –
f ′(x(k)) – f ′(y(k))

αf ′(y(k)) + (2 – α)f ′(x(k))
f (x(k))
f ′(x(k))

, (10)

e(k+1) =
(

2c2
2 +

1
2

c3 – αc2
2

)
(
e(k))3 + O

((
e(k))4). (11)

Hence this proves third order convergence. �
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3 Generalizations to simultaneous methods
Suppose that nonlinear equation (1) has n roots. Then f (x) and f ′(x) can be approximated
as

f (x) =
n∏

j=1

(x – xj) and f ′(x) =
n∑

k=1

n∏

j �=k
j=1

(x – xj). (12)

This implies

f ′(x)
f (x)

=
n∑

j=1

(
1

(x – xj)

)

=
1

1
x–xi

–
∑n

j=1
j �=i

( 1
(x–xj)

)
. (13)

This gives the Albert Ehrlich method [29]

y(k+1)
i = x(k)

i –
1

1
N(x(k)

i )
–
∑n

j=1
j �=i

( 1
(x(k)

i –x(k)
j )

)
, (14)

where N(xi) = f (x(k)
i )

f ′(x(k)
i )

and i, j = 1, 2, 3, . . . , n. Now from (13), an approximation of f (x(k)
i )

f ′(x(k)
i )

is

formed by replacing x(k)
j with z(k)

j as follows:

f (x(k)
i )

f ′(x(k)
i )

=
1

1
N(x(k)

i )
–
∑n

j=1
j �=i

( 1
(x(k)

i –z(k)
j )

)
. (15)

Using (15) in (14), we have

y(k+1)
i = x(k)

i –
1

1
N(x(k)

i )
–
∑n

j=1
j �=i

( 1
(x(k)

i –z(k)
j )

)
. (16)

In case of multiple roots,

y(k+1)
i = x(k)

i –
σi

1
N(x(k)

i )
–
∑n

j=1
j �=i

( σj

(x(k)
i –z(k)

j )
)

(i, j = 1, 2, 3, . . . , n), (17)

where z(k)
j = y(k)

j – (
f ′(x(k)

j )–f ′(y(k)
j )

αf ′(y(k)
j )+(2–α)f ′(x(k)

j )
)(

f (x(k)
j )

f ′(x(k)
j )

) and y(k)
j = x(k)

j – (
f (x(k)

j )

f ′(x(k)
j )

). Thus, we get the fol-

lowing new family of simultaneous iterative methods for extracting all distinct as well as
multiple roots of nonlinear equation (1) abbreviated as SM1. Zhang et al. [30] presented
the following fifth order simultaneous methods:

x(k+1)
i = x(k)

i –
2wi(x(k)

i )

1 +
∑n

j �=i
j=1

wj(x
(k)
j )

x(k)
i –x(k)

j
+

√
√
√
√
√
√
√
√

(1 +
∑n

j �=i
j=1

wj(x
(k)
j )

x(k)
i –x(k)

j
)2 + 4wi(x(k)

i )

∑n
j �=i
j=1

wj(x
(k)
i )

(x(k)
i –x(k)

j )(x(k)
i –wi(x

(k)
i )–x(k)

j )

. (18)
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3.1 Convergence analysis
In this section, the convergence analysis of a family of simultaneous methods (17) is given
in a form of the following theorem. Obviously, convergence for method (17) will follow
from the convergence of method (SM1) from theorem (2) when the multiplicities of the
roots are simple.

Theorem 2 (2) Let ζ1, . . . , ζn be the n number of simple roots with multiplicities σ1, . . . ,σn of
nonlinear equation (1). If x(0)

1 , . . . , x(0)
n is the initial approximations of the roots respectively

and sufficiently close to actual roots, the order of convergence of method (SM1) equals five.

