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Abstract
The aim of this paper is to determine the λ-linear functionals sending any given
polynomial p(x) with coefficients in Cp to the p-adic invariant integral of P(x) on Zp

and also to that of P(x1 + · · · + xr) on Z
r
p. We show that the former is given by the

generating function of degenerate Bernoulli polynomials and the latter by that of
degenerate Bernoulli polynomials of order r. For this purpose, we use the λ-umbral
algebra which has been recently introduced by Kim and Kim (J. Math. Anal. Appl.
493(1):124521 2021).
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1 Introduction
Let p be a fixed prime number. Throughout this paper, Zp,Qp, and Cp denote the ring of
p-adic integers, the field of p-adic rational numbers, and the completion of an algebraic
closure of Qp, respectively. The p-adic norm | · |p is normalized as |p|p = 1

p .
The umbral calculus can be developed over any field of characteristic zero. Here the field

is Cp. Recently, λ-umbral calculus has been introduced to answer the question what if the
usual exponential function in (17) is replaced with the degenerate exponential functions
in (11). As we can see in Sect. 2, it corresponds to replacing linear functionals, differen-
tial operators, and Sheffer sequences respectively with λ-linear functionals, λ-differential
operator, and λ-Sheffer sequences. The impetus for studying λ-umbral calculus was the
recent regained interest in degenerate special numbers and polynomials.

This paper is concerned with linear functionals on the space of polynomials in one vari-
able over the field Cp arising from p-adic invariant integrals on Zp and on Z

r
p. As such

linear functionals are given by formal power series, we have to determine those series cor-
responding to such linear functionals arising from p-adic invariant integrals. It turns out
that the one for Zp is given by the generating function of the degenerate Bernoulli num-
bers (see Theorem 2) and the other for Zr

p by that of the degenerate Bernoulli polynomials
of order r (see Theorem 4). In addition, we show that λ-differentiations of any polyno-
mial by such generating functions can be expressed by p-adic invariant integrals on Zp or
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on Z
r
p (see Theorems 3, 5). Summarizing, this paper is the first one that treats λ-linear

functionals arising from p-adic invariant integrals on Zp or on a finite product of Zp.
The outline of this paper is as follows. In Sect. 1, we recall the necessary facts that are

needed throughout this paper. In Sect. 2, we briefly go over the λ-umbral calculus. In ad-
dition, we recall the usual umbral calculus in order to state Theorem 1 which shows the
differences between the λ-umbral calculus and the umbral calculus. In Sect. 3, we deter-
mine the λ-linear functional associated with degenerate Bernoulli numbers. In Sect. 4, we
consider the λ-linear functional associated with higher-order degenerate Bernoulli num-
bers. In Sect. 5, we conclude the paper.

Let UD(Zp) be the space of all Cp-valued uniformly differentiable functions on Zp. For
f ∈ UD(Zp), the p-adic invariant integral of a function f on Zp is defined by

∫
Zp

f (x) dμ0(x) = lim
n→∞

pn–1∑
k=0

f (k)μ0
(
k + pn

Zp
)

(1)

= lim
n→∞

1
pn

pn–1∑
k=0

f (k) (see [7, 15, 16]).

From (1), we note that

∫
Zp

f (x + 1) dμ0(x) –
∫
Zp

f (x) dμ0(x) = f ′(0)
(
see [7, 15, 16]

)
. (2)

For any nonzero real number λ, the degenerate exponential functions are defined by

ex
λ(t) = (1 + λt)

x
λ =

∞∑
n=0

(x)n,λ
tn

n!
,

eλ(t) = e1
λ(t) = (1 + λt)

1
λ

(
see [2, 5, 8, 9, 11, 12]

)
,

(3)

where (x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ), (n ≥ 1).
For λ, t ∈Cp with |λt|p < p– 1

p–1 , by (2), we get

∫
Zp

ex+y
λ (t) dμ0(y) =

log(1 + λt)
λ(eλ(t) – 1)

ex
λ(t)

(
see [7, 10]

)
,

In [10], the degenerate Bernoulli polynomials βn,λ(x) are defined by

log(1 + λt)
λ(eλ(t) – 1)

ex
λ(t) =

∞∑
n=0

βn,λ(x)
tn

n!
.

