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Abstract
In this work, we study a q-differential inclusion with doubled integral boundary
conditions under the Caputo derivative. To achieve the desired result, we use the
endpoint property introduced by Amini-Harandi and quantum calculus. Integral
boundary conditions were considered on time scale Tt0 = {t0, t0q, t0q2, . . .} ∪ {0}. To
better evaluate the validity of our results, we provided an example, some graphs, and
tables.
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1 Introduction
It is clear to everyone that fractional calculus has been one of the most important and pop-
ular topics for researchers in the last decade [1–5]. Perhaps the reason for this popularity
can be traced to the high efficiency of this type of calculations in modeling of various nat-
ural phenomena, engineering, and biological mathematics [6–12]. During the research on
this subject, various types of fractional derivative operators such as Riemann–Liouville,
Caputo, Caputo–Fabrizio, Caputo–Hadamard have been introduced and studied by some
researchers [13–27]. On the other hand, in 1910, with the research work of Frank Hilton
Jackson, the exciting world of quantum computing emerged [28, 29]. Quantum calculus
is a generalization of the ordinary calculus in which the limit is omitted. Two types of
quantum calculus have been developed more than the others, namely q-calculus and h-
calculus. It did not take long for a combination of advances in these two important areas
to do much in the fields of physics, thermodynamics, and differential equations. In recent
years, many researchers have addressed differential inclusion as a tool with high potential
for modeling [19, 30–49].

In 2014, Ghorbanian et al. investigated the existence of solution for the fractional inclu-
sion problem

cD$l(t) ∈F
(
t, l(t), l′(t), l′′(t)

)
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with considering the boundary conditions that follow.

⎧
⎪⎪⎨

⎪⎪⎩

l(0) + l(ν) + l(1) =
∫ 1

0 g0(s, l(s)) ds,
cDλl(0) +c Dλl(ν) +c Dλl(1) =

∫ 1
0 g1(s, l(s)) ds,

cDj l(0) +c Dj l(ν) +c Dj l(1) =
∫ 1

0 g2(s, l(s)) ds,

where t ∈ J = [0, 1], $ ∈ (2, 3), λ,ν ∈ (0, 1), j ∈ (1, 2), and F : J × R × R × R → Pcp(R) is
a multifunction, g1, g2, g3 ∈ C(J × R,R), cD$ represents the fractional Caputo derivative,
and Pcp(R) is the set of all compact subsets of R [50]. After that in 2017, Rezapour et
al. perused the existence of solution for the fractional inclusion problem for convex and
nonconvex compact multifunction

cD$l(t) ∈F
(
t, l(t),c Dj l(t), l′(t)

)

for almost all t ∈ J = [0, 1], with the following conditions:

⎧
⎨

⎩
l(0) + l′(0) +c Dj l(t) =

∫ ν

0 l(s) ds,

l(1) + l′(1) +c Dj l(t) =
∫ λ

0 l(s) ds,

where F : J ×R×R×R → 2R is a compact-valued multifunction [51].
By combining the ideas mentioned above, we now intend to examine the following q-

inclusion:

cD$
ql(t) ∈F

(
t, l(t), l′(t), l′′(t),c D�1

q l(t),c D�2
q l(t)

)
(1)

with introducing new integral boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

l(0) + Sl′(0) = 0,

al(ð) + b
∫ 1

0 l(t) dt = 0,

Pl′′(1) + c
∫ 1

0 l(t) dt = 0,

(2)

for all t ∈ J = [0, 1], and ð ∈ (0, 1), S =
∑j=k

j=0 uj, P =
∏j=k

j=0 wj with uj, wj ∈ R, and cD$
q denotes

Caputo quantum fractional derivative of order $ ∈ (2, 3], also �1,�2 ∈ (1, 2], where F :
J × R

5 → P(R) is a compact-valued multifunction such that P(R) is a set of all subsets
of R.

2 Preliminaries
In this section, we summarize what we need from quantum calculus to examine the subject
of this research. Throughout this work we always apply quantum calculations to the time
scale Tt0 = {t0, t0q, t0q2, . . .} ∪ {0} such that t0 ∈ R and 0 < q < 1 [28].

Definition 2.1 ([28]) For every real number y, we define the q-analogue of y as

[y]q =
1 – qy

1