Proof Let

εi = x(k)
i – ζi and (19)

ε′
i = y(k+1)

i – ζi (20)

be the errors in x(k)
i and y(k+1)

i approximations respectively. Considering (SM1), we have

y(k+1)
i = x(k)

i –
σi

σi
N(x(k)

i )
–
∑n

j �=i
j=1

( σj

(x(k)
i –z(k)

j )
)
, (21)

where

N
(
x(k)

i
)

=
(

f (x(k)
i )

f ′(x(k)
i )

)

. (22)

Then, obviously, for distinct roots we have

1
N(x(k)

i )
=
(

f ′(x(k)
i )

f (x(k)
i )

)

=
n∑

j=1

(
1

(x(k)
i – ζj)

)

=
1

(x(k)
i – ζi)

+
n∑

j �=i
j=1

(
1

(x(k)
i – ζj)

)

. (23)

Thus, for multiple roots, we have from (17)

y(k+1)
i = x(k)

i –
σi

σi
(x(k)

i –ζi)
+
∑n

j �=i
j=1

( σj

(x(k)
i –ζj)

) –
∑n

j �=i
j=1

( σj

(x(k)
i –z(k)

j )
)
, (24)

y(k+1)
i – ζi = x(k)

i – ζi –
σi

σi
(x(k)

i –ζi)
+
∑n

j �=i
j=1

(
σj(x

(k)
i –z(k)

j –xi+ζj)

(x(k)
i –ζj)(x

(k)
i –z(k)

j )
)
, (25)

ε′
i = εi –

σi

σi
εi

+
∑n

j �=i
j=1

(
–σj(z

(k)
j –ζj)

(x(k)
i –ζj)(x

(k)
i –z(k)

j )
)
, (26)

= εi –
σiεi

σi + εi
∑n

j �=i
j=1

(
–σj(z

(k)
j –ζj)

(x(k)
i –ζj)(x

(k)
i –z(k)

j )
)
, (27)

= εi –
σi.εi

σi + εi
∑n

j �=i
j=1

(Eiε
4
j )

, (28)

where z(k)
j – ζj = ε3

j from (3) and Ei = ( –σj

(x(k)
i –ζj)(x

(k)
i –z(k)

j )
).
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Thus,

ε′
i =

ε2
i
∑n

j �=i
j=1

(Eiε
3
j )

σi + εi
∑n

j �=i
j=1

(Eiε
3
j )

. (29)

If it is assumed that absolute values of all errors εj (j = 1, 2, 3, . . .) are of the same order as,
say |εj| = O|ε|, then from (29) we have

ε′
i = O(εi)5. (30)

Hence the theorem. �

4 Extension to a system of nonlinear equations
In this work, we consider the following system of nonlinear equations:

F(x) =0, (31)

where in F(x) = (f1(x), f2(x), . . . , fn(x))T and the functions f1(x), f2(x), . . . , fn(x) are the coor-
dinate functions of [31].

There are many approaches to solving nonlinear system (31). One of the famous iterative
methods is Newton–Raphson method for solving the system of nonlinear equations

y(k) = x(k) – F′(x(k))–1F
(
x(k)),

where

F(x) = F(x1, . . . ,xn) =

⎛

⎜
⎜
⎜
⎜
⎝

f1(x1, . . . ,xn)
f2(x1, . . . ,xn)

...
fn(x1, . . . ,xn)

⎞

⎟
⎟
⎟
⎟
⎠

and

F′(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

...
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (32)

Here, we present some well-known third order iterative methods for solving the system
of nonlinear equations.

Darvisti et al. [32] presented the following third order iterative method (Abbreviated as
EE1):

y(k) = x(k) – F′(x(k))–1F
(
x(k)),

z(k) = y(k) – F′(x(k))–1F
(
y(k)).
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Trapezoidal Newton method [33] of third order was presented as follows (Abbreviated
asEE2):

y(k) = x(k) – F′(x(k))–1F
(
x(k)),

z(k) = x(k) – 2
[
F′(x(k)) + F′(y(k))]–1F

(
x(k)).

Khirallah et al. [34] presented the following third order iterative method (Abbreviated as
EE3):

y(k) = x(k) –
2
3

F′(x(k))–1F
(
x(k)),

z(k) = x(k) –
[

F′(x(k))–1 +
3
2

F′(y(k))–1
]

F
(
x(k)) + 3

[
F′(x(k)) + F′(y(k))]–1F

(
x(k)).