Note that the degenerate Bernoulli polynomials βn,λ(x) here are different from those in-
troduced by Carlitz [2] whose generating function is given by t

eλ(t)–1 ex
λ(t). Thus we have

∫
Zp

ex+y
λ (t) dμ0(y) =

log(1 + λt)
λ(eλ(t) – 1)

ex
λ(t) =

∞∑
n=0

βn,λ(x)
tn

n!
, (4)

∫
Zp

(x + y)n,λ dμ0(y) = βn,λ(x). (5)
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For x = 0, βn,λ = βn,λ(0) are called the degenerate Bernoulli numbers. Then we have

∫
Zp

ey
λ(t) dμ0(y) =

log(1 + λt)
λ(eλ(t) – 1)

=
∞∑

n=0

βn,λ
tn

n!
, (6)

∫
Zp

(y)n,λ dμ0(y) = βn,λ. (7)

Note that limλ→0 βn,λ(x) = Bn(x), where Bn(x) are the ordinary Bernoulli polynomials given
by t

et–1 ext =
∑∞

n=0 Bn(x) tn

n! .

2 λ-umbral calculus
Let

F =

{
f (t) =

∞∑
k=0

ak
tk

k!

∣∣∣∣ak ∈Cp

}

be the algebra of all formal power series in t with coefficients in Cp. Let P = Cp[x] be the
ring of all polynomials in x with coefficients in Cp, and let P∗ denote the vector space of
all linear functionals on P (see [6]). Let 〈L|P(x)〉 denote the action of the linear functional
L on the polynomial P(x).

The formal power series

f (t) =
∞∑

k=0

ak
tk

k!
∈F (8)

defines the λ-linear functional on P by setting

〈
f (t)|(x)n,λ

〉
λ

= an (n ≥ 0),
(
see [6, 11]

)
. (9)

Thus, by (8) and (9), we get

〈
tk|(x)n,λ

〉
λ

= n!δn,k (n, k ≥ 0),
(
see [5, 6]

)
, (10)

where δn,k is the Kronecker symbol.
Here, F denotes both the algebra of formal power series in t and the vector space of

all λ-linear functionals on P, so an element f (t) of F will be thought of as both a formal
power series and a λ-linear functional. We shall callF the λ-umbral algebra. The λ-umbral
calculus is the study of λ-umbral algebra. The order o(f (t)) of the power series f (t)(
= 0)
is the smallest integer k for which ak does not vanish. If o(f (t)) = 0, then f (t) is called an
invertible series; if o(f (t)) = 1, then f (t) is said to be a delta series (see [1, 4–6, 13]).

For f (t), g(t) ∈ F , with o(f (t)) = 1 and o(g(t)) = 0, there exists a unique sequence Sn,λ(x)
(deg Sn,λ(x) = n) such that 〈g(t)(f (t))k|Sn,λ(x)〉λ = n!δn,k , (n, k ≥ 0). Such a sequence Sn,λ(x) is
called the λ-Sheffer sequence for (g(t), f (t)), which is denoted by Sn,λ(x) ∼ (g(t), f (t))λ (see
[6]). In [6], we note that

Sn,λ(x) ∼ (
g(t), f (t)

)
λ

⇐⇒ 1
g(f̄ (t))

ex
λ

(
f̄ (t)

)
=

∞∑
n=0

Sn,λ(x)
tn

n!
, (11)

where f̄ (t) is the compositional inverse function of f (t) with f (f̄ (t)) = f̄ (f (t)) = t.
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By (8), (9), and (10), we easily get

f (t) =
∞∑

k=0

〈f (t)|(x)k,λ〉λ
k!

tk , P(x) =
∞∑

k=0

〈tk|P(x)〉λ
k!

