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Abstract
This paper deals with the generalized Bagley–Torvik equation based on the concept
of the Caputo–Fabrizio fractional derivative using a modified reproducing kernel
Hilbert space treatment. The generalized Bagley–Torvik equation is studied along
with initial and boundary conditions to investigate numerical solution in the
Caputo–Fabrizio sense. Regarding the generalized Bagley–Torvik equation with initial
conditions, in order to have a better approach and lower cost, we reformulate the
issue as a system of fractional differential equations while preserving the second type
of these equations. Reproducing kernel functions are established to construct an
orthogonal system used to formulate the analytical and approximate solutions of
both equations in the appropriate Hilbert spaces. The feasibility of the proposed
method and the effect of the novel derivative with the nonsingular kernel were
verified by listing and treating several numerical examples with the required accuracy
and speed. From a numerical point of view, the results obtained indicate the accuracy,
efficiency, and reliability of the proposed method in solving various real life problems.

Keywords: Generalized Bagley–Torvik equations; Caputo–Fabrizio fractional
derivative; Modified reproducing kernel Hilbert spaces

1 Introduction
In the last two decades, fractional calculus has become one of the most effective tools used
in modeling of dynamical systems, to name a few, quantum, quantum physics, liquids,
mechanics, optimization of biological models [1–6], where these phenomena are mod-
eled and updated in equations that are closest to actually describing their condition. The
first application for fractional calculus was probably what is referred to as a tautochrone
problem that was given by Niels Henrik Abel in 1823 [2]. The great expansion in this field
caused the attention and concern of researchers from various sciences, who in turn rushed
to improve and correct some of the deficiencies and gaps in modeling.

However, there is no generally accepted definition of fractional operator, but some pa-
pers suggested mathematical properties that a fractional derivative must have. Hence, we
can find many definitions each has advantages and disadvantages, see for example [5–8].
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In 2015, the scientists Caputo and Fabrizio introduced a novel operator without a singular
kernel [9], called Caputo–Fabrizio fractional derivative (CFFD). The advantage of this op-
erator is that it provides an accurate update and description of some typical phenomena
in which the most famous definitions often complain, similar to the Caputo, Riemann–
Liouville, Riesz fractional operators, of limitations and deficiencies in the description [10–
15], since all of these definitions have a singular kernel. The interest of the nonsingular
kernel is due to the necessity of describing material heterogeneitics and structures with
distinct scales which local theory fails to describe. For more information, the reader is
kindly requested to read the papers [16–21].

Anyhow, Caputo–Fabrizio derivative has a nice characteristic; it has an equivalent rep-
resentation with singular kernel which allows to study more general materials such as
visco-plastic materials rather than only visco-elastic ones. The reader can refer to [22] in
which the equivalence of CFFD with a model of singular kernel is presented. The Bagley–
Torvik equation is one of the most important equations that occupies a leading status in
the study of applied sciences and engineering applications. It was originally formulated
in the eighties of the last century, where both Bagley and Torvik presented a study model
viscoelasticity damped structure in the following equation [23]:

a1z′′(ξ ) + a2Dγ
0 z(ξ ) + a3z(ξ ) = h(ξ ), γ = 3/2, (1.1)

along with the constants ai ∈ R, i = 1, 2, 3, h(ξ ) ∈ C[0, X] which is the space of continu-
ous functions over the interval [0, X], and z(ξ ) is an unknown function to be determined.
Moreover, the Bagley–Torvik equation (1.1) has been generalized as γ ∈ (0, 2), and it can
be modeled from a generalized fractional vibration equation [24]. Most previously pre-
pared works are mostly related to Riemann–Liouville and Caputo derivatives.

Furthermore, the coefficients ai may also change parallel with the changes in fluid den-
sity and viscosity. That is, ai may be functions with respect to time. Exclusively, we gener-
ally consider the following generalized Bagley–Torvic equation (GBT) within CFFD:

a1(ξ )z′′(ξ ) + a2(ξ )CFD
3
2
0 z(ξ ) + a3(ξ )z′(ξ ) + a4(ξ )CFD

1
2
0 z(ξ ) + a5(ξ )z(ξ ) = h(ξ ), (1.2)

with initial conditions given by

z(0) = α0, z′(0) = α1, (1.3)

whereas the boundary conditions are of the form

z(0) = β0, z(X) = β1, (1.4)

whereas 0 ≤ ξ ≤ X, ai(ξ ), h(ξ ) ∈ C[0, X], αi,βi ∈ R, while z(ξ ) are the solutions to the equa-
tion under initial or boundary conditions that are given in the Hilbert spaces H2[0, X] and
H3[0, X] which will be defined later in Sect. 3.

Physically, the fractional 1/2-order and 3/2-order derivatives are common to predict
the frequency-dependent damping material. These derivatives are often used to model
the motion of physical systems, as a study of an immersed plate in a Newtonian fluid was
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associated with the derivative 3/2 and gas in a fluid with the derivative 1/2. For more in-
formation, we refer to [25–30] and the references therein.

The value and importance of the Bagley–Torvic equation attracted the interest of re-
searchers in finding approximate solutions using a range of iterative methods, among
them, Adomian decomposition method, the generalized Taylor collocation method, ho-
motopy analysis method, Chebyshev wavelet method, multistep methods, and predictor–
corrector method of Adams type [31–33]. In this present paper, we are interested in study-
ing and developing the modified reproducing kernel Hilbert space (MRKHS) under the
influence of the CFFD, and making it suitable for solving the GBT under initial or bound-
ary conditions, and that with greater accuracy and a lower time effort. The beginnings
of the MRKHS method dates back to 1907, when Stanisław Zaremba presented research
treating the boundary value problem of the harmonic functions. Thereafter, the process
of developing this method proceeded until it has reached its current form. The MRKHS
method occupies an important position among other numerical methods, as it is a very
effective tool in many fields, such as machine learning, statistics, probability theory, eco-
nomics, and the theory of integral operators [34–38]. In addition to that, this method is
not limited to treating the well-posed problems, but also allows treating ill-posed prob-
lems.