Here, we extend the family of iterative methods (2) for solving the system of nonlinear
equations

y(k) = x(k) – F′(x(k))–1F
(
x(k)), (33)

z(k) = y(k) –
[(

αF′(y(k)) + (2 – α)F′(x(k)))–1(F′(x(k)) – F′(y(k)))]F′(x(k))–1F
(
x(k)),

where α ∈ R. We abbreviate this family of iterative methods for approximating roots of
the system of nonlinear equations by QQ1.

Theorem 3 Let the function F : E ⊆ R
n → R

n be sufficiently Fréchet differentiable on an
open set E containing the root ζ of F(x(k)) = 0. If the initial estimation x(0) is close to ζ , then
the convergence order of the method QQ1 is at least three, provided that α ∈ R.

Proof Let e(k) = x(k) – ζ , e~(k) = y(k) – ζ , and ê(k) = z(k) – ζ be the errors in developing Taylor
series of F(x(k)) in the neighborhood of ζ assuming that F′(r)–1 exists, we write

F
(
x(k)) = F

(
x(k)) + F′(x(k))(x – x(k)) +

1
2!

F′′(x(k))(x – x(k))2 + · · · (34)

and

F(x) = 0, (35)

F
(
x(k))= F′(x(k)){e(k) + A2

(
e(k))2 + A3

(
e(k))3 + · · · + A6

(
e(k))6} +

∥
∥O
(
e(k))7∥∥, (36)

where

Am =
1

m!
F(m)(x(k))
F′(x(k))

, m = 2, 3, . . .

[
F′(x(k))]–1F

(
x(k)) = e(k) – A2

(
e(k))2 + (2A2 + 2A3)

(
e(k))3 +

∥
∥O
(
e(k))4∥∥, (37)

e~(k) = y(k) – ζ = A2
(
e(k))2 +

(
–2A2

2 + 2A3
)(

e(k))3 +
∥
∥O
(
e(k))4∥∥. (38)
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Expanding F′(y(k)) about ζ and using (38), we obtain

F′(y(k)) = 1 + 2A2
(
e~(k))2 + 2A2

(
–2A2

2 + 2A3
)(

e~(k))3 +
∥
∥O
(
e~(k))4∥∥, (39)

[(
αF′(y(k) + (2 – α)F′(x(k))))–1(F′(x(k)) – F′(y(k)))] (40)

= –A2
(
e~(k))2 +

(

4A2
2 –

3
2

A3 – αA2
2

)
(
e~(k))3 +

∥
∥O
(
e~(k))4∥∥.

Using equations (37) and (39) in the second step of (33), we get

ê(k) = z(k) – ζ =
(

2A2
2 +

1
2

A3 – αA2
2

)
(
e(k))3 +

∥
∥O
(
e(k))4∥∥. (41)

Hence, it proves the theorem. �

5 Complex dynamical study of families of iterative methods
Here, we discuss the dynamical study of iterative methods (Q1, E1–E6). We investigate the
region from where we take the initial estimates to achieve the roots of nonlinear equation.
Actually, we numerically approximate the domain of attractions of the roots as a qualita-
tive measure, how the iterative methods depend on the choice of initial estimations. To
answer these questions on the dynamical behavior of the iterative methods, we investigate
the dynamics of method Q1 and compare it with E1–E6. For more details on the dynamical
behavior of the iterative methods, one can consult [3, 35, 36]. Taking a rational function
�f : C −→ C, where C denotes the complex plane, the orbit x0 ∈ C defines a set such as
orb(x) = {x0,�f (x0),�2

f (x0), . . . ,�m
f (x0), . . .}. The convergence orb(x) → x∗ is understood in

the sense if lim
x→∞Rk(x) = x∗ exists. A point x0 ∈ C is known as attracting if |Rk′ (x)| < 1. An

attracting point x0 ∈ C defines the basin of attraction as the set of starting points whose
orbit tends to x∗. For the dynamical and graphically point of view, we take 2000 × 2000
grid of square [–2.5, 2.5]2 ∈ C. To each root of (1), we assign a color to which the corre-
sponding orbit of the iterative method starts and converges to a fixed point. Take color
map as Jet and Hot respectively. We use |xi+1-xi| < 10–3 and |f (xi)| < 10–3 as stopping cri-
teria, and the maximum number of iterations is taken as 20. We mark a dark blue point
when using stopping criteria |xi+1-xi| < 10–3 and dark black point when using |f (xi)| < 10–3.
Different color is used for different roots. Iterative methods have different basins of attrac-
tion distinguished by their colors. We obtain basins of attractions for the following three
test functions f1(x) = x4 – ix2 + 1, f2(x) = (1 + 2i)x5 + 1 – 2i, and f3(x) = x6 – ix3 + 1. The
exact roots of f1(x), f2(x), and f3(x) are given in Table 1. Brightness in color means a lower
number of iterations steps.

