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Abstract
In this paper, the problem of finding the source function for the Rayleigh–Stokes
equation is considered. According to Hadamard’s definition, the sought solution of
this problem is both unstable and independent of continuous data. By using the
fractional Tikhonov method, we give the regularized solutions and then deal with a
priori error estimate between the exact solution and its regularized solutions. Finally,
the proposed regularized methods have been verified by simple numerical
experiments to check error estimate between the sought solution and the
regularized solution.
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1 Introduction
Equation (1.1) below arises in Newtonian fluids and magnetohydrodynamic flows in
porous media [1], and initial value problems for fractional Rayleigh–Stokes were studied,
for example, in [2–5]. In this study, we are interested in dealing with the Rayleigh–Stokes
problem associated with fractional derivative as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu(x, t) – (1 + τ∂
β
t )�u(x, t) = f (x)ϕ(t), (x, t) ∈ � × (0, T),

u(x, t) = 0, x ∈ ∂�,

u(x, 0) = u0(x), x ∈ �,
∫ T

0 u(x, t) dt = �(x), x ∈ �,

(1.1)

where � ⊂ R
d (d = 1, 2, 3) is a boundary domain with the boundary ∂� smooth enough,

and T > 0. τ > 0 is a constant, u0 in L2(�), the notations ∂t = ∂/∂t, and ∂α
t is the Riemann–

Liouville fractional derivative of order β ∈ (0, 1) defined by [6, 7]

∂
β
t g(t) =

d
dt

∫ t

0
ω1–β (t – z)g(z) dz, ωβ (t) =

tβ–1

�(β)
.
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The Rayleigh–Stokes introduced as above has much practical importance, see in [8, 9],
and in describing the behavior of some non-Newtonian fluids [10]. The numerical solu-
tions of the Rayleigh–Stokes problem with fractional derivatives have been considered and
developed by Dehghan or Zaky, see [3–5, 11, 12].

According to our understanding, in recent times, the study of this problem begins to
receive the attention of mathematicians, such as M. Kirane [13] and S. Tatar [14]. In [15],
authors studied a Rayleigh–Stokes equation in the simple bounded domain by using the
fractional Landweber method. Besides that, the study of problem (1.1) with random noise
data also began to receive the attention of mathematicians. In [16], using the truncation
method and some new techniques, the authors showed the regularized solution, and con-
vergence rates were established. In [17], Triet et al. investigated an inverse source problem
(1.1) by a general filter method for random noise, the results for the study of problem (1.1)
were rare. However, articles about the survey of source functions for problem (1.1) were
rarer than the results. See in [18], the authors investigated problem (1.1) by the Tikhonov
regularization method, attached was a simple numerical calculation example to simulate
research results in theoretical way. Besides, we also find relevant applications in a broad
sense with problem (1.1), please see [19–25]. In most of these studies, mathematicians are
interested in the final condition as follows: u(x, T) = �(x).

Recently, a few papers mentioned the nonlocal condition
∫ T

0 u(x, t) dt = �(x), for exam-
ple, two papers [26, 27]. We repeat that if the source function F(x, t) = ϕ(t)f (x) is given,
then problem (1.1) is called the forward problem. The problem of determining the source
function is understood as defining a function f when we know that

∫ T
0 u(x, t) dt = �(x) and

the function ϕ. It is worth pointing out that our article is one of the first results to study
this problem with nonlocal in time condition. This work can be considered a develop-
ment step of the results in the article [18]. In this paper, the couple functions (�,ϕ) are
approximated by (�ε ,ϕε) such that

‖� – �ε‖L2(�) + ‖ϕ – ϕε‖L∞(0,T) ≤ ε. (1.2)

This paper is organized as follows. In Sect. 2, we introduce some preliminaries. The main
results are given in Sect. 3 which presents the non-well-posedness of our problem (1.1).
Next, in Sect. 4, we propose the fractional Tikhonov regularization method to find the
regularized solution and the convergent rate. In Sect. 5, we present a simple numerical
example to verify the results proved in our theory section. The conclusion is presented in
Sect. 6.

2 Preliminaries
Definition 2.1 ([28]) Let {λj, ej} be the eigenvalues and corresponding eigenvectors of the
Laplacian operator –� in �. The family of eigenvalues {λj}∞j=1 satisfy 0 < λ1 ≤ λ2 ≤ · · · ≤
λj ≤ · · · , where λj → ∞ as j → ∞:

⎧
⎨

⎩

�ej(x) = –λjej(x), x ∈ �,

ej(x) = 0, x ∈ ∂�.
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Definition 2.2 For δ > 0, define

H
δ(�) :=

{

w ∈ L2(�);
∞∑

j=1

λδ
j
∣
∣〈w, ej〉

∣
∣2 < +∞

}

(2.1)

equipped with the norm

‖v‖Hδ (�) =

( ∞∑

j=1

λδ
j
∣
∣〈v, ej〉

∣
∣2
) 1

2

.

Based on [2], we can know that the solution of the Rayleigh–Stokes problem is as follows:

u(x, t) =
+∞∑

j=1

Cj(β , t)〈u0, ej〉ej(x) +
∞∑

j=1

(∫ t

0
Cj(β , t – z)ϕ(z) dz〈f , ej〉

)

ej(x), (2.2)

where Fj(z) = ϕ(z)〈f , ej〉. Here, Cj(β , t) satisfies the following equation:

⎧
⎨

⎩

d
dtCj(β , t) + λj(1 + τ∂

β
t )Cj(β , t) = 0, t ∈ (0, T),

Cj(β , 0) = 1.
(2.3)

From the condition
∫ T

0 u(x, t) dt = �(x) and u0 = 0, we can check that

�(x) =
∫ T

0
u(x, t) dt =

∫ T

0

∞∑

j=1

〈f , ej〉
(∫ t

0
Cj(β , t – z)ϕ(z) dz

)

dtej(x), (2.4)

where we note that Fj(z) = ϕ(z)fj. A simple calculation gives

f (x) =
∞∑

j=1

fjej(x) =
∞∑

j=1

〈�, ej〉
∫ T

0 (
∫ t

0 Cj(β , t – z)ϕ(z) dz) dt
ej(x). (2.5)

From the result of [2], we obtain

L
(
Cj(β , t)

)
=
[
t + γ λjtβ + λj

]–1. (2.6)

Lemma 2.3 The function Cj(β , t), j = 1, 2, . . . , is equal to

Cj(β , t) =
∫ ∞

0
e–ξ tKj(β , ξ ) dξ ,

where Kj(β , ξ ) = τ
π

λjξβ sinβπ

(–ξ+λjτξβ cosβπ+λj)2+(λjτξβ sinβπ )2 .