The aim of this research paper can be summarized in several key points:
• We undertake adjustments and improvements at the level of the MRKHS method,

under the influence of the novel operator CFFD.
• We use the CFFD properties to formulate GBT under initial conditions and convert it

into an equivalent system of fractional differential equations. Then we apply the
method given to solve this system. Finally, we get a relationship between the system
solution and our equation.

• We solve the GBT equation under the boundary conditions using the proposed
method.

• We prove some theorems related to the RKHS solution and its convergence to the
exact solution.

• We add mathematical simulations to determine the appropriateness and effectiveness
of the accounts created.

2 Basic definitions and concepts
In this part, we present some basic definitions and theories for the Caputo–Fabrizio frac-
tional derivative (CFFD) used in our study. It should be noted that rewriting Eq. (1.1) in
the sense of this operator is due to its property of having a nonsingular kernel that enables
it to represent some phenomena that well brief the functions of kernels. This data is not
presented in other definitions, which creates difficulties in modeling. The use of exponen-
tially based kernel and the equivalence of CFFD with a model of singular kernel give high
precision in realistic representation phenomena, especially for physical problems.

Definition 2.1 ([9]) The nonlocal fractional derivative of order 0 ≤ α ≤ 1 of a smooth
function z : [a,∞) → � is given as

CFDα
ξ z(ξ ) =

⎧
⎨

⎩

M(α)
1–α

∫ ξ

a z′(τ )e
–α(ξ–τ )

1–α dτ , 0 ≤ α < 1,
dz(ξ )

dξ
, α = 1,

(2.1)
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such that a ≤ 0, ξ ≥ 0, and M(α) is a normalization function that satisfies M(0) = M(1) = 1.
This operator is called Caputo–Fabrizio fractional derivative and is denoted by (CFFD).

Definition 2.2 ([9]) Let z be a smooth function over [0, X] and 0 ≤ α ≤ 1. Then the cor-
responding fractional integral of CFFD operator with order α of a function z is given by

CFIα
0 z(ξ ) =

2(1 – α)
(2 – α)M(α)

z(ξ ) +
2α

(2 – α)M(α)

∫ ξ

0
z(τ ) dτ . (2.2)

Proposition 2.3 ([10]) For 0 < α < 1 and z ∈H1[0, X], we can conclude that

(CFIα
0
)(CFDα

0
)
z(ξ ) = z(ξ ) – z(0), (2.3)

where H1[0, X] is the usual Sobolev space over [0, X].

The following proposition will be used as an important hint for the higher-order deriva-
tions.

Proposition 2.4 ([10]) If α ∈ [0, 1] and n ∈ N , then the CFFD of order n + α is defined as

CFDα+n
ξ z(ξ ) = CFDα

ξ

(
Dnz(ξ )

)
.

Remark 2.5 In this present work, we take M(α) = 1 and a = 0, so we can reformulate Def-
inition 2.1 as follows:

CFDα
ξ z(ξ ) =

1
1 – α

∫ ξ

0
z′(τ )e

–α(ξ–τ )
1–α dτ

=
1

1 – α
z′(ξ ) ∗ e

–αξ
1–α ,

where (∗) is the convolution operator.

In addition to that, the CFFD of any constant is zero, that is, for all c ≥ 0, we have
CFDα

ξ c = 0. Anyhow, we end this section with the equivalent representation of the CFFD
which is

CFDα
ξ z(ξ ) =

1
(1 – α)

∫ ξ

0

(
g ′

0(τ )δ(ξ – τ )
z′(ξ )

+ e
–α(ξ–τ )

1–α

)

z′(τ ) dτ ,

where g ′
0(ξ ) =

∫ 0
a e

–α(ξ–τ )
1–α z′(τ ) dτ .

3 Preliminaries of MRKHS method
In this section, some of the essential facts of reproducing kernel theory are presented to
construct Hilbert spaces associated with the reproducing function of our method. For
more details, please read the papers [39–47]. During this study, AC[0, T] denotes the ab-
solutely continuous real functions.

Definition 3.1 Let � be a nonempty abstract set, and letW be a Hilbert space of functions
v : � −→W . Then any function B : � × � −→ C that attains both
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(i) B(·, ξ ) ∈W for each ξ ∈ � and
(ii) 〈v(·), B(·, ξ )〉 = v(ξ ) for each v ∈W

is called reproducing-kernel function, whereas the property in (ii) is called “the reproduc-
ing property”.

This function possesses some important properties such as being of unique representa-
tion, conjugate symmetric, and positive-definite.

Definition 3.2 Any Hilbert space W defined on a nonempty abstract � which possesses
a reproducing kernel function is called a reproducing kernel Hilbert space.

Definition 3.3 For m = 1, 2, 3, the Hilbert spaces Hm[0, X] are described by

Hm[0, X] =
{

z(ξ )|z : [0, X] −→ R, z(m–1)(ξ ) ∈ AC[0, X]

and z(m)(ξ ) ∈ L2[0, X], m = 1, 2, 3
}

.
(3.1)

The inner product and the norm corresponding in Hm[0, X] for m = 1, 2, 3 are given as
follows:

⎧
⎨

⎩

〈z, w〉Hm =
∑m–1

i=0 z(i)(0)w(i)(0) +
∫ X

0 z(m)(ξ )w(m)(ξ ) dξ , z, w ∈Hm[0, X],

‖z‖Hm = 〈z, z〉1/2, z ∈Hm[0, X].
(3.2)

Theorem 3.4 ([34]) The unique representation of the reproducing-kernel function associ-
ated with the Hilbert space H1[0, X] is given by

V {1}
ξ (τ ) =

1
2 sinh(X)

[
cosh(ξ + τ – X) + cosh

(|ξ – τ | – X
)]

. (3.3)

Theorem 3.5 ([35]) The unique representation of the reproducing-kernel function associ-
ated with H2[0, X] can be written as

V {2}
ξ (τ ) =

⎧
⎨

⎩

1
6τ (–τ 2 + 3ξ (τ + 2)), 0 ≤ τ < ξ ,
1
6ξ (–ξ 2 + 3τ (ξ + 2)), ξ < τ ≤ X.