Table 1 Exact roots of functions f1(x), f2(x), and f3(x)

Exact-roots f1(x) = x4 – ix2 + 1 f2(x) = (1 + 2i)x5 + 1 – 2i f3(x) = x6 – ix3 + 1

1 –8.9945 – 8.9945i –9.0353 + 4.2852i –1.0167 + 0.5870i
2 –8.9945 + 8.9945i –6.8676 – 7.2689i 0 – 1.1740i
3 –5.5589 + 5.5589i 1.2835 + 9.9173i 1.0167 + 0.5870i
4 5.5589 – 5589i 4.7909 – 8.7776i –0.7377 – 0.4259i
5 – 9.8285 + 1.844i 0 + 0.8518i
6 – – 0.7377 – 0.4259i
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Figure 1 Figure 1(a), (e), (g), (i), (k), (m), (o) shows basins of attraction of iterative methods Q1, E1–E6 for the
nonlinear function f1(x) = x4 – ix2 + 1 using |x(k+1)-x(k)| < 10–3. Figure 1(b), (f), (h), (j), (l), (n), (p) shows basins of
attraction of iterative methods Q1, E1–E6 using |f (x(k))| < 10–3. Figure 1(c), (d) shows the basin of attraction for
α = –0.000001. In Fig. 1(a)–(p), brightness of color in basins of Q1 shows a lower number of iterations for
convergence of iterative methods as compared to methods E1–E6.

6 Numerical results
Here, some numerical examples are considered in order to demonstrate the performance
of our family of one-step third order single root finding methods (Q1), fifth order simul-
taneous methods (SM1), and third order family of iterative methods for solving the non-
linear system of equations respectively. We compared our family of single root finding
methods (Q1) with third order iterative methods (E1–E6). The family of simultaneous
methods (SM1) of order five is compared with Zhang et al. method [30] of the same or-
der (abbreviated as ZPH method). Iterative methods for finding roots of nonlinear system
(QQ1) are compared with EE1–EE3 respectively. All the computations are performed us-
ing CAS Maple 18 with 2500 (64 digits floating point arithmetic in case of simultaneous
methods) significant digits with stopping criteria as follows:

(i) e(k)
i =

∣
∣f
(
x(k)

i
)∣
∣ <∈, (ii) e(k)

i =
∣
∣x(k)

i – α
∣
∣ <∈,

(iii) e(k) =
∥
∥Fx(k)∥∥ <∈, (iv) e(k) =

∥
∥x(k+1) – x(k)∥∥ <∈,

where ei and e(k) represent the absolute error. We take ∈= 10–600 for the single root finding
method, ∈= 10–30 for simultaneous determination of all roots of nonlinear equation (1),
and ∈= 10–15 for approximating roots of nonlinear system (31).

Numerical test examples from [32, 34, 37, 38] are provided in Tables 2–8. In Table 3
stopping criterion (i) is used, in Table 2 stopping criteria (i) and (ii) both are used, while
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Figure 2 Figure 2(a), (e), (g), (i), (k), (m), (o) shows basins of attraction of iterative methods Q1, E–E6 for the
nonlinear equation f2(x) = (1 + 2i)x5 + 1 – 2i using |x(k+1)-x(k)| < 10–3. Figure 2(b), (f), (h), (j), (l), (n), (p) shows
basins of attraction of iterative methods Q1, E1–E6 using |f (x(k))| < 10–3. Figure 2(c), (d) shows the basin of
attraction for α = –0.000001. In Fig. 2(a)–(p), brightness of color in basins of Q1 shows a lower number of
iterations for convergence of iterative method as compared to methods E1–E6.