Proof See the proof in [2]. �

Lemma 2.4 Let us assume that β ∈ ( 1
2 , 1). For all t ∈ [0, T], we have

Cj(β , t) ≥ λ–1
j C̃(τ ,β ,λ1). (2.7)
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Besides, there exists M such that

∫ T

0

∣
∣Cj(β , t)

∣
∣2 dt ≤ 1

λ2
j

M2T2β–1

2β – 1
, (2.8)

where C̃(τ ,β ,λ1) = τ sin(βπ )
∫ +∞

0
e–ξT ξβ dξ

τ2ξ2β + ξ2
λ2

1
+1

.

Proof We can see that in [29]. �

Lemma 2.5 Let us assume that β ∈ ( 1
2 , 1). For all t ∈ [0, T], we have

Cj(β , t) ≥ λ–1
j C̃(τ ,β ,λ1). (2.9)

Lemma 2.6 Assume that there exist positive constants A0,A1 such that A0 ≤ |ϕ(t)| ≤A1

∀t ∈ [0, T]. Let us choose ε ∈ (0, A0
4 ), it gives

4–1A0 ≤ ∣
∣ϕε(t)

∣
∣ ≤A1 + 4–1A0. (2.10)

Proof From now on, for short, we denote B1
0 = A1 + 4–1A0. For the proof of this lemma,

readers can see document [30]. �

Lemma 2.7 For constant C1 > 0, γ > 0, 0 < a < 1, s ≥ λ1 > 0, it gives

G(s) =
s

γ sa+1 + Ca+1
1

≤
(

1
C1

)a

a
a

a+1 γ – 1
a+1 . (2.11)

Proof See document [31]. �

Lemma 2.8 For constant γ > 0, C1 > 0, s ≥ λ1 > 0, 0 < a < 1, we get

G1(s) =
γ sa+1– δ

2

γ sa+1 + Ca+1
1

≤
⎧
⎨

⎩

C2γ
δ

2a+2 , 0 < δ < 2a + 2,

C3γ , δ ≥ 2a + 2,
(2.12)

where C2 = ( 2a+2–δ
δ

)– δ
2a+2 C– δ

2
1 , C3 = 1

Ca+1
1 λ

δ
2 –a–1
1

.

Proof
(i) For 0 < δ < 2a + 2, we have s0 = ( 2a+2–δ

γ δ
) 1

a+1 C1 to make G′
1(s0) = 0. Then

G1(s) ≤ G1(s0) =
γ ( 2a+2–δ

γ δ
)1– δ

2(a+1) Ca+1– δ
2

1

( 2a+2
δ

)Ca+1
1

≤ ( 2a+2–δ
δ

)– δ
2a+2

C
δ
2

1

γ
δ

2(a+1) . (2.13)

(ii) For δ ≥ 2a + 2, then it gives

G1(s) =
γ sa+1– δ

2

γ sa+1 + Ca+1
1

≤ γ sa+1– δ
2

Ca+1
1

≤ γ

Ca+1
1 λ

δ
2 –a–1
1

. (2.14)
�
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Lemma 2.9 For constants γ > 0, C4 > 0, s ≥ λ1 > 0, and a ∈ (0, 1), we get

G2(s) =
s

γ s2a + C2a
4

≤ C1–2a
4 (2a – 1)1– 1

2a

2a
γ – 1

2a . (2.15)

Proof Proof of this lemma can be found in document [31]. �

Lemma 2.10 For constants γ > 0, C5 > 0, s ≥ λ1 > 0, and a ∈ [ 1
2 , 1), we have

G3(s) =
γ s2a– δ

2

γ s2a + C2a
5

≤
⎧
⎨

⎩

C6γ
δ

4a , 0 < δ < 4a,

C7γ , δ ≥ 4a,
(2.16)

where C6 = δ
δ

4a (4a–δ)1– δ
4a

4a C– δ
4a

5 , C7 = 1

C2a
5 λ

δ
2 –2a
1

.

Proof The proof is similar to that in Lemma 2.8. �

3 The non-well-posedness of problem (1.1)
Theorem 3.1 Problem (1.1) is unstable.

Proof Let P : L2(�) → L2(�) be a linear operator as follows:

Pf (x) =
∞∑

j=1

[∫ T

0

(∫ t

0
Cj(β , t – z)ϕ(z) dz

)

dt
]

〈f , ej〉ej(x) =
∫

�

q(x, ζ )f (ζ ) dζ , (3.1)

where q(x, ζ ) =
∑∞

j=1[
∫ T

0 (
∫ t

0 Cj(β , t – z)ϕ(z) dz) dt]ej(x)ej(ζ ). Due to q(x, ζ ) = q(ζ , x), we
know that P is a self-adjoint operator. Define the finite rank operators PN by

PN f (x) =
N∑

j=1

[∫ T

0

(∫ t

0
Cj(β , t – z)ϕ(z) dz

)

dt
]

〈f , ej〉ej(x). (3.2)

From (3.1) and (3.2), we have

‖PN f – Pf ‖2
L2(�) =

∞∑

j=N+1

[∫ T

0

(∫ t

0
Cj(β , t – z)ϕ(z) dz

)

dt
]2∣

∣〈f , ej〉
∣
∣2

≤A2
1

∞∑

j=N+1

M2

λ2
j

T2β+2

2β – 1
∣
∣〈f , ej〉

∣
∣2 ≤A2

1
M2

λ2
N

T2β+2

2β – 1

∞∑

j=N+1

∣
∣〈f , ej〉

∣
∣2. (3.3)

From (3.3), we can know that

‖PN f – Pf ‖L2(�) ≤ 1
λN

MA1Tβ+1
√

2β – 1
‖f ‖L2(�). (3.4)