(3.4)

Theorem 3.6 ([35]) The unique representation of the reproducing-kernel function associ-
ated with H3[0, X] can be written as

V {3}
ξ (τ ) =

⎧
⎨

⎩

1
120 (120 + τ 5 + 10ξ 2τ 2(3 + τ ) – 5ξτ (–24 + τ 3)), 0 ≤ τ < ξ ,

1
120 (120 + ξ 5 + 10ξ 2τ 2(3 + ξ ) – 5ξτ (–24 + ξ 3)), ξ < τ ≤ X.

(3.5)

Definition 3.7 We describe the inner product Hilbert space Wm[0, X], m = 1, 2, of
Hm[0, X] and Hm[0, X] by

Wm[0, X] =
{

z(ξ ) =
(
z1(ξ ), z2(ξ )

)T |z1, z2 ∈Hm[0, X], m = 1, 2
}

,
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as well as the inner product and the norm associated with Wm[0, X] are built as follows:
⎧
⎨

⎩

〈z, w〉Wm =
∑2

i=1〈zi, wi〉Wm , zi, wi ∈Hm[0, X], m = 1, 2,

‖z‖Wm =
√
∑2

i=1〈zi, zi〉, zi ∈Hm[0, X], m = 1, 2.
(3.6)

4 Structure of analytical solution
4.1 MRKHS solution of GBT equation along with boundary conditions
In this section, we present a brief description for the notations and preliminary defini-
tions of the MRKHS theory. Additionally, we explain how to solve GBT with boundary
conditions (1.2)–(1.4) using the MRKHS method. Accordingly, we construct orthonormal
function systems of the space based on the process orthogonalization of Gram–Schmidt.

Consider the GBT equation within CFFD
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1(ξ )ω′′(ξ ) + a2(ξ )CFD
3
2
0 ω(ξ ) + a3(ξ )ω′(ξ )

+ a4(ξ )CFD
1
2
0 ω(ξ ) + a5(ξ )ω(ξ ) = h(ξ ),

ω(0) = μ1; ω(X) = μ2.

(4.1)

Now, to apply our technique to GBT equation (4.1) on the Hilbert space H2[0, X], we
consider a linear differential operator defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L : H3[0, X] −→H1[0, X],

Lω(ξ ) = a1(ξ )ω′′(ξ ) + a2(ξ )CFD
3
2
0 ω(ξ ) + a3(ξ )ω′(ξ )

+ a4(ξ )CFD
1
2
0 ω(ξ ) + a5(ξ )ω(ξ ).

(4.2)

Thus, using the simple transform z(ξ ) := (ω(ξ )–(μ2 –μ1)ξ +μ1), the GBT with the bound-
ary condition equation (4.1) can be equivalently converted to the form

⎧
⎨

⎩

Lz(ξ ) = h(ξ ), ξ ∈ [0, X],

z(0) = 0, z(X) = 0.
(4.3)

Theorem 4.1 The differential operator L from H3[0, X] into H1[0, X] is bounded and lin-
ear. Hence, L is continuous.

Proof In order to prove that L is a bounded operator, it is enough to find M > 0 such that
‖Lz(ξ )‖H1
‖z(ξ )‖H3

≤ M. By the definition of the inner product for m = 1 in (3.2) on the Hilbert space
H1[0, X], we have

∥
∥Lz(ξ )

∥
∥2
H1

=
〈
Lz(ξ ),Lz(ξ )

〉

H1
=
[
Lz(0)

]2 +
∫ X

0

∣
∣(Lz)′(ξ )

∣
∣2 dξ .

On the other hand, using the reproducing property of the MRKHS and by the Cauchy–
Schwarz inequality, we can write

∣
∣(Lz)(i)(ξ )

∣
∣ =
∣
∣
〈
z(ξ ),

(
LV {3}

ξ

)(i)(ξ )
〉

H3

∣
∣

≤ ∥
∥
(
LV {3}

ξ

)(i)(ξ )
∥
∥
H3

∥
∥z(ξ )

∥
∥
H3

≤ M{i}
∥
∥z(ξ )

∥
∥
H3

, i = 0, 1.

(4.4)
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Hence,

∥
∥Lz(ξ )

∥
∥2
H1

≤
[

M2
{0} +

∫ X

0
M2

{1} dξ

]
∥
∥z(ξ )

∥
∥2
H3

≤ (
M2

{0} + XM2
{1}
)∥
∥z(ξ )

∥
∥2
H3

≤ M2∥∥z(ξ )
∥
∥2
H3

,

(4.5)

where M =
√

(M2
{0} + XM2

{1}).
Next, for all z,η ∈H3[0, X], we have ‖L(z +η) –L(z)‖H1 = ‖L(η)‖H1 ≤ M‖η‖H3 . Letting

η → 0 implies that L is continuous. �

We construct an orthonormal function system of H3[0, X] as follows: Put �i(·) = V {1}
ξi

(·)
and �i(·) = L�i(·), where L is the adjoint operator of L and {ξ}∞i=1 is a dense set on [0, X].

The orthonormal system {�̂i(ξ )}∞i=1 of the spaceH3[0, X] can be generated from the well-
known Gram–Schmidt orthogonalization process as follows:

�̂i(ξ ) =
i∑

k=1

σik�i1(ξ ), i = 1, 2, . . . , (4.6)

where σik > 0 are the orthogonalization coefficients.

Theorem 4.2 For (4.3), if {ξi}∞i=1 is a dense set on [0, X], then the orthogonal function system
{�i(ξ )}∞i=1 is complete in H3[0, X].