(x)k,λ
(
see [5, 6]

)
. (12)

The formal power series f (t) =
∑∞

k=0 ak
tk

k! ∈F defines the λ-differential operator (f (t))λ on
P, which is given by

(
f (t)

)
λ
(x)n,λ =

n∑
k=0

(
n
k

)
ak(x)n–k,λ (n ≥ 0), (13)

and by linear extension (see [5, 6, 11]).
For k ≥ 0, by (13), we easily get

(
tk)

λ
(x)n,λ =

⎧⎨
⎩

(n)k(x)n–k,λ if k ≤ n,

0 if k > n,

(
see [6]

)
. (14)

Before proceeding further, we would like to say a little about the differences between the
λ-umbral calculus and umbral calculus. Facts on umbral calculus are obtained from the
corresponding ones on λ-umbral calculus by letting λ → 0 and then suppressing 0s from
everywhere. Here we mention a few of those.

The formal power series

f (t) =
∞∑

k=0

ak
tk

k!
∈F

defines the linear functional on P by setting

〈
f (t)|xn〉 = an (n ≥ 0). (15)

In particular, we get

〈
tk|xn〉 = n!δn,k (n, k ≥ 0),

(
see [5, 6]

)
, (16)

where δn,k is the Kronecker symbol.
For f (t), g(t) ∈ F with o(f (t)) = 1 and o(g(t)) = 0, there exists a unique sequence Sn(x)

(deg Sn(x) = n) such that 〈g(t)(f (t))k|Sn(x)〉 = n!δn,k , (n, k ≥ 0). Such a sequence Sn(x) is
called the Sheffer sequence for (g(t), f (t)), which is denoted by Sn(x) ∼ (g(t), f (t)). More-
over, we have

Sn(x) ∼ (
g(t), f (t)

) ⇐⇒ 1
g(f̄ (t))

exf̄ (t) =
∞∑

n=0

Sn(x)
tn

n!
. (17)

By (15) and (16), we get

f (t) =
∞∑

k=0

〈f (t)|xk〉
k!

tk , P(x) =
∞∑

k=0

〈tk|P(x)〉
k!

xk (
see [5, 6]

)
. (18)
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The formal power series f (t) =
∑∞

k=0 ak
tk

k! ∈F defines the differential operator on P, which
is given by

f (t)xn =
n∑

k=0

(
n
k

)
akxn–k (n ≥ 0), (19)

and by linear extension (see [5, 6, 11]).
In particular, for k ≥ 0, by (19) we get

tkxn =

⎧⎨
⎩

(n)kxn–k if k ≤ n,

0 if k > n,

(
see [6]

)
, (20)

where (x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1), (n ≥ 1).
For further details on umbral calculus, we let the reader refer to [13, 14]. The next the-

orem is important for our discussion in the following and contains results not addressed
in [6].

Theorem 1 Let Eλ(t) = 1
λ

(eλt – 1). Let f (t), g(t) ∈ F with o(f (t)) = 1 and o(g(t)) = 0. Then
we have the following:

(a) Sn,λ(x) ∼ (g(t), f (t))λ ⇐⇒ Sn,λ(x) ∼ (g(Eλ(t)), f (Eλ(t))).
(b) For any P(x) ∈ P = Cp[x], we have

(
ey
λ(t)

)
λ
P(x) = P(x + y),

〈
ey
λ(t)|P(x)

〉
λ

= P(y).

(c) Let Sn,λ(x) ∼ (g(t), f (t))λ. Then we have

(
f (t)

)
λ
Sn,λ(x) = f

(
Eλ(t)

)
Sn,λ(x) = nSn–1,λ(x).

(d) For any f (t) ∈F and P(x) ∈ P = Cp[x], we have

(
f (t)

)
λ
P(x) = f

(
Eλ(t)

)
P(x).

(e) Let Sn,λ(x) ∼ (g(t), f (t))λ, and let Pn,λ(x) = (g(t))λSn,λ(x) ∼ (1, f (t))λ. Then we have

(
1

g(t)

)
λ

Pn,λ(x) =
(

1
g(Eλ(t))

)
Pn,λ(x) = Sn,λ(x).

(f ) If Sn,λ(x) ∼ (g(t), t)λ (that is, Sn,λ(x) is a λ-Appell sequence for g(t)), then we have

(
1

g(t)

)
λ

(x)n,λ =
(

1
g(Eλ(t))

)
(x)n,λ = Sn,λ(x).