in Tables 4–8 stopping criteria (iii) and (iv) both are used. In all Tables CO represents
the convergence order, n represents the number of iterations, ρ represents local compu-
tational order of convergence [39], and CPU represents computational time in seconds.
We observe that numerical results of the family of iterative methods (in case of single Q1)
as well as simultaneous determination (SM1 of all roots) and for approximating roots of
system of nonlinear equations QQ1 are better than E1–E6, ZPH, and EE1–EE3 respec-
tively on the same number of iterations. Figures 4(a)–(b)–6(a), (b) represent the resid-
ual fall for the iterative methods (Q1, SM1, QQ1, ZPH, E1–E6, EE1–EE3). Figures 4(a)
and 4(b) show residual fall for single (Q1, E1–E6) and simultaneous determination of all
roots (SM1, ZPH), while Figs. 5(a), (b) and 6(a), (b) show residual fall for (QQ1, EE1–
EE3) respectively. Tables 2–8 and Figs. 1–6 clearly show the dominance convergence be-
havior of our family of iterative methods (Q1, SM1, QQ1) over E1–E6, ZPH, and EE1–
EE3.

7 Application in engineering
In this section, we discuss application in engineering.

Example 1 (Beam designing model [38] (1-dimensional problem)) An engineer considers
a problem of embedment x of a sheet-pile wall resulting in a nonlinear equation given
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Figure 3 Figure 3(a), (e), (g), (i), (k), (m), (o) shows basins of attraction of iterative methods Q1, E1–E6 for the
nonlinear equation f3(x) = x6 – ix3 + 1 using |x(k+1)-x(k)| < 10–3. Figure 3(b), (f), (h), (j), (l), (n), (p) shows basins of
attraction of iterative methods Q1, E1–E6 using |f (x(k))| < 10–3. Figure 3(c), (d) shows the basin of attraction for
α = –0.000001. In Fig. 3(a)–(p), brightness of color in basins of Q1 shows a lower number of iterations for
convergence of iterative method as compared to methods E1–E6.

Table 2 Comparison of optimal 3rd order methods

Method |x(6)i – α| |f(6)i (xi)| CPU ρ

Single root finding iterative methods

f4(x) = x3+2.87x2–10.28
4.62 – x, x0 = 2.5, CO = 8, α = 16

7
Q1 2.7e–32 3.9e–42 0.032 2.99
E1 1.2e–25 1.8e–34 0.047 2.97
E2 3.5e–26 5.1e–35 0.047 3.00
E3 2.7e–33 1.4e–42 0.034 3.00
E4 5.2e–17 7.6e–26 0.046 2.99
E5 1.1e–33 3.4e–42 0.032 3.00
E6 1.0e–24 1.4e–33 0.045 2.98

as

f4(x) =
x3 + 2.87x2 – 10.28

4.62
– x. (42)

The exact roots of (42) are ζ1 = 2.0021, ζ2 = –3.3304, ζ3 = –1.5417.
The initial estimates for f4(x) are taken as:

(0)
x1 = 2.5,

(0)
x2 = –7.4641,

(0)
x3 = –0.5359.
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Table 3 Simultaneous finding of all roots of f4(x)

f4(x) = x3+2.87x2–10.28
4.62 – x, α = –1

100,000 .

ζ1 = 2.0021, ζ2 = –3.3304, ζ3 = –1.5417.
(0)
x1,2 = 2.5,

(0)
x3 = –7.4641,

(0)
x 4 = –0.5359

Method CO CPU γ n e1 e2 e3

ZPH 5 0.015 γ = 1 5 1.2e–2 1.1e–1 1.2e–2
SM1 5 0.015 γ = 1 5 8.8e–35 1.9e–32 6.4e–32

Figure 4 Figures 4(a)–(b), 4(a) show residual graph of single roots finding method Q1, E1–E6 and 4(b) for
simultaneous determination of all roots of f4(x) using ZPH and SM1 respectively.