Proof Note that

�i(ξ ) =
〈
L�i(τ ), V {3}

ξi
(τ )
〉

=
〈
�i(τ ),Lτ V {3}

ξi
(τ )
〉

= Lτ V {3}
ξi

(τ ) ∈H1[0, X]. (4.7)

Now, for each z(ξ ) ∈H3[0, X], suppose 〈z(ξ ),�i(ξ )〉 = 0, thus we have

〈
z(ξ ),�i(ξ )

〉
=
〈
z(ξ ),L�i(ξ )

〉

=
〈
Lz(ξ ),�i(ξ )

〉

= Lz(ξi) = 0.

(4.8)

Because {ξi}∞i=1 is dense in [0, X] and L is continuous, we get Lz(ξi) = 0. Using the exis-
tence of the inverse operator L–1, we conclude that z(ξ ) = 0. So the proof is complete. �

Theorem 4.3 If {ξi}∞i=1 is a dense subset on [0, X] and the analytic solution z(ξ ) of (4.1) is
unique, then the solution z(ξ ) can be represented in the following form:

z(ξ ) =
∞∑

i=1

i∑

k=1

σikh(ξk))�̂i(ξ ). (4.9)

Proof For each z(ξ ) ∈ H3[0, X], z(ξ ) can be extended in the Fourier series
∑∞

i=1〈z(ξ ),
�̂i(ξ )〉�̂i(ξ ) about the orthonormal function system {�i(ξ )}∞i=1 of H3[0, X]. Moreover, the
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series
∑∞

i=1〈z(ξ ), �̂i(ξ )〉 is uniformly convergent in the Hilbert space W2[0, X]. So, we have

z(ξ ) =
∞∑

i=1

〈
z(ξ ), �̂i(ξ )

〉
�̂i(ξ )

=
∞∑

i=1

i∑

k=1

σik
〈
z(ξ ),�k(ξ )

〉
�̂i(ξ )

=
∞∑

i=1

i∑

k=1

σik
〈
Lz(ξ ),�k1(ξ )

〉
�̂i(ξ )

=
∞∑

i=1

i∑

k=1

σikLz(ξk)�̂i(ξ )

=
∞∑

i=1

i∑

k=1

σikh(ξk)�̂i(ξ ).

(4.10)

�

Now, the approximate solution can be obtained by truncating the series in (4.9) as fol-
lows:

z(ξ ) =
n∑

i=1

i∑

k=1

σikh(ξk))�̂i(ξ ). (4.11)

In the following theorem, we prove that the error that results when approximating the
solution in (4.9) by the form (4.11) is decreasing to zero.

Theorem 4.4 Let En = ‖z – zn‖H3 , where z, zn are respectively the exact and the ap-
proximate solution of (4.1) represented in (4.9) and (4.11), then the error En decreases
monotonously in the sense of ‖ · ‖H3 , and En → 0 as n → ∞.

Proof We have

E2
n = ‖z – zn‖2

H3

=

∥
∥
∥
∥
∥

∞∑

i=n+1

i∑

k=1

σikh(ξk)�̂i(ξ )

∥
∥
∥
∥
∥

2

H3

=

∥
∥
∥
∥
∥

∞∑

i=n+1

Ai�̂i(ξ )

∥
∥
∥
∥
∥

2

H3

=
∞∑

i=n+1

(Ai)2

and

E2
n–1 = ‖z – zn–1‖2

H3 =
∞∑

i=n–1

(Ai)2 = (An–1)2 +
∞∑

i=n

(Ai)2.
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Note that E2
n–1 > E2

n, so we conclude that the error En is monotone decreasing in the sense
of ‖ · ‖2

H3
, and because

∑∞
i=1〈z(ξ ), �̂i(ξ )〉�̂i(ξ ) is convergent, En → 0 as n → ∞. Hence,

the proof is complete. �

4.2 MRKHS solution of GBT equation along with initial conditions
Now, we give some notations and preliminary definitions of the MRKHS theory. We then
explain how to reformulate the GBT under the initial conditions (1.2)–(1.3) into an equiv-
alent system of first-order fractional differential equations and how to implement our
method to solve this system, with highlighting the relationship between the solution of
the system and the solution of GBT. Accordingly, we construct an orthonormal function
system of the space based on the Gram–Schmidt orthogonalization process.

Consider the following GBT with initial conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1(ξ )ω′′(ξ ) + a2(ξ )CFD
3
2
xiω(ξ ) + a3(ξ )ω′(ξ )

+ a4(ξ )CFD
1
2
ξ ω(ξ ) + a5(ξ )ω(ξ ) = h(ξ ),

ω(0) = μ1, ω′(0) = μ2.

(4.12)

We can obtain an equivalent form of (4.12) by homogenizing the initial conditions using
a transformation given by the following formula z(ξ ) := ω(ξ ) – (μ2ξ + μ1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1(ξ )z′′(ξ ) + a2(ξ )CFD
3
2
ξ z(ξ ) + a3(ξ )z′(ξ )

+ a4(ξ )CFD
1
2
ξ z(ξ ) + a5(ξ )z(ξ ) = H(ξ ),

z(0) = 0, z′(0) = 0,

(4.13)

where H(ξ ) = h(ξ ) – (a3(ξ )μ2 + 2μ2a4(ξ )(1 – e–ξ ) + a5(ξ )(μ2ξ + μ1)).
Before starting to describe the approximate RKHS scheme, we find it appropriate to

rewrite the equivalent GBT equation (4.13) in the form of a system of fractional differential
equations (SFDE) of first order by setting z(ξ ) = z1(ξ ) and z′

1(ξ ) = z2(ξ ). In this sense, the
equivalent SFDE that we design has the form

z′
1(ξ ) = z2(ξ ),

a1(ξ )z′
2(ξ ) + a2(ξ )CFD

1
2
0 z2(ξ ) = H(ξ ) – a3(ξ )z1(ξ ),

(4.14)

equipped with the initial conditions

z1(0) = 0; z2(0) = 0. (4.15)