Hence, we can deduce that

lim
N→∞

‖PN – P‖L(L2(�);L2(�)) = 0.
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So, we get immediately that P is a compact operator. From (3.1), the inverse source prob-
lem can be formulated as an operator equation Pf (x) = �(x), and by Kirsch [32], it is unsta-
ble. Next, we propose an example, with input final data �k = ek√

λk
. By (2.5), f k depending

on �k is

f k(x) =
∞∑

j=1

〈 ek√
λk

, ej〉
∫ T

0 (
∫ t

0 Cj(β , t – z)ϕ(z) dz) dt
=

ek√
λk

∫ T
0 (

∫ t
0 Ck(β , t – z)ϕ(z) dz) dt

. (3.5)

If we choose � = 0, then f = 0, an error in L2-norm between �k and � is

∥
∥�k – �

∥
∥

L2(�) =
1√
λk

→ lim
k→+∞

∥
∥�k – �

∥
∥

L2(�) = lim
k→+∞

(
1√
λk

)

= 0. (3.6)

And an error in L2 norm between f k and f is

∥
∥f k – f

∥
∥2

L2(�) = λ–1
k

(∫ T

0

(∫ t

0
Ck(β , t – z)ϕ(z) dz

)

dt
)–2

. (3.7)

From (3.7) and combining with Lemma 2.4, one has

∣
∣
∣
∣

∫ T

0

(∫ t

0
Ck(β , t – z)ϕ(z) dz

)

dt
∣
∣
∣
∣

2

≤ A2
1M2

λ2
k

T2β+2

2β – 1
, (3.8)

we have

∥
∥f k – f

∥
∥2

L2(�) ≥ λk

M2A2
1

(
2β – 1
T2β+2

)

. (3.9)

By choosing β > 1
2 , we get

lim
k→+∞

∥
∥f k – f

∥
∥

L2(�) ≥ lim
k→+∞

√
λk

MA1

(√
2β – 1
Tβ+1

)

= +∞. (3.10)

Combining (3.6) and (3.10), this implies that problem (1.1) is non-well-posed. �

Next, we give the following theorem which shows the conditional stability of the func-
tion f .

Theorem 3.2 Assume that ‖f ‖Hδ (�) ≤ R for R > 0, then it gives

‖f ‖L2(�) ≤D(δ, T)R
1

δ+1 ‖�‖
δ

δ+1
L2(�),

where D(δ, T) =
[

A
δ

δ+1
0

(
T2C̃(τ ,β ,λ1)

2

) δ
δ+1

]–1

. (3.11)

Proof From (2.5) and using the Hölder inequality, one has

‖f ‖2
L2(�) =

∞∑

j=1

∣
∣
∣
∣

〈�, ej〉
∫ T

0 (
∫ t

0 Cj(β , t – z)ϕ(z) dz) dt

∣
∣
∣
∣

2
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=
∞∑

j=1

|〈�, ej〉| 2
δ+1 |〈�, ej〉| 2δ

δ+1

| ∫ T
0 (

∫ t
0 Cj(β , t – z)ϕ(z) dz) dt|2

≤
[ ∞∑

j=1

|〈�, ej〉|2
| ∫ T

0 (
∫ t

0 Cj(β , t – z)ϕ(z) dz) dt|2δ+2

] 1
δ+1

[ ∞∑

j=1

∣
∣〈�, ej〉

∣
∣2
] δ

δ+1

≤
[ ∞∑

j=1

|〈f , ej〉|2
| ∫ T

0 (
∫ t

0 Cj(β , t – z)ϕ(z) dz) dt|2δ

] 1
δ+1

‖�‖
2δ
δ+1
L2(�). (3.12)

From Lemma 2.4, we can calculate that
∫ t

0 Cj(β , z) dz ≥ tC̃(τ ,β ,λ1)
λj

, and this implies that
∫ T

0
tC̃(τ ,β ,λ1)

λj
dt = C̃(τ ,β ,λ1)

λj

∫ T
0 tdt = 1

λj
T2C̃(τ ,β ,λ1)

2 . Using Lemma 2.4 gives

∞∑

j=1

|〈f , ej〉|2
| ∫ T

0 (
∫ t

0 Cj(β , t – z)ϕ(z) dz) dt|2δ
≤

∞∑

j=1

λ2δ
j |〈f , ej〉|2

A2δ
0 ( T2C̃(τ ,β ,λ1)

2 )2δ

=
‖f ‖2

Hδ (�)

A2δ
0 ( T2C̃(τ ,β ,λ1)

2 )2δ
. (3.13)

Combining (3.12) and (3.13), we have

‖f ‖2
L2(�) ≤

‖f ‖
2

δ+1
Hδ (�)‖�‖

2δ
δ+1
L2(�)

A
2δ
δ+1
0 ( T2C̃(τ ,β ,λ1)

2 )
2δ
δ+1

≤ [
D(δ, T)

]2R
2

δ+1 ‖�‖
2δ
δ+1
L2(�). (3.14)

�

4 The fractional Tikhonov regularization method
In this section, we solve problem (1.1) by using the fractional Tikhonov method. The ideas
of this method are based on the work of Hochstenbach in [33] or Yang in [31]. We use two
kinds of fractional Tikhonov regularization methods to solve (1.1) as follows:

min
f ∈L2(�)

{‖Pf – �‖2
Y +

[
γ (ε)

]‖f ‖2}, (4.1)

in which ‖ · ‖Y is a weighted seminorm as ‖σ‖Y = ‖Y 1
2 σ‖ for any σ . We propose

Y =
(
P∗P

) a–1
2 . (4.2)

With the Tikhonov minimization problem (4.1) with Y defined by (4.2) given by

((
P∗P

) a+1
2 +

[
γ (ε)

]
I
)
f [γ (ε)] =

(
P∗P

) a–1
2 P∗�, (4.3)

the solution of (4.3) is uniquely determined for any γ > 0 and a > 0. It is obvious to see
that the formula of f [γ (ε)]1 is as follows:

f [γ (ε)]1 (x) =
∞∑

j=1

| ∫ T
0 (

∫ t
0 Cj(β , t – z)ϕ(z) dz) dt|a

[γ (ε)]1 + | ∫ T
0 (

∫ t
0 Cj(β , t – z)ϕ(z) dz) dt|a+1

〈�, ej〉ej(x). (4.4)
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We have the fractional Tikhonov regularized solution

f [γ (ε)]1
ε (x) =

∞∑

j=1

| ∫ T
0 (

∫ t
0 Cj(β , t – z)ϕε(z) dz) dt|a

[γ (ε)]1 + | ∫ T
0 (

∫ t
0 Cj(β , t – z)ϕε(z) dz) dt|a+1

〈�ε , ej〉ej(x). (4.5)