Example 2 (2-dimensional problem [32, 37]) In case of a 2-dimensional system, we con-
sider the following systems of nonlinear equations:

F1(X) =

⎧
⎨

⎩

f1(x1, x2) = x2
1 – 10x1 + x2

2 + 8,

f2(x1, x2) = x1x2
2 + x1 – 10x2 + 8,

X0 = (0.6, 1.4)T ,

F2(X) =

⎧
⎨

⎩

f1(x1, x2) = x2
1 – 2x1 – x2 + 0.5,

f2(x1, x2) = x2
1 + 4x2

2 – 1,
X0, = (1.5, 1.0)T .

Example 3 (3-dimensional problems [34]) In case of a 3-dimensional system, we consider
the following system of nonlinear equations:

F3(X) =

⎧
⎪⎪⎨

⎪⎪⎩

f1(x1, x2, x3) = 15x1 + x2
2 – 4x3 – 13,

f2(x1, x2, x3) = x2
1 + 10x2 – e–x3 – 11,

f3(x1, x2, x3) = x2
2 – 25x3 + 22,

X = (0.8, 1, 0.8)T ,

F4(X) =

⎧
⎪⎪⎨

⎪⎪⎩

f1(x1, x2, x3) = x2
1 + x2

2 – x2
3 – 1,

f2(x1, x2, x3) = 2x2
1 + 10x2

2 – 4x31,

f3(x1, x2, x3) = 3x2
1 – 4x2

2 – x2
3,

X = (0.5, 0.5, 0.5)T .



Shams et al. Advances in Difference Equations        (2021) 2021:480 Page 13 of 18

Table 4 Comparison of optimal 3rd order methods

Method n CPU ρ ‖x(k+1) – x(k)‖ ‖Fx(k)‖
Solving a system of nonlinear equations F1(X) and F2(X)
F1(X); (1.5,1.5)T ; X0 = (0.6,1.4)T , α = –1

100,000
QQ1 3 0.012 3.0 7.9e–17 9.7e–17
EE1 3 0.031 2.9 3.8e–9 1.4e–9
EE2 3 0.015 3.0 5.9e–17 2.3e–16
EE3 3 0.562 3.0 2.1e–15 2.1e–15

F2(X); X0 = (1.5,1.0)T , α = –1
100,000

QQ1 4 0.017 3.1 1.2e–21 0.1e–21
EE1 4 0.016 2.9 8.3e–17 1.1e–18
EE2 4 0.016 3.0 1.8e–16 1.0e–17
EE3 4 0.016 3.0 5.3e–17 5.3e–17

Figure 5 Figure 5(a)–(b) shows a residual graph of iterative methods QQ1, EE1–EE3 for solving F1(X) and
F2(X) respectively.

Table 5 Comparison of optimal 3rd order methods

Method n CPU ρ ‖x(k+1) – x(k)‖ ‖Fx(k)‖
Solving a system of nonlinear equations F3(X) and F4(X)
F3(X); (1.5,1.5)T ; X0 = (0.8,1,0.8)T , α = –1

100,000
QQ1 3 0.015 3.3 1.7e–31 5.1e–32
EE1 3 0.016 3.0 1.2e–17 1.1e–17
EE2 3 0.017 2.9 2.3e–16 2.1e–17
EE3 3 0.017 3.0 2.5e–17 2.1e–17

F4(X); X0 = (0.5,0.5,0.5)T , α = –1
100,000

QQ1 3 0.013 3.0 9.9e–11 1.7e–21
EE1 3 0.031 2.7 1.1e–7 4.0e–18
EE2 3 0.016 3.0 2.3e–16 8.1e–18
EE3 3 0.016 2.9 9.0e–11 2.3e–17

Example 4 (N-dimensional problem [34]) Consider the following system of nonlinear
equations:

F5 : fi = ex2
i – 1, i = 1, 2, 3, . . . , m,
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Figure 6 Figure 6(a)–(b) shows a residual graph of iterative methods QQ1, EE1–EE3 for solving F3(X) and
F4(X) respectively.