It is obvious that GBT equation (4.13) with its original initial conditions is equivalent
to SFDE (4.14) with the new initial conditions (4.15) in the following sense: whenever Z =
(z1, z2)T with z1 ∈ H2[0, X] is a solution of SFDE (4.14) associated with initial conditions
(4.15), the solution z := z1 solves GBT equation (4.13). Also, whenever z ∈ H2[0, X] is a
solution to GBT equation (4.13) with original initial conditions, the vector of solutions
Z := (z1, z2)T := (z, z′)T solves SFDE (4.14) equipped with initial conditions (4.15).
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Now, we begin by applying the MRKHS approach to solve the SFDE by defining differ-
ential operators as

L1,L2 : H2[0, X] −→H1[0, X], (4.16)

whereas L1z1(ξ ) = z′
1(ξ ) and L2z2(ξ ) = a1(ξ )z′

2(ξ ) + a2(ξ )CFD
1
2
ξ z2(ξ ). Put L =

(L1 0
0 L2

) ∈
W2[0, X], H1(ξ , Z(ξ )) = z2(ξ ), H2(ξ , Z(ξ )) = a3(ξ )z1(ξ ) + H(ξ ), and H(ξ , Z(ξ )) =
(H1(ξ , Z(ξ )), H2(ξ , Z(ξ )))T .

Consequently, the initial value GBT equation can be converted into the form

LZ(ξ ) = H
(
ξ , Z(ξ )

)
,

equipped with the initial conditions

Z(0) = 0.

Lemma 4.5 The differential operators L1,L2 : H2[0, X] −→ H1[0, X] are linear and
bounded operators. Consequently, the operator L : W2[0, X] −→ W1[0, X] is also linear
and bounded.

Proof The proof is divided into two parts; first, we prove thatLj : H2[0, X] −→H1[0, X], j =
1, 2, are bounded and linear. The linearity is obvious since both integer order and Caputo–
Fabrizio derivatives are linear.

For boundedness, let z ∈H2[0, X], then

‖Ljzj‖2
H1 = 〈Ljzj,Ljzj〉H1 =

∫ X

0

(
(Ljzj)(τ )

)2 +
(
(Ljzj)′(τ )

)2 dτ .

Using the reproducing property of V {2}
ξ (τ ), we can write z(ξ ) = 〈z(·), V {2}

ξ (·)〉H2 and

z′(ξ ) =
〈

z(·), d
dξ

V {2}
ξ (·)

〉

H2

,

and

a1(ξ )z′(ξ ) + a2(ξ )CFD
1
2
ξ z(ξ ) =

〈

z(·), a1(ξ )
d

dξ
V {2}

ξ (·) + a2(ξ )CFD
1
2
ξ V {2}

ξ (·)
〉

H2

.

Applying the Schwarz inequality and using the fact that z, a1, a2 are continuous over [0, X]
and CFD

1
2
ξ V {2}

ξ is continuous and uniformly bounded, we get

∣
∣(L1z)(ξ )

∣
∣ =
∣
∣z′(ξ )

∣
∣ =
∣
∣
∣
∣

〈

z(·), d
dξ

V {2}
ξ (·)

〉∣
∣
∣
∣
H2

≤ ‖z‖H2

∥
∥
∥
∥

d
dξ

V {2}
ξ

∥
∥
∥
∥
H2

≤ ϒ11‖z‖H2 ,

∣
∣(L1z)′(ξ )

∣
∣ =
∣
∣
∣
∣

〈

z(·), d2

dξ 2 V {2}
ξ (·)

〉∣
∣
∣
∣
H2

≤ ‖z‖H2

∥
∥
∥
∥

d2

dξ 2 V {2}
ξ

∥
∥
∥
∥
H2

≤ ϒ12‖z‖H2 ,

∣
∣
(
L2z(·))(ξ )

∣
∣ =
〈

z, a1(·) d
dξ

V {2}
ξ (·) + a2(·)CFD

1
2
ξ V {2}

ξ (·)
〉

H2

≤ ‖z‖H2

∥
∥
∥
∥a1

d
dξ

V {2}
ξ + a2

CFD
1
2
ξ V {2}

ξ

∥
∥
∥
∥
H2

≤ ϒ21‖z‖H2 ,
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and similarly,

∣
∣(L2z)′(ξ )

∣
∣≤ ϒ22‖z‖H2 ,

where ϒij ∈ �+, ∀i, j = 1, 2.
Hence,

‖Ljzj‖2
H1 ≤ (

ϒ2
1j + ϒ2

2j
)
X‖z‖2

H2 ≤ M2
j ‖z‖H2 ,

where M2
j = (ϒ2

1j + ϒ2
2j)X.

So, ‖Ljzj‖2
H1

≤ Mj‖z‖H2 .
Now, for any Z = (z1, z2)T ∈W2[0, X], we have

‖LZ‖W1 =

√
√
√
√

2∑

i=1

‖Lizi‖2
H1

≤
√

M2
1‖z1‖2

H2
+ M2

2‖z2‖2
H2

≤ M‖Z‖W2 ,

(4.17)

where M = max{M1, M2}. So, the proof is complete. �

Next, we create an orthonormal function system of W2[0, X] as follows: Let �ij(·) =
V {1}

ξi
(·) and �ij(·) = L�ij(·) for each i = 1, 2, . . . , and j = 1, 2, where L is the adjoint op-

erator of L and {ξi}∞i=1 is a countable dense subset of [0, X]. Moreover, using the properties
of the reproducing kernel, we find

�ij(ξ ) = L�ij(ξ ) =
〈
L�ij(τ ), V {2}

ξi
(τ )
〉

W2
=
〈
�ij(τ ),LV {2}

ξi
(τ )
〉

W1

= LV {2}
ξi

(τ ) ∈W2[0, X].

To build the representative form of the MRKHS solutions of SFDE (4.14) equipped with
the initial conditions (4.15) in the space W2[0, X], we use the well-known Gram–Schmidt
process that outputs an orthonormal function {(�̂i1(ξ ), �̂i2(ξ ))T }∞i=1 of the space W2[0, X]
constructed from {(�i1(ξ ),�i2(ξ ))T }∞i=1 such that

�̂i(ξ ) =

(
�̂i1(ξ )
�̂i2(ξ ))

)

=

(∑i
k=1 σ 1

ik�i1(ξ )
∑i

k=1 σ 2
ik�i2(ξ )

)

, (4.18)

where σ
j
ik , j = 1, 2, are the orthogonalization coefficients.