Refer to [34], another type of fractional Tikhonov regularized solution is given by the fol-
lowing formula:

f [γ (ε)]2 (x) =
∞∑

j=1

| ∫ T
0 (

∫ t
0 Cj(β , t – z)ϕ(z) dz) dt|2a–1

[γ (ε)]2 + | ∫ T
0 (

∫ t
0 Cj(β , t – z)ϕ(z) dz) dt|2a

〈�, ej〉ej(x), (4.6)

where [γ (ε)]2 is the regularized parameter, with 1
2 ≤ a < 1. For the noisy data, we get

f [γ (ε)]2
ε (x) =

∞∑

j=1

| ∫ T
0 (

∫ t
0 Cj(β , t – z)ϕε(z) dz) dt|2a–1

[γ (ε)]2 + | ∫ T
0 (

∫ t
0 Cj(β , t – z)ϕε(z) dz) dt|2a

〈�ε , ej〉ej(x). (4.7)

Putting | ∫ T
0 (

∫ t
0 Cj(β , t – z)ϕ(z) dz) dt| = Dj(β ,ϕ), we have

f [γ (ε)]1 (x) =
∞∑

j=1

|Dj(β ,ϕ)|a
[γ (ε)]1 + |Dj(β ,ϕ)|a+1 〈�, ej〉ej(x) (4.8)

and

f [γ (ε)]2 (x) =
∞∑

j=1

|Dj(β ,ϕ)|2a–1

[γ (ε)]2 + |Dj(β ,ϕ)|2a 〈�, ej〉ej(x). (4.9)

Next, we continue to investigate the convergence rates in two various cases.

4.1 The choices of regularization parameter [γ (ε)]j, j = 1, 2, and convergence
results

4.1.1 An a priori parameter choice rule
Theorem 4.1 Let the function f be as in formula (2.5), and assume that condition (1.2)
holds. Suppose that a priori condition (3.11) holds. By choosing the parameter regulariza-
tion as follows:

∥
∥f [γ (ε)]1

ε – f
∥
∥

L2(�) is of order

⎧
⎨

⎩

ε
δ

δ+2 if 0 < δ < 2a + 2,

ε
a+1
a+2 if δ ≥ 2a + 2.

(4.10)

Proof We get

∥
∥f [γ (ε)]1

ε – f
∥
∥

L2(�) ≤ ∥
∥f [γ (ε)]1

ε – f [γ (ε)]1
∥
∥

L2(�)
︸ ︷︷ ︸

K1

+
∥
∥f [γ (ε)]1 – f

∥
∥

L2(�)
︸ ︷︷ ︸

K2

.

Next, we evaluate K1 for the error assessment:

f [γ (ε)]1
ε (x) – f [γ (ε)]1 (x)
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=
∞∑

j=1

|Dj(β ,ϕε)|a
[γ (ε)]1 + |Dj(β ,ϕε)|a+1 〈�ε – �, ej〉ej(x)

+
∞∑

j=1

[ |Dj(β ,ϕε)|a
[γ (ε)]1 + |Dj(β ,ϕε)|a+1 –

|Dj(β ,ϕ)|a
[γ (ε)]1 + |Dj(β ,ϕ)|a+1

]

〈�, ej〉ej(x). (4.11)

Squaring the two sides, getting the standard in space L2(�), applying a familiar inequality,
we have

K2
1 ≤ 2|Dj(β ,ϕε)|2a

|[γ (ε)]1 + |Dj(β ,ϕε)|a+1|2 ‖� – �ε‖2
L2(�)}S2

1

+
4[γ (ε)]2

1[|Dj(β ,ϕε)|a – |Dj(β ,ϕ)|a]2

|[γ (ε)]1 + |Dj(β ,ϕε)|a+1|2|[γ (ε)]1 + |Dj(β ,ϕ)|a+1|2
∣
∣〈�, ej〉

∣
∣2}S2

2

+
4|Dj(β ,ϕ)|2a|Dj(β ,ϕε)|2a|Dj(β ,ϕ – ϕε)|2

|[γ (ε)]1 + |Dj(β ,ϕε)|a+1|2|[γ (ε)]1 + |Dj(β ,ϕ)|a+1|2
∣
∣〈�, ej〉

∣
∣2}S2

3 . (4.12)

Step 1: Estimate S1 by denoting Q(M, T ,β) = M2T2β+2

2β–1 , and B1
0 is defined in Lemma 2.6.

Combining the Holder inequality, we have

S2
1 ≤ 2

[
B1

0
]2a[Q(M, T ,β)

]2a
λ–2a

j

∣
∣
∣
∣

λa+1
j ‖�ε – �‖L2(�)

[γ (ε)]1λ
a+1
j + |8–1A0|a+1|T2C̃(τ ,β ,λ1)|a+1

∣
∣
∣
∣

2

≤ 2ε2[B1
0
]2a[Q(M, T ,β)

]2a
λ2

j
∣
∣
[
γ (ε)

]

1λ
a+1
j +

(
8–1A0

)a+1∣∣T2C̃(τ ,β ,λ1)
∣
∣a+1∣∣–2

≤ 2ε2[B1
0
]2a[Q(M, T ,β)

]2a
(

8
A0T2C̃(τ ,β ,λ1)

)2a

a
2a

a+1
[
γ (ε)

]– 2
a+1 . (4.13)

Step 2: Estimate S2 as follows. Before going into evaluation S2
2 , we have inequality for

a ∈ (0, 1), 0 < y0 < y1, then |ya
1 – ya

0| ≤ |y1 – y0|a, this implies that

∣
∣Dj(β ,ϕε)

∣
∣a –

∣
∣Dj(β ,ϕ)

∣
∣a ≤ ∣

∣Dj(β ,ϕε – ϕ)
∣
∣a ≤ εa∣∣Dj(β)

∣
∣a.