Proof (a) Observe first that Ēλ(t) = 1
λ

log(1 + λt). Then, from (17) and (11), we have

Sn,λ(x) ∼ (
g
(
Eλ(t)

)
, f

(
Eλ(t)

)) ⇐⇒
∞∑

n=0

Sn,λ(x)
tn

n!
=

1
g(f̄ (t))

exĒλ(f̄ (t)) =
1

g(f̄ (t))
ex
λ

(
f̄ (t)

)

⇐⇒ Sn,λ(x) ∼ (
g(t), f (t)

)
λ
.
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(b) It suffices to show these for P(x) = (x)n,λ. The second one is immediate from definition
(9). The first one follows from (13) as follows:

(
ey
λ(t)

)
λ
(x)n,λ =

( ∞∑
l=0

(y)l,λ
tl

l!

)

λ

(x)n,λ

=
n∑

k=0

(
n
k

)
(y)k,λ(x)n–k,λ = (x + y)n,λ.

(c) Here we show (f (t))λSn,λ(x) = nSn–1,λ(x). Once we show (d), the middle equality will
follow.

〈
g(t)f (t)k|(f (t)

)
λ
Sn,λ(x)

〉
λ

=
〈
g(t)f (t)k+1|Sn,λ(x)

〉
λ

= n!δn,k+1

= n(n – 1)!δn–1,k =
〈
g(t)f (t)k|nSn–1,λ(x)

〉
λ
.

Now, the result follows from the uniqueness of λ-Sheffer sequence. (d) By linear extension,
it is enough to show that (tk)λ(x)n,λ = (Eλ(t))k(x)n,λ for 0 ≤ k ≤ n.

As
∑∞

n=0(x)n,λ
tn

n! = ex
λ(t) = exĒλ(t), (x)n,λ ∼ (1,Eλ(t)), and hence Eλ(t)(x)n,λ = n(x)n–1,λ, by

Theorem 2.3.7 in [13]. Now, from (14) we have

(
tk)

λ
(x)n,λ = (n)k(x)n–k,λ =

(
Eλ(t)

)k(x)n,λ.

(e) From (a), we note that Sn,λ(x) ∼ (g(Eλ(t)), f (Eλ(t))), and Pn,λ(x) = g(Eλ(t))Sn,λ(x) ∼
(1, f (Eλ(t)). Then, from p.107 of [13], we have Sn,λ(x) = 1

g(Eλ(t)) Pn,λ(x) = ( 1
g(t) )λPn,λ(x).

(f ) This follows from (e) by noting that (x)n,λ ∼ (1, t)λ. �

3 The λ-linear functional associated with degenerate Bernoulli numbers
Let us determine the λ-linear functional f (t) that satisfies

〈
f (t)|P(x)

〉
λ

=
∫
Zp

P(x) dμ0(x) (21)

for all polynomials P(x) ∈ P = Cp[x].
From (12), we note that

f (t) =
∞∑

k=0

〈f (t)|(x)k,λ〉λ
k!

tk =
∞∑

k=0

∫
Zp

(x)k,λ dμ0(x)
tk

k!

=
∫
Zp

∞∑
k=0

(x)k,λ
tk

k!
dμ0(x) =

∫
Zp

ex
λ(t) dμ0(x) (22)

=
log(1 + λt)
λ(eλ(t) – 1)

.

Therefore, by (22), we obtain the following theorem.

Theorem 2 For P(x) ∈ P, we have
〈∫

Zp

ey
λ(t) dμ0(y)

∣∣∣∣P(x)
〉
λ

=
∫
Zp

P(x) dμ0(x).
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That is,
〈

log(1 + λt)
λ(eλ(t) – 1)

∣∣∣∣P(x)
〉
λ

=
∫
Zp

P(x) dμ0(x).

In particular, for P(x) = (x)n,λ, we have

βn,λ =
〈∫

Zp

ey
λ(t) dμ0(y)

∣∣∣∣(x)n,λ

〉
λ

(n ≥ 0).