Theorem 4.6 If {ξi}∞i=1 is a dense set on [0, X], then the orthogonal function system
{(�i1(ξ ),�i2(ξ ))T }∞i=1 is complete in W2[0, X].
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Proof For each Z(ξ ) =
( z1(ξ )

z2(ξ )
) ∈ W2[0, X], suppose 〈Z(ξ ),�ij(ξ )〉 = 0. On the other hand,

we have
〈
Z(ξ ),�ij(ξ )

〉
=
〈
Z(ξ ),L�ij(ξ )

〉

=

〈(
z1(ξ )
z2(ξ )

)

,

(
L

1�i1(ξ )
L

2�i2(ξ )

)〉

=
〈
z1(ξ ),L

1�i1(ξ )
〉
+
〈
z2(ξ ),L

2�i1(ξ )
〉

=
〈
L1z1(ξ ),�i1(ξ )

〉
+
〈
L2z2(ξ ),�i1(ξ )

〉

= L1z1(ξi) + L2z2(ξi)

= LZ(ξi) = 0.

(4.19)

Because {ξi}∞i=1 is dense in [0, X] and L is continuous, we get LZ(ξi) = 0. Using the exis-
tence of the inverse operator L–1, we conclude that Z(ξ ) = 0. So the proof is complete. �

Theorem 4.7 If {ξi}∞i=1 is a dense subset on [0, X] and the analytic solution Z(ξ ) of SFDE
(4.14) is unique, then the analytic solution Z(ξ ) can be represented in the following form:

Z(ξ ) =

[∑∞
i=1
∑i

k=1[σ 1
ikH1(ξk , Z(ξk)) + σ 2

ikH2(ξk , Z(ξk))]�̂i1(ξ )
∑∞

i=1
∑i

k=1[σ 1
ikH1(ξk , Z(ξk)) + σ 2

ikH2(ξk , Z(ξk))]�̂i2(ξ )

]

. (4.20)

Proof For each Z(ξ ) ∈ W2[0, X], Z(ξ ) can be extended in the Fourier series
∑∞

i=1〈Z(ξ ),
�̂i(ξ )〉�̂i(ξ ) about the orthonormal function system {(�i1(ξ ),�i2(ξ ))T }∞i=1, as W2[0, X].
Moreover, the series

∑∞
i=1〈Z(ξ ), �̂i(ξ )〉 is convergent in norm in the Hilbert space

W2[0, X]. So, we have

Z(ξ ) =
∞∑

i=1

〈
Z(ξ ), �̂i(ξ )

〉
�̂i(ξ )

=
∞∑

i=1

〈(
z1(ξ )
z2(ξ )

)

,

(
�̂i1(ξ )
�̂i2(ξ )

)〉

�̂ij(ξ )

=
∞∑

i=1

〈(
z1(ξ )
z2(ξ )

)

,

(∑i
k=1 σ 1

ik�k1(ξ )
∑i

k=1 σ 2
ik�k2(ξ )

)〉

�̂i(ξ )

=
∞∑

i=1

i∑

k=1

σ 1
ik
〈
z1(ξ ),�k1(ξ )

〉
�̂i(ξ ) +

∞∑

i=1

i∑

k=1

σ 2
ik
〈
z2(ξ ),�k2(ξ )

〉
]�̂i(ξ )

=
∞∑

i=1

i∑

k=1

σ 1
ik
〈
L1z1(ξ ),�k1(ξ )

〉
�̂i(ξ ) +

∞∑

i=1

i∑

k=1

σ 2
ik
〈
L2z2(ξ ),�i2(ξ )

〉
�̂i(ξ )

=
∞∑

i=1

i∑

k=1

[
σ 1

ikL1z1(ξk) + σ 2
ikL2z2(ξk)

]
�̂i(ξ )

=

[∑∞
i=1
∑i

k=1[σ 1
ikH1(ξk , Z(ξk)) + σ 2

ikH2(ξk , Z(ξk))]�̂i1(ξ )
∑∞

i=1
∑i

k=1[σ 1
ikH1(ξk , Z(ξk)) + σ 2

ikH2(ξk , Z(ξk))]�̂i2(ξ )

]

.

(4.21)

�

Moreover, if we take finitely many terms in the series representation for the analytic
solution Z(ξ ), we get directly the approximate solution SFDE (4.14), and it is given as the
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form

Zn(ξ ) =

[∑n
i=1
∑i

k=1[σ 1
ikH1(ξk , Z(ξk)) + σ 2

ikH2(ξk , Z(ξk))]�̂i1(ξ )
∑n

i=1
∑i

k=1[σ 1
ikH1(ξk , Z(ξk)) + σ 2

ikH2(ξk , Z(ξk))]�̂i2(ξ )

]

. (4.22)

Lemma 4.8 The analytical solution of FBT equation (4.13) is given as

z(ξ ) =
∞∑

i=1

i∑

k=1

[
σ 1

ikH1
(
ξk , Z(ξk)

)
+ σ 2

ikH2
(
ξk , Z(ξk)

)]
�̂i1(ξ ).

Proof From Theorem 4.6, the proof is direct. �

Theorem 4.9 If En = ‖Z –Zn‖W2 , where Z, Zn are the exact and the approximate solutions
of SFDE (4.14), respectively, represented in (4.20) and (4.22), then the error En is monotonic
decreasing in the sense of ‖ · ‖W2 , and En → 0 as n → ∞. Consequently, the behavior error
of the solution of the GBT equation decreases monotonously in the sense of ‖ · ‖W2 .