Table 6 Comparison of optimal 3rd order methods

F5 F6 F5 F6 F5 F6

Number of iterations
Method m = 50 m = 75 m = 100
QQ1 4 4 4 4 4 4
EE1 5 5 5 5 5 5
EE2 4 4 4 4 4 4
EE3 4 4 4 4 4 4

CPU Time
Method m = 50 m = 75 m = 100
QQ1 0.136 0.234 0.253 0.250 0.406 0.501
EE1 0.125 0.140 0.234 0.250 0.406 0.407
EE2 0.344 0.109 0.172 0.219 0.109 0.391
EE3 0.109 0.157 0.265 0.235 0.532 0.500

the exact solution of this system is X∗ = [0, 0, 0, . . . , 0]T , and we take X0 = [0.5, 0.5, 0.5, . . . ,
0.5]T as initial estimates. Table shows the results of this system of nonlinear equations.

Example 5 (N-dimensional problem) Consider the following system of nonlinear equa-
tions:

F6 : fi = x2
i – cos(xi – 1), i = 1, 2, 3, . . . , m,

the exact solution of this system is X∗ = [1, 1, 1, . . . , 1]T , and we take X0 = [2, 2, 2, . . . , 2]T as
initial estimates. Table shows the results of this system of nonlinear equations.

7.1 Application to differential equation
Example 6 (Nonlinear BVP) Here, we solve a nonlinear BVP defined as

y′′ =
1
8
(
32 + 2x3 – yy′), 1 ≤ x ≤ 3, (43)

y(1) = 17; y(3) =
43
3

.
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Table 7 Domain discretization for BVP

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

xi 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Using the procedure of finite difference method, we solve this nonlinear BVP. By taking
h = 0.1, we discretize the interval [1, 3] into N + 1 = 19 + 1 = 20 equal subintervals (see
Table 7). As xi = a + h gives values of xi, where a = 1.

We use the central difference formula for both y′′(xi) and y′(xi) derived in Burden and
Faires in [40] as follows:

y′′(xi) =
1
h2

(
y(xi+1) – 2y(xi) + y(xi–1)

)
–

h2

12
y(iv)(ξ ) for some ξ ∈ (xi–1, xi+1), (44)

y′(xi) =
1

2h
(
y(xi+1) – y(xi–1)

)
–

h2

6
y(iii)(η) for some η ∈ (xi–1, xi+1). (45)

Putting values of y′′(xi) and y′(xi) in (1), we obtain the following tridiagonal system of
nonlinear equations:

F7(X) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1 = 2x1 – x2 + 0.01(4 + 0.33275 + x1(x2–17)
1.6 ) – 17

f2 = –x1 + 2x2 – x3 + 0.01(4 + 0.432 + x2(x3–x1)
1.6 )

f3 = –x2 + 2x3 – x4 + 0.01(4 + 0.5495 + x3(x4–x2)
1.6 )

f4 = –x3 + 2x4 – x5 + 0.01(4 + 0.686 + x4(x5–x3)
1.6 )

f5 = –x4 + 2x5 – x6 + 0.01(4 + 0.84375 + x5(x6–x4)
1.6 )

f6 = –x5 + 2x6 – x7 + 0.01(4 + 1.024 + x6(x7–x5)
1.6 )

f7 = –x6 + 2x7 – x8 + 0.01(4 + 1.22825 + x7(x8–x6)
1.6 )

f8 = –x7 + 2x8 – x9 + 0.01(4 + 1.458 + x8(x9–x7)
1.6 )

f9 = –x8 + 2x9 – x10 + 0.01(4 + 1.71475 + x9(x10–x8)
1.6 )

f10 = –x9 + 2x10 – x11 + 0.01(4 + 2 + x10(x11–x9)
1.6 )

f11 = –x10 + 2x11 – x12 + 0.01(4 + 2.31525 + x11(x12–x10)
1.6 )

f12 = –x11 + 2x12 – x13 + 0.01(4 + 2.662 + x12(x13–x11)
1.6 )

f13 = –x12 + 2x13 – x14 + 0.01(4 + 3.04175 + x13(x14–x12)
1.6 )

f14 = –x13 + 2x14 – x15 + 0.01(4 + 3.456 + x14(x15–x13)
1.6 )

f15 = –x14 + 2x15 – x16 + 0.01(4 + 3.90625 + x15(x16–x14)
1.6 )

f16 = –x15 + 2x16 – x17 + 0.01(4 + 4.394 + x16(x17–x15)
1.6 )