From Lemma 2.10, we denote Q2
2 = 4A1

(8–1A0)2a+2 , we have

S2
2 ≤ 4[γ (ε)]2

1[|Dj(β ,ϕε)|a – |Dj(β ,ϕ)|a]2

|[γ (ε)]1 + |Dj(β ,ϕε)|a+1|2 × |[γ (ε)]1 + |Dj(β ,ϕ)|a+1|2
∣
∣〈�, ej〉

∣
∣2

≤ ε2aQ2
2

( [γ (ε)]1λ
– δ

2
j

[γ (ε)]1 + |Dj(β ,ϕε)|a+1

)2

‖f ‖2
Hδ (�)

≤ ε2aQ2
2

( [γ (ε)]1λ
a+1– δ

2
j

[γ (ε)]1λ
a+1
j + |(8–1A0)a+1T2C̃(β , τ ,λ1)|a+1

)2

‖f ‖2
Hδ (�)

≤ ε2aQ2
2 sup

j≥1

( [γ (ε)]1λ
a+1– δ

2
j

[γ (ε)]1λ
a+1
j + |(8–1A0)a+1T2C̃(β , τ ,λ1)|a+1

)2

‖f ‖2
Hδ (�)

≤ ε2aQ2
2

⎧
⎨

⎩

C2
2[γ (ε)]

2δ
2a+2
1 R2, 0 < δ < 2a + 2,

C2
3[γ (ε)]2

1R2, δ ≥ 2a + 2.
(4.14)
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Step 3: Applying Lemma 2.7, S2
3 can be bounded:

S2
3 ≤ 4

∣
∣Dj(β ,ϕ – ϕε)

∣
∣2

× |Dj(β ,ϕε)|2a

|[γ (ε)]1 + |Dj(β ,ϕε)|a+1|2
|Dj(β ,ϕ)|2a+2

|[γ (ε)]1 + |Dj(β ,ϕ)|a+1|2
|〈�, ej〉|2

|Dj(β ,ϕ)|2

≤ 4ε2 |Dj(β ,ϕε)|2a

|[γ (ε)]1 + |Dj(β ,ϕε)|a+1|2 λ–δ
j
∣
∣Dj(β)

∣
∣2 λδ

j |〈�, ej〉|2
|Dj(β ,ϕ)|2

≤ 4ε2[B1
0
]2a

∣
∣
∣
∣

[|Dj(β)|2] a+1
2

[γ (ε)]1 + (8–1A0)a+1|T2C̃(τ ,β ,λ1)
λj

|a+1

∣
∣
∣
∣

2

λδ
j
∣
∣〈f , ej〉

∣
∣2. (4.15)

From the estimation of (3.3), denoting Q3 = 4
λ2+δ

1
[B1

0]2a(A1MT2β+2

2β–1 )2(a+1), we get

S2
3 ≤ ε24

[
B1

0
]2a

(A1MT2β+2

2β – 1

)2(a+1)( λ
–a–1– δ

2
j

[γ (ε)]1 + | (8–1A0)T2C̃(τ ,β ,λ1)
λj

|a+1

)2

‖f ‖2
Hδ (�)

≤ Q2
3ε

2 sup
j≥1

(
λj

[γ (ε)]1λ
a+1
j + |(8–1A0)T2C̃(τ ,β ,λ1)|a+1

)2

‖f ‖2
Hδ (�)

≤ Q2
3ε

2[γ (ε)
]– 2

a+1 R2. (4.16)

Combining (4.13), (4.14), and (4.15), we receive

K1 ≤ √
2ε

[
B1

0
]a[Q(M, T ,β)

]a
(

8
A0T2C̃(τ ,β ,λ1)

)a

a
a

a+1
[
γ (ε)

]– 1
a+1 + εQ3R

+ εaQ2

⎧
⎨

⎩

C2[γ (ε)]
δ

2a+2
1 R, 0 < δ < 2a + 2,

C3[γ (ε)]1R, δ ≥ 2a + 2.
(4.17)

And we show the error estimation for K2:

K2 =
∞∑

j=1

( |Dj(β ,ϕ)|a
[γ (ε)]1 + |Dj(β ,ϕ)|a+1 –

1
Dj(β ,ϕ)

)

〈�, ej〉ej(x). (4.18)

Finally, we estimate K2. Squaring the two sides, using the Cauchy inequality, we get

K2
2 ≤

∞∑

j=1

(
[γ (ε)]1

|[γ (ε)]1 + |Dj(β ,ϕ)|a+1|
)2 |〈�, ej〉|2

|Dj(β ,ϕ)|2

≤
∞∑

j=1

∣
∣
∣
∣

[γ (ε)]1λ
– δ

2
j

[γ (ε)]1 + |Dj(β ,ϕ)|a+1

∣
∣
∣
∣

2

λδ
j
∣
∣〈f , ej〉

∣
∣2

≤ sup
j≥1

( [γ (ε)]1λ
– δ

2
j

[γ (ε)]1 + |A0T2C̃(τ ,β ,λ1)
2λj

|a+1

)2

‖f ‖2
Hδ (�)

≤ sup
j≥1

( [γ (ε)]1λ
a+1– δ

2
j

[γ (ε)]1λ
a+1
j + |(2–1A0)T2C̃(τ ,β ,λ1)|a+1

)2

‖f ‖2
Hδ (�)
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≤
⎧
⎨

⎩

C2
2[γ (ε)]

2δ
2a+2
1 R2, 0 < δ < 2a + 2,

C2
3[γ (ε)]2

1R2, δ ≥ 2a + 2.
(4.19)

From estimation for K1 and K2, we conclude the following:
(i) If 0 < δ < 2a + 2, then

∥
∥f [γ (ε)]1

ε – f
∥
∥

L2(�)

≤ √
2ε

[
B1

0
]a[Q(M, T ,β)

]a
(

8
A0T2C̃(τ ,β ,λ1)

)a

a
a

a+1
[
γ (ε)

]– 1
a+1

+ εRQ3 +
(
εaQ2 + 1

)
C2

[
γ (ε)

] δ
2a+2
1 R. (4.20)