Proof We have

E2
n = ‖Z – Zn‖2

W2

=

∥
∥
∥
∥
∥

[∑∞
i=n+1

∑i
k=1[σ 1

ikH1(ξk , Z(ξk)) + σ 2
ikH2(ξk , Z(ξk))]�̂i1(ξ )

∑∞
i=n+1

∑i
k=1[σ 1

ikH1(ξk , Z(ξk)) + σ 2
ikH2(ξk , Z(ξk))]�̂i2(ξ )

]∥
∥
∥
∥
∥

2

W2

=

∥
∥
∥
∥
∥

[∑∞
i=n+1 Ai�̂i1(ξ )

∑∞
i=n+1 Ai�̂i2(ξ )

]∥
∥
∥
∥
∥

2

W2

=

∥
∥
∥
∥
∥

∞∑

i=n+1

Ai�̂i(ξ )

∥
∥
∥
∥
∥

2

W2

=
∞∑

i=n+1

(Ai)2

and

E2
n–1 = ‖Z – Zn–1‖2

W2 =
∞∑

i=n–1

(Ai)2 = (An–1)2 +
∞∑

i=n

(Ai)2.

Note that E2
n–1 > E2

n. So, we conclude that the error En is monotone decreasing in the sense
of ‖ · ‖2

W2
, and because

∑∞
i=1〈Z(ξ ), �̂i(ξ )〉�̂i(ξ ) is convergent, then En → 0 as n → ∞. So,

the proof is complete. �

5 Numerical experiments
In order to demonstrate the effectiveness and eligibility of the proposed method for solv-
ing generalized Bagley–Torvik equations under the effect of CFFD derivative, we provide
some illustrative examples and then solve them using MRKHS. In each example, we com-
pare their results with the exact solution. All numerical computations are carried out using
Mathematica 12.0 software package.
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Table 1 Numerical results for Example 5.1

ξ Exact solution z(ξ ) MRKHS z(ξ ) Absolute error Relative error

0.0 0.0 0.000000 0.000000000 0.00000000
0.1 0.09 0.090424 0.000423726 0.00470807
0.2 0.16 0.160444 0.000443675 0.00277297
0.3 0.21 0.210464 0.000463918 0.00220913
0.4 0.24 0.240485 0.000484604 0.00201918
0.5 0.25 0.250506 0.000505862 0.00202345
0.6 0.24 0.240528 0.000527807 0.00219920
0.7 0.21 0.210551 0.000550541 0.00262162
0.8 0.16 0.160574 0.000574156 0.00358848
0.9 0.09 0.090599 0.000598737 0.00665263
1.0 0.00 0.000624 0.000624362 0.00000000

Example 5.1 Consider the GBT equation equipped with the following initial conditions
(ICs):

⎧
⎨

⎩

z′′(ξ ) + 2
5

CFD
3
2
ξ z(ξ ) – 1

4 z(ξ ) = ξ2

4 – ξ

4 + 8e–ξ

5 – 18
5 ,

z(0) = 0, z′(0) = 1,
(5.1)

which can be rewritten along with homogeneous ICs as follows:
⎧
⎨

⎩

v′′(ξ ) + 2
5

CFD
3
2
ξ v(ξ ) – 1

4 v(ξ ) = ξ2

4 – ξ

2 + 8e–ξ

5 – 18
5 ,

v(0) = 0, v′(0) = 0,
(5.2)

where the exact solution is z(ξ ) = ξ (1 – ξ ).
In order to apply the MRKHS method with high efficiency, we make the substitution

z1(ξ ) = v(ξ ) and z2(ξ ) = v′(ξ ) to convert it into the equivalent system:

z′
1(ξ ) – z2(ξ ) = 0,

z′
2(ξ ) +

2
5

CFD
1
2
ξ z2(ξ ) –

1
4

z1(ξ ) =
ξ 2

4
–

ξ

2
+

8e–ξ

5
–

18
5

,

z1(0) = 0, z2(0) = 0.

Now, we apply the proposed method with n = 70 to get some numerical results as shown
in Table 1. A comparison between the exact and the approximate curves is displayed in
Fig. 1, which shows the accuracy of our method.

Example 5.2 Consider the GBT equation equipped with the following initial conditions:
⎧
⎨

⎩

z′′(ξ ) + CFD
3
2
ξ z(ξ ) + z(ξ ) = ξ + 1,

z(0) = 1, z′(0) = 1,
(5.3)

which can be rewritten along with homogeneous ICs as follows:
⎧
⎨

⎩

v′′(ξ ) + CFD
3
2
ξ v(ξ ) + v(ξ ) = 0,

v(0) = 0, v′(0) = 0,
(5.4)

where the exact solution is z(ξ ) = ξ + 1.
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Figure 1 Exact and MRKHS solution curves of Example 5.1

Table 2 Numerical results for Example 5.2

ξ Exact solution z(ξ ) MRKHS z(ξ ) Absolute error Relative error

0.0 1.0 1.0 0.0 0.0
0.1 1.1 1.1 0.0 0.0
0.2 1.2 1.2 0.0 0.0
0.3 1.3 1.3 0.0 0.0
0.4 1.4 1.4 0.0 0.0
0.5 1.5 1.5 0.0 0.0
0.6 1.6 1.6 0.0 0.0
0.7 1.7 1.7 0.0 0.0
0.8 1.8 1.8 0.0 0.0
0.9 1.9 1.9 0.0 0.0
1.0 2.0 2.0 0.0 0.0

Figure 2 Exact and MRKHS solution curves of Example 5.2

The SFDE related to this GBT equation assuming z1(ξ ) = v(ξ ) and z2(ξ ) = v′(ξ ) is

⎧
⎪⎪⎨

⎪⎪⎩

z′
1(ξ ) – z2(ξ ) = 0,

z′
2(ξ ) + CFD

1
2
ξ z2(ξ ) + z1(ξ ) = 0,

z1(0) = 0, z′
2(0) = 0.