From (4), we note that

βn,λ(x) ∼
(

g(t) =
λ(eλ(t) – 1)
log(1 + λt)

, t
)

λ

. (23)

From (23), Theorem 1(c), and the fact eytP(x) = P(x + y) (see [13], p.14), we have

(t)λβn,λ(x) = Eλ(t)βn,λ(x) =
1
λ

(
βn,λ(x + λ) – βn,λ(x)

)
= nβn–1,λ(x).

In addition, from Theorem 1(f ), (5), and (6) and noting that g(Eλ(t)) = et–1
t , we obtain

βn,λ(x) =
∫
Zp

(x + y)n,λ dμ0(y)

=
(

log(1 + λt)
λ(eλ(t) – 1)

)
λ

(x)n,λ (24)

=
(∫

Zp

ey
λ(t) dμ0(y)

)
λ

(x)n,λ

=
(

t
et – 1

)
(x)n,λ.

Therefore, by linear extension, from (24) we obtain the following theorem.

Theorem 3 For any P(x) ∈ P, we have

∫
Zp

P(x + y) dμ0(y) =
(

log(1 + λt)
λ(eλ(t) – 1)

)
λ

P(x)

=
(∫

Zp

ey
λ(t) dμ0(y)

)
λ

P(x)

=
(

t
et – 1

)
P(x).

Examples (a) Choosing P(x) = xn in Theorem 3, we get

∫
Zp

(x + y)n dμ0(y) =
(

log(1 + λt)
λ(eλ(t) – 1)

)
λ

xn =
(

t
et – 1

)
xn = Bn(x).

(b) Let P(x) = 2
n
∑n–2

l=0
1

n–l
(n

l
)
Bn–lxl + 2

n Hn–1xn (n ≥ 2) in Theorem 3. Here Bn = Bn(0) are
Bernoulli numbers and Hn = 1 + 1

2 + · · · + 1
n are harmonic numbers. Then, by making use
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of (a), we have

∫
Zp

P(x + y) dμ0(y) =
(

log(1 + λt)
λ(eλ(t) – 1)

)
λ

P(x)

=
2
n

n–2∑
l=0

1
n – l

(
n
l

)
Bn–lBl(x) +

2
n

Hn–1Bn(x)

=
n–1∑
k=1

1
k(n – k)

Bk(x)Bn–k(x),

where the last equality is derived in [12] and can be modified so as to yield a variant of
Miki’s and Faber–Pandharipande–Zagier (FPZ) identities.

(c) Recall that the Euler polynomials are given by 2
et+1 ext =

∑∞
n=0 En(x) tn

n! . By putting
P(x) = 4En+1

n2(n+1) – 4
n
∑n

l=1
(n

l)(Hn–1–Hn–l)
n–l+1 En–l+1xl in Theorem 3 and using (a), we obtain

∫
Zp

P(x + y) dμ0(y) =
(

log(1 + λt)
λ(eλ(t) – 1)

)
λ

P(x)

=
4En+1

n2(n + 1)
–

4
n

n∑
l=1

(n
l
)
(Hn–1 – Hn–l)
n – l + 1

En–l+1Bl(x)

=
n–1∑
k=1

1
k(n – k)

Ek(x)En–k(x),

where the last equality is deduced in [12].
(d) Let P(x) = –2

∑m
r=1

(m
r
)
Er

xm+n–r+1

m+n–r+1 – 2
∑n

s=1
(n

s
)
Es

xm+n–s+1

m+n–s+1 + 2(–1)n+1 m!n!
(m+n+1)! Em+n+1.

Then, by Theorem 3 and using (a), we get

∫
Zp

P(x + y) dμ0(y) =
(

log(1 + λt)
λ(eλ(t) – 1)

)
λ

P(x)

= –2
m∑

r=1

(
m
r

)
Er

Bm+n–r+1(x)
m + n – r + 1

– 2
n∑

s=1

(
n
s

)
Es

Bm+n–s+1(x)
m + n – s + 1

+ 2(–1)n+1 m!n!
(m + n + 1)!

Em+n+1

= Em(x)En(x),

where the last equality is shown in [3].