(ii) If δ ≥ 2a + 2, then

∥
∥f [γ (ε)]1

ε – f
∥
∥

L2(�)

≤ √
2ε

[
B1

0
]a[Q(M, T ,β)

]a
(

8
A0T2C̃(τ ,β ,λ1)

)a

a
a

a+1
[
γ (ε)

]– 1
a+1

+ εRQ3 +
(
εaQ2 + 1

)
C3

[
γ (ε)

]

1R. (4.21)

The regularization parameter [γ (ε)]1 by

[
γ (ε)

]

1 =

⎧
⎨

⎩

( ε
R )

2a+2
δ+2 , 0 < δ < 2a + 2,

( ε
R ) a+1

a+2 , δ ≥ 2a + 2.
(4.22)

Hence, we conclude the following:
(i) If 0 < δ < 2a + 2, then

∥
∥f [γ (ε)]1

ε – f
∥
∥

L2(�) ≤ is of order ε
δ

δ+2 . (4.23)

(ii) If δ ≥ 2a + 2, then

∥
∥f [γ (ε)]1

ε – f
∥
∥

L2(�) ≤ is of order ε
a+1
a+2 . (4.24)

Proof is completed. �

Theorem 4.2 Let f be as (2.5) and f [γ (ε)]2
ε be given by (4.7). Suppose that condition (1.2)

holds. f satisfies condition (3.11). By choosing

[
γ (ε)

]

2 =

⎧
⎨

⎩

( ε
R )

4a
δ+2 , 0 < δ < 4a,

( ε
R ) 2a

1+2a , δ ≥ 4a,
(4.25)

we have

∥
∥f [γ (ε)]2

ε – f
∥
∥

L2(�) is of order

⎧
⎨

⎩

ε
δ

δ+2 if 0 < δ < 4a,

ε
2a

1+2a if δ ≥ 4a.



Duc et al. Advances in Difference Equations        (2021) 2021:470 Page 12 of 18

Proof We have

∥
∥f [γ (ε)]2

ε – f
∥
∥

L2(�) ≤ ∥
∥f [γ (ε)]2

ε – f [γ (ε)]2
∥
∥

L2(�) +
∥
∥f [γ (ε)]2 – f

∥
∥

L2(�). (4.26)

First of all, we receive

f [γ (ε)]2
ε (x) – f [γ (ε)]2 (x)

=
∞∑

j=1

|Dj(β ,ϕε)|2a–1

[γ (ε)]2 + |Dj(β ,ϕε)|2a 〈�ε – �, ej〉ej(x)

+
∞∑

j=1

( |Dj(β ,ϕε)|2a–1

[γ (ε)]1 + |Dj(β ,ϕε)|2a –
|Dj(β ,ϕ)|2a–1

[γ (ε)]1 + |Dj(β ,ϕ)|2a

)

〈�, ej〉ej(x). (4.27)

Square the two sides, get the standard in L2(�) space, it gives

∥
∥f [γ (ε)]2

ε – f [γ (ε)]2
∥
∥2

L2(�)

≤ 2|Dj(β ,ϕε)|4a–2

|[γ (ε)]2 + |Dj(β ,ϕε)|2a|2 ‖�ε – �‖2
L2(�)}P2

1

+
4[γ (ε)]2

2[|Dj(β ,ϕε)|2a–1 – |Dj(β ,ϕ)|2a–1]2

|[γ (ε)]2 + |Dj(β ,ϕε)|2a|2 × |[γ (ε)]2 + |Dj(β ,ϕ)|2a|2
∣
∣〈�, ej〉

∣
∣2}P2

2

+
4|Dj(β ,ϕ)|4a–2|Dj(β ,ϕε)|4a–2|Dj(β ,ϕ – ϕε)|2

|[γ (ε)]2 + |Dj(β ,ϕε)|2a|2 × |[γ (ε)]2 + |Dj(β ,ϕ)|2a|2
∣
∣〈�, ej〉

∣
∣2}P2

3 . (4.28)

Step 1. Estimate P2
1 by denoting Q2

4 = 2[B1
0]4a–2[Q(M, T ,β)]2a–1|(8–1A0)T2C̃(τ ,β ,

λ1)|4a–2 (2a–1)2–a

(2a)2 , using Lemma 2.9, we get

P2
1 ≤ 2ε2∣∣Dj(β ,ϕε)

∣
∣4a–2∣∣

[
γ (ε)

]

2 +
∣
∣Dj(β ,ϕε)

∣
∣2a∣∣–2

≤ ε2Q2
4λ

–4a+2
j

∣
∣
∣
∣

λ2a
j

[γ (ε)]2λ
2a
j + (8–1A0)2a|T2C̃(τ ,β ,λ1)|2a

∣
∣
∣
∣

2

≤ ε2Q2
4λ

2
j
∣
∣
[
γ (ε)

]

2λ
2a
j +

(
8–1A0

)2a∣∣T2C̃(τ ,β ,λ1)
∣
∣2a∣∣–2

≤ ε2Q2
4
[
γ (ε)

]– 1
a

2 . (4.29)

Step 2. Estimate P2
2 by noting a ∈ [ 1

2 , 1) and Q2
5 = 4A2

1(4–1A0)4a–2λ–4a
1 [Q(M, T ,β)]2a,

using Lemma 2.9, we get

P2
2 ≤ 4[γ (ε)]2

2[|Dj(β ,ϕε)|2a–1 – |Dj(β ,ϕ)|2a–1]2

|[γ (ε)]2 + |Dj(β ,ϕε)|2a|2 × |[γ (ε)]2 + |Dj(β ,ϕ)|2a|2
∣
∣〈�, ej〉

∣
∣2

≤ 4
[
γ (ε)

]2
2

|Dj(β ,ϕε |4a–2

|[γ (ε)]2 + |Dj(β ,ϕε)|2a|2
|Dj(β ,ϕ)|2

λδ
j

|〈�, ej〉|2
|Dj(β ,ϕ)|2

≤ 4
(
4–1A0

)4a–2A2
1

[γ (ε)]2
2|Dj(β)|4a

|[γ (ε)]2 + |Dj(β ,ϕε)|2a|2 λ–δ
j ‖f ‖2

Hδ (�) (4.30)
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From (4.30), it gives

P2
2 ≤ Q2

5

( [γ (ε)]2λ
2a– δ

2
j

[γ (ε)]2λ
2a
j + |(8–1A0)T2C̃(τ ,β ,λ1)|2a

)2

‖f ‖2
Hδ (�)

≤ Q2
5 sup

j≥1

( [γ (ε)]2λ
2a– δ

2
j

[γ (ε)]2λ
2a
j + (8–1A0)|T2C̃(τ ,β ,λ1)]2a

)2

‖f ‖2
Hδ (�)

≤ Q2
5

⎧
⎨

⎩

C2
6[γ (ε)] δ

2a R2, 0 < δ < 4a,

C2
7[γ (ε)]2R2, δ ≥ 4a.