(5.5)

To achieve high accuracy, we found it enough to take n = 5 as shown in Table 2 and
Fig. 2.
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Table 3 Numerical results for Example 5.3

ξ Exact solution z(ξ ) MRKHS z(ξ ) Absolute error Relative error

0.0 0.00 0.000000 0.0000000000 0.0000000
0.1 0.01 0.009990 0.0000104827 0.0010483
0.2 0.04 0.039981 0.0000195138 0.0004879
0.3 0.09 0.089973 0.0000270488 0.0003005
0.4 0.16 0.159967 0.0000333901 0.0002087
0.5 0.25 0.249961 0.0000387662 0.0001551
0.6 0.36 0.359957 0.0000433495 0.0001204
0.7 0.49 0.489953 0.0000472704 0.0000965
0.8 0.64 0.639949 0.0000506276 0.0000791
0.9 0.81 0.809947 0.0000534959 0.0000660
1.0 1.00 0.999944 0.0000559322 0.0000559

Figure 3 Exact and MRKHS solution curves of Example 5.3

Example 5.3 Consider the following GBT equation:

z′′(ξ ) + CFD
3
2
ξ z(ξ ) + z(ξ ) = 6 + ξ 2 – 4e–t ,

subject to

z(0) = z′(0) = 0,

where the exact solution z(ξ ) = ξ 2.
Applying the methodology described in this paper, with n = 90, some tabulated and

graphical results are shown in Table 3 and Fig. 3.

Example 5.4 Consider the GBT equation equipped with the following ICs:

z′′(t) + D3/2
ξ z – D1/2

ξ z + 4z′(t) + z(ξ ) = –2(ξ + 1) – 4e–ξ ; z(0) = 2, z′(0) = –2,

whose the exact solution is z(ξ ) = 2(1 – ξ ).
The comparison between the exact and the approximate curves for n = 5 is displayed in

Fig. 4, which shows high accuracy of this method.

Example 5.5 Consider the following GBT equation:

z′′(ξ ) + D3/2
ξ z(ξ ) – D

1
2
ξ z(ξ ) + 4z′(ξ ) + z(ξ ) = –4e–ξ

(
ξ 2 – 6ξ + 2

)
,
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Figure 4 Exact and MRKHS solution curves of Example 5.4

Figure 5 Exact and MRKHS solution curves of Example 5.5

subject to ICs

z(0) = 2, z′(0) = –4,

which is equivalent to

v′′(ξ ) + D3/2
ξ v(ξ ) – D

1
2
ξ v(ξ ) + 4v′(ξ ) + v(ξ ) = e–ξ

(
eξ (4ξ + 6) – 4(ξ – 6)ξ

)
,

subject to the homogeneous ICs

v(0) = 0, v′(0) = 0,

where the exact solution is z(ξ ) = 2(1 – ξ ) exp(–ξ ).
By applying the MRKHS method with n = 55, a comparison between the exact and the

approximate curves is displayed in Fig. 5, which shows the accuracy of our method.

Example 5.6 Consider the GBT equation with boundary conditions (BCs) within CFFD
of the form

⎧
⎨

⎩

z′′(ξ ) + CFDα
0 z(ξ ) + z(ξ ) = (ξ + 1)2 + 2e–ξ , 1 < α < 2,

z(0) = 1, z(1) = 3.
(5.6)
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Table 4 Comparison of MRKHS solutions for different values of α for Example 5.6

ξ α = 2 α = 1.9 α = 1.8 α = 1.7 α = 1.6 α = 1.5

0.0 1.000 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 1.101 1.10940 1.11688 1.14628 1.14628 1.12147
0.2 1.208 1.22339 1.23804 1.29026 1.29026 1.24713
0.3 1.327 1.34784 1.36904 1.43430 1.43430 1.38237
0.4 1.464 1.48863 1.51528 1.58439 1.58439 1.53232
0.5 1.625 1.65160 1.68204 1.74770 1.74770 1.70187
0.6 1.816 1.84257 1.87446 1.93145 1.93145 1.89569
0.7 2.043 2.06730 2.09761 2.14251 2.14251 2.11825
0.8 2.312 2.33144 2.35642 2.38718 2.38718 2.37381
0.9 2.629 2.64053 2.65566 2.67124 2.67124 2.66644
1.0 3.000 3.00000 3.00000 3.00000 3.00000 3.00000

Table 5 Absolute errors of Example 5.7

ξ Absolute error

0.1 2.9361× 10–9

0.2 6.9784× 10–9

0.3 1.2978× 10–8

0.4 2.0742× 10–8

0.5 2.9237× 10–8

0.6 3.6643× 10–8

0.7 4.0493× 10–8

0.8 3.7848× 10–8

0.9 2.5471× 10–8

In this example, we assume different values of the fractional CFFD orders to see the
effect of this nonsingular kernel derivative to the GBT equations. Hence, a comparison
between the approximate solutions for α ∈ {1, 2, 1.9, 1.8, 1.7, 1.6, 1.5} is shown in Table 4.

Example 5.7 Consider the following GBT equation:

z′′(ξ ) + CFD
1
2
ξ z(ξ ) + z(ξ ) = 6 + ξ 2 – 4e–t – 5ξ ,

subject to the BCs

z(0) = z′(1) = 0,

in which the exact solution is z(ξ ) = ξ 2 – ξ .
By applying the methodology described in this paper for n = 55, some tabulated and

graphical results are shown in Table 5 and Fig. 6.

6 Conclusion
In this paper, solutions of generalized Bagely–Torvik equations under the fractional
derivative of a nonsingular kernel, the Caputo–Fabrizio derivative, are meaningfully dis-
cussed. These types of differential equations were solved under appropriate initial or
boundary conditions. In the case of ICs, we prefer to convert the problem into a system
of fractional differential equations seeking more efficiency and simplicity of the RKHS
technique. Some theories related to the proposed method solutions, convergence, and er-
ror estimation have been proven. Numerical examples have been presented to reveal the
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Figure 6 Exact and MRKHS solution curves of Example 5.7

effects of CFFD on solutions of the GBT equation. These examples showed how the pro-
posed method is effective in solving GBT equations and showed how close the fractional
solutions are to the solutions of the integer order.
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