4 The λ-linear functional associated with higher-order degenerate Bernoulli
numbers

For r ∈N, we consider the degenerate Bernoulli polynomials of order r given by

(
log(1 + λt)
λ(eλ(t) – 1)

)r

ex
λ(t) =

∞∑
n=0

β
(r)
n,λ(x)

tn

n!
. (25)
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From (2), we note that

∫
Zp

· · ·
∫
Zp

ex1+···+xr+x
λ (t) dμ0(x1) · · ·dμ0(xr) =

(
log(1 + λt)
λ(eλ(t) – 1)

)r

ex
λ(t) (26)

=
∞∑

n=0

β
(r)
n,λ(x)

tn

n!
.

This shows that
∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr + x)n,λ dμ0(x1) · · ·dμ0(xr) = β
(r)
n,λ(x). (27)

In the special case of x = 0, β
(r)
n,λ = β

(r)
n,λ(0) are called the degenerate Bernoulli numbers of

order r.
From (27), we derive the following equation:

β
(r)
n,λ =

∫
Zp

· · ·
∫
Zp

(x1 + x2 + · · · + xr)n,λ dμ0(x1) · · ·dμ0(xr)

=
∑

i1+···+ir=n

(
n

i1, . . . , ir

)∫
Zp

(x1)i1,λ dμ0(x1) · · ·
∫
Zp

(xr)ir ,λ dμ0(xr) (28)

=
∑

i1+···+ir=n

(
n

i1, . . . , ir

)
βi1,λβi2,λ · · ·βir ,λ.

For r ∈N, let

gr(t) =
(

λ(eλ(t) – 1)
log(1 + λt)

)r

. (29)

Then, by (26) and (11), we get

β
(r)
n,λ(x) ∼ (

gr(t), t
)
λ
. (30)

Hence, from (30) and Theorem 1(c) we have

1
gr(t)

ex
λ(t) =

∫
Zp

· · ·
∫
Zp

ex1+···+xr+x
λ (t) dμ0(x1) · · ·dμ0(xr) =

∞∑
n=0

β
(r)
n,λ(x)

tn

n!
(31)

and

(t)λβ (r)
n,λ(x) = Eλ(t)β (r)

n,λ(x) =
1
λ

(
β

(r)
n,λ(x + λ) – β

(r)
n,λ(x)

)
= nβ

(r)
n–1,λ(x).

Let us determine the λ-linear functional fr(t) that satisfies

〈
fr(t)|P(x)

〉
λ

=
∫
Zp

· · ·
∫
Zp

P(x1 + · · · + xr) dμ0(x1) · · ·dμ0(xr) (32)

for all polynomials P(x) ∈ P = Cp[x].
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From (12), we note that

fr(t) =
∞∑

k=0

〈fr(t)|(x)k,λ〉λ
k!

tk

=
∞∑

k=0

∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr)k,λ dμ0(x1) · · ·dμ0(xr)
tk

k!

=
∫
Zp

· · ·
∫
Zp

ex1+···+xr
λ (t) dμ0(x1) · · ·dμ0(xr) (33)

=
(

log(1 + λt)
λ(eλ(t) – 1)

)r

.

Therefore, by (33), we obtain the following theorem.

Theorem 4 For any P(x) ∈ P = Cp[x], we have

〈∫
Zp

· · ·
∫
Zp

ex1+···+xr
λ (t) dμ0(x1) · · ·dμ0(xr)

∣∣∣∣P(x)
〉
λ

=
∫
Zp

· · ·
∫
Zp

P(x1 + · · · + xr) dμ0(x1) · · ·dμ0(xr).

That is,

〈(
log(1 + λt)
λ(eλ(t) – 1)

)r∣∣∣∣P(x)
〉

=
∫
Zp

· · ·
∫
Zp

P(x1 + · · · + xr) dμ0(x1) · · ·dμ0(xr).

In particular, for P(x) = (x)n,λ, we get

β
(r)
n,λ =

〈∫
Zp

· · ·
∫
Zp

ex1+···+xr
λ (t) dμ0(x1) · · ·dμ0(xr)

∣∣∣∣(x)n,λ

〉
λ

.