f17 = –x16 + 2x17 – x18 + 0.01(4 + 4.92075 + x17(x18–x16)
1.6 )

f18 = –x17 + 2x18 – x19 + 0.01(4 + 5.488 + x18(x19–x17)
1.6 )

f19 = –x18 + 2x19 + 0.01(4 + + x19(14.333333–x18)
1.6 ) – 14.333333

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (46)

where x0 = 17 and x20 = 14.333333. We take

X0 =

⎡

⎣
16.86666667, 16.73333333, 16.6, 16.46666667, 16.33333333, 16.2,

16.06666667, 15.9333333, 15.8, 15.66666667, 15.53333333, 15.4, 15.26666667
15.13333333, 15, 1.86666667, 14.733333333, 14.6, 14.46666667

⎤

⎦

T

.
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Table 8 Residual errors of different iterations of QQ1 for solving F7(X)

xi e(1) e(2) e(3) e(4) e(1) e(2) e(3) e(4)

‖x(k+1) – x(k)‖ < 10–15 ‖Fx(k)‖ < 10–15

x1 0.003 4.3e–9 4.7e–28 0.0 0.003 4.3e–9 4.2e–28 0.0
x2 0.006 1.2e–9 9.3e–28 0.0 0.006 9.2e–9 9.3e–28 0.0
x3 0.010 1.4e–8 1.2e–27 0.0 0.001 1.4e–8 1.2e–27 0.0
x4 0.010 1.8e–8 1.5e–27 0.0 0.011 1.8e–8 1.5e–27 0.0
x5 0.010 2.7e–8 2.1e–27 0.0 0.011 2.0e–8 2.1e–27 0.0
x6 0.020 2.4e–8 3.0e–27 0.0 0.023 1.7e–8 3.0e–27 0.0
x7 0.020 1.7e–8 3.0e–27 0.0 0.020 1.0e–8 4.1e–27 0.0
x8 0.030 1.0e–8 4.1e–27 0.0 0.030 2.9e–9 4.5e–27 0.0
x9 0.030 2.9e–9 4.5e–27 0.0 0.031 4.9e–9 3.6e–27 0.0
x10 0.030 4.9e–9 3.6e–27 0.0 0.035 1.1e–8 1.6e–27 0.0
x11 0.037 1.1e–8 1.6e–27 0.0 0.036 1.4e–8 1.4e–28 0.0
x12 0.036 1.4e–8 1.4e–28 0.0 0.031 1.4e–8 1.4e–27 0.0
x13 0.034 1.4e–8 1.4e–27 0.0 0.032 1.3e–8 1.4e–27 0.0
x14 0.020 1.3e–8 2.1e–27 0.0 0.020 1.1e–8 1.9e–27 0.0
x15 0.013 1.1e–8 2.1e–27 0.0 0.010 1.0e–8 2.1e–27 0.0
x16 0.017 1.0e–8 2.4e–27 0.0 0.012 8.2e–9 2.0e–27 0.0
x17 0.004 8.2e–9 1.8e–27 0.0 0.004 5.9e–8 1.3e–27 0.0
x18 0.003 5.1e–9 1.5e–27 0.0 0.003 1.0e–8 1.5e–27 0.0
x19 0.001 3.3e–9 6.4e–28 0.0 0.001 3.2e–9 1.6e–28 0.0

The solution to our boundary value problem of the nonlinear ordinary differential equa-
tion is

X∗ =

⎡

⎣
17.0000, 16.7605, 16.5134, 16.2589, 15.9974, 15.7298, 15.4577,

15.1829, 14.9083, 14.6375, 14.3750, 14.1266, 13.8993, 13.7018, 13.5443,
13.439113.401013.447513.599913.8843

⎤

⎦

T

.

as initial estimates. The result of the above nonlinear system is shown in Table 8.

8 Conclusion
We have developed here families of single root finding methods of convergence order three
for a nonlinear equation as well as for a system of nonlinear equations and families of
simultaneous methods of order five respectively. From Tables 2–8 and Figs. 1–5 and 6, we
observe that our methods (Q1, SM1, and QQ1) are superior in terms of efficiency, stability,
CPU time, and residual error as compared to the methods E1–E6, ZPH, and EE1–EE3
respectively.
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