(4.31)

Step 3. Before estimating P2
3 , denoting Q2

6 = 4(8–1A0)4a–2

λ2a+δ+2
1

[Q(M, T ,β)]2a|(8–1A0)T2C̃(τ ,

β ,λ1)|4a–2 (2a–1)2–a

(2a)2 , we get

P2
3 ≤ ε2 4|Dj(β ,ϕ)|4a–2|Dj(β ,ϕε)|4a–2|Dj(β , t, T)|2

|[γ (ε)]2 + |Dj(β ,ϕε)|2a|2 × |[γ (ε)]2 + |Dj(β ,ϕ)|2a|2
∣
∣〈�, ej〉

∣
∣2

≤ ε24
∣
∣
∣
∣

|Dj(β ,ϕε)|2a–1

[γ (ε)]2 + |Dj(β ,ϕε)|2a

∣
∣
∣
∣

2∣
∣Dj(β)

∣
∣2∣∣〈f , ej〉

∣
∣2

≤ ε24A4a–2
1

(
4–1A0

)4a–2
(M2T2β+2

2β – 1

)4a 1
λ8a+δ

j
λδ

j
∣
∣〈f , ej〉

∣
∣2

≤ ε24
(
4–1A0

)4a–2 [Q(M, T ,β)]2a

λ2a+δ+2
j

λδ
j
∣
∣〈f , ej〉

∣
∣2

× λ2
j
∣
∣
[
γ (ε)

]

2λ
2a
j +

∣
∣
(
8–1A0

)
T2C̃(τ ,β ,λ1)

∣
∣2a∣∣–2

≤ ε2Q2
6
[
γ (ε)

]– 1
a

2 ‖f ‖2
Hδ (�). (4.32)

Combining (4.27) to (4.32), we conclude that

∥
∥f [γ (ε)]2

ε – f [γ (ε)]2
∥
∥

L2(�) ≤ ε
[
γ (ε)

]– 1
2a

2

(
Q2

4 + Q2
6‖f ‖2

Hδ (�)

) 1
2

+ Q5

⎧
⎨

⎩

C6[γ (ε)] δ
4a R, 0 < δ < 4a,

C7[γ (ε)]R, δ ≥ 4a.
(4.33)

Next, we estimate ‖f [γ (ε)]2 – f ‖L2(�):

∥
∥f [γ (ε)]2 – f

∥
∥

L2(�) ≤
∞∑

j=1

∣
∣
∣
∣

–[γ (ε)]2λ
δ
2
j

|[γ (ε)]2 + |Dj(β ,ϕ)|2a|
∣
∣
∣
∣

2

λδ
j
∣
∣〈f , ej〉

∣
∣2

≤
∞∑

j=1

∣
∣
∣
∣

[γ (ε)]2λ
2a– δ

2
j

[γ (ε)]2λ
2a
j + |A0T2C̃(τ ,β ,λ1)|2a

∣
∣
∣
∣

2

λδ
j
∣
∣〈f , ej〉

∣
∣2

≤ sup
j≥1

∣
∣
∣
∣

[γ (ε)]2λ
2a– δ

2
j

[γ (ε)]2λ
2a
j + |A0T2C̃(τ ,β ,λ1)|2a

∣
∣
∣
∣

2

‖f ‖2
Hδ (�)
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≤
⎧
⎨

⎩

C2
6[γ (ε)] δ

2a R2, 0 < δ < 4a,

C2
7[γ (ε)]2R2, δ ≥ 4a.

(4.34)

Combining (4.33) to (4.34), we conclude that

∥
∥f [γ (ε)]2

ε – f
∥
∥

L2(�) ≤ ε
[
γ (ε)

]– 1
2a

2

(
Q2

4 + Q2
6‖f ‖2

Hδ (�)

) 1
2

+ (Q5 + 1)

⎧
⎨

⎩

C6[γ (ε)] δ
4a R, 0 < δ < 4a,

C7[γ (ε)]R, δ ≥ 4a.
(4.35)

By choosing the parameter regularization

[
γ (ε)

]

2 =

⎧
⎨

⎩

( ε
R )

4a
δ+2 , 0 < δ < 4a,

( ε
R ) 2a

1+2a , δ ≥ 4a.
(4.36)

From (4.35) and (4.36), we conclude the following:
(i) If 0 < δ < 4a, then

∥
∥f [γ (ε)]2 – f

∥
∥

L2(�) ≤ Q7ε
δ

δ+2 R
2

δ+2 , (4.37)

where Q7 = (Q5 + 1)C6 + (Q2
4 + Q2

6‖f ‖2
Hδ (�))

1
2 .

(ii) If δ ≥ 4a, then

∥
∥f [γ (ε)]2 – f

∥
∥

L2(�) ≤ Q8ε
2a

2a+1 R
1

2a+1 , (4.38)

where Q8 = (Q5 + 1)C7 + (Q2
4 + Q2

6‖f ‖2
Hδ (�))

1
2 .

�

5 Simulation
In this section, we consider the problem as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu(x, t) – (1 + τ∂
β
t )�u(x, t) = f (x)ϕ(t), (x, t) ∈ � × (0, T),

u(x, t) = 0, x ∈ ∂�,

u(x, 0) = 0, x ∈ �,
∫ T

0 u(x, t) dt = �(x), x ∈ �.