From Theorem 1(f ), (29), and (30) and noting that g(Eλ(t)) = et–1
t , we obtain

β
(r)
n,λ(x) =

∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr + x)n,λ dμ0(x1) · · ·dμ0(xr)

=
((

log(1 + λt)
λ(eλ(t) – 1)

)r)
λ

(x)n,λ (34)

=
(∫

Zp

ex1+···+xr
λ (t) dμ0(x1) · · ·dμ0(xr)

)
λ

(x)n,λ

=
(

t
et – 1

)r

(x)n,λ.

Therefore, by linear extension, we obtain the following theorem.

Theorem 5 For any P(x) ∈ P, we have

∫
Zp

· · ·
∫
Zp

P(x1 + · · · + xr + x) dμ0(x1) · · ·dμ0(xr)
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=
((

log(1 + λt)
λ(eλ(t) – 1)

)r)
λ

P(x)

=
(∫

Zp

ex1+···+xr
λ (t) dμ0(x1) · · ·dμ0(xr)

)
λ

P(x)

=
(

t
et – 1

)r

P(x).

Examples (a) Choosing P(x) = xn in Theorem 5, we get
∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr + x)n dμ0(x1) · · ·dμ0(xr)

=
((

log(1 + λt)
λ(eλ(t) – 1)

)r)
λ

xn =
(

t
et – 1

)r

xn = B(r)
n (x),

where B(r)
n (x) are the Bernoulli polynomials of order r given by ( t

et–1 )rext =
∑∞

n=0 B(r)
n (x) tn

n! .
(b) By putting P(x) = (x)n in Theorem 5, and from (34), we obtain

∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr + x)n dμ0(x1) · · ·dμ0(xr)

=
((

log(1 + λt)
λ(eλ(t) – 1)

)r)
λ

(x)n

=
n∑

k=0

S1,λ(n, k)
((

log(1 + λt)
λ(eλ(t) – 1)

)r)
λ

(x)k,λ =
n∑

k=0

S1,λ(n, k)β (r)
k,λ(x),

where S1,λ(n, k), given by (x)n =
∑n

k=0 S1,λ(n, k)(x)k,λ, are the degenerate Stirling numbers
of the first kind.

(c) Recall that the Euler polynomials of order r are given by ( 2
et+1 )rext =

∑∞
n=0 E(r)

n (x) tn

n! .
By letting P(x) = E(r)

n (x) in Theorem 3, we have
∫
Zp

· · ·
∫
Zp

E(r)
n (x1 + · · · + xr + x) dμ0(x1) · · ·dμ0(xr)

=
((

log(1 + λt)
λ(eλ(t) – 1)

)r)
λ

E(r)
n (x)

=
(

t
et – 1

)r

E(r)
n (x) =

(
t

et – 1

)r( 2
et + 1

)r

xn =
(

2t
e2t – 1

)r

xn = 2nB(r)
n

(
x
2

)
.

5 Conclusion
In this paper, we are concerned with linear functionals on Cp[x] arising from p-adic invari-
ant integrals onZp and onZ

r
p. Indeed, we determined the linear functional given by P(x) →∫

Zp
P(x) dμ0(x) and that given by P(x) → ∫

Zp
· · · ∫

Zp
P(x1 + · · ·+ xr) dμ0(x1) · · ·dμ0(xr). This

means that we have to determine those series corresponding to the two linear functionals
arising from p-adic invariant integrals. It turned out that the one for Zp is given by the
generating function of the degenerate Bernoulli numbers (see Theorem 2) and the other
for Zr

p by that of the degenerate Bernoulli polynomials of order r (see Theorem 4). In ad-
dition, we showed that λ-differentiations of any polynomial by such generating functions
can be expressed by p-adic invariant integrals on Zp or on Z

r
p (see Theorems 3, 5). Fur-

ther, we illustrated Theorems 3 and 5 with some examples. As tools of our research, we



Kim et al. Advances in Difference Equations        (2021) 2021:479 Page 12 of 12

used both λ-umbral calculus and umbral calculus as well as p-adic invariant integrals. The
differences of the two umbral calculi are stated in Theorem 1.

Our result here shows nice connections between λ-umbral calculus and p-adic invari-
ant integrals. We would like to continue to study λ-umbral calculus and to find possible
applications of λ-umbral calculus to other disciplines as well as to mathematics.
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