(5.1)

The couple of (�ε ,ϕε) plays as observed data as follows:

�ε(·) = �(·) + ε
(
2 rand(·) – 1

)
, ϕε(·) = ϕ(·) +

ε rand(·)√
π

. (5.2)

In (5.1) with u(x, t) = t2 sin(x), we get �(x) = T3

3 sin(x) and ϕ(t) = 2t – 1 – 2t t2–β

�(3–β) . Next, we
can write the term Bj(β , t – z) as follows, see Lemma 2.3:

Bj(β , t – z) =
∫ ∞

0
e–ξ (t–z)Kj(ξ ) dξ = lim

M→∞

∫ M

0
e–ξ (t–z)Kj(ξ ) dξ . (5.3)
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Table 1 The error estimate for both FT1 and FT2

Error estimate

ε1 = 5 ∗ 10–1 ε2 = 5 ∗ 10–2 ε3 = 5 ∗ 10–3 ε4 = 5 ∗ 10–4

FT1 0.93623968 0.882396582 0.672967434 0.539296586
FT2 0.991018439 0.881577282 0.590247118 0.507422364

From (5.3), we get

f (x) =
N∑

j=1

〈�, ej〉ej(x)
∫ T

0 (
∫ t

0 Bj(β , t – z)ϕ(z) dz) dt

=
N∑

j=1

〈�, ej〉ej(x)
limM→∞

∫ T
0 (

∫ t
0 (
∫ M

0 e–ξ (t–z)Kj(ξ ) dξ )ϕ(z) dz) dt
, (5.4)

with M large enough. Using composite Simpson’s rule for 2D, we have the observation of
f [γ (ε)]1,2
ε ∈ L2(0,π ). Trying to take ‖f ‖H1(�) ≤ R with R ≈ 125.447 leads to [γ (ε)]1 = ( ε

R )
a1+1
a1+2

and [γ (ε)]2 = ( ε
R )

2a2
1+2a2 . Similarly, in the formula finding the methodological seriousiza-

tion for fractional Tikhonov method type one and the regularized solution for fractional
Tikhonov method type two, we just need replace � with �ε and ϕ with ϕε .

Step 1: As the discretization level, a uniform grid of mesh-point (xi) is used to discrete
the space interval

xi = i�x,�x =
1
N

, i = 0, N . (5.5)

In this example, with N = 121, we take the following calculation steps.
Step 2: Set f [γ (ε)]

ε (xj) = f γ ,j
ε and f (xj) = fj, construct two vectors containing all discrete

values of f γ ,j
ε and f denoted by �

γ ,j
ε and � j, respectively.

�γ ,j
ε =

[
f γ ,0
ε f γ ,1

ε · · · f γ ,N
ε

] ∈R
N+1, � =

[
f 0f 1 · · · f N–1f N] ∈R

N+1. (5.6)

Step 3: Error estimate

Err =
(
∑N

j=1 |f [γ (ε)]1,2
ε (xj) – f (xj)|2L2(0,π ))

1
2

(
∑N

j=1 |f (xj)|2L2(0,π ))
1
2

. (5.7)

From the results of the above calculations, Table 1 points out the relative error estimates
for a regularized solution using the fractional Tikhonov method, see formula (4.8), and
the fractional Tikhonov solution type two, see formula (4.9), respectively. In this table,
the values are as follows: In the case of the regularization solution fractional Tikhonov
type one, since a ∈ (0, 1), then we choose a1 = 0.65; in case of the regularization solu-
tion fractional Tikhonov type two, because of a2 ∈ ( 1

2 , 1), we choose a2 = 0.75 and values
T = 1,β = 0.5, τ = 1.2, δ = 1. Table 1 shows the relative error estimates between the exact
solution and its regularized solution for both FT1 and FT2 with ε = 5 ∗ 10–k , k = 1, 2, 3, 4,
respectively. Table 2 shows the error estimate with values β in the first column. Similarity,
with different τ , this error can be found in Table 3. In general, it shows that with both
fractional Tikhonov methods, the convergence rate is of almost the same level. From the
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Table 2 With several different β values, we check the convergence rate between the sought
solution and its approximation

β ε1 = 5 ∗ 10–1 ε2 = 5 ∗ 10–2 ε2 = 5 ∗ 10–3

FT1 FT2 FT1 FT2 FT1 FT2

0.15 0.991598534 0.999785256 0.988619422 0.99664661 0.945522364 0.950280732
0.25 0.986505175 0.998811077 0.969395529 0.985012806 0.875451095 0.844481561
0.35 0.976662494 0.996670773 0.943285395 0.959946702 0.797661112 0.728825374
0.45 0.990847934 0.996606654 0.928212418 0.929867121 0.714487158 0.631034772
0.55 0.951093699 0.983236194 0.871209357 0.856203486 0.651612101 0.576545804
0.65 1.027188737 1.02169837 0.814338829 0.773675873 0.590714893 0.531025157
0.75 0.872317472 0.925135033 0.718266857 0.655089038 0.563014039 0.522375764
0.85 0.795948719 0.836312409 0.617989339 0.550282175 0.531663982 0.506525617
0.95 1.210791125 1.266609738 0.517328419 0.471143634 0.509131415 0.497055801

Table 3 With several different τ values, we check the convergence rate between the sought
solution and its approximation

τ ε1 = 5 ∗ 10–1 ε2 = 5 ∗ 10–2 ε3 = 5 ∗ 10–3

FT1 FT2 FT1 FT2 FT1 FT2

1.22 1.003848284 1.001944265 0.880044062 0.878952014 0.681262776 0.600737917
1.44 0.92715566 0.989440251 0.876786921 0.868227528 0.656775033 0.577016004
1.66 0.991484543 0.995604482 0.875417754 0.861799734 0.649778367 0.572823918
1.88 1.005412506 1.003185271 0.876032528 0.858939766 0.643017105 0.567850812

results obtained in the number table, we conclude that when ε tends to 0, the tensile test
will converge the accuracy, although this convergence is relatively slow.

6 Conclusion
In this article, we consider problem (1.1) for the Rayleigh–Stokes problem. In this article,
by using the fractional Tikhonov method, we establish an approximate solution. Then, we
show the rate of convergence between the sought solution and the regularized one and
provide a simple numerical experiment. In the future work, we may use the condition
θu(x, T) + θ2

∫ T
0 u(x, t) dt = �(x) to study problem (1.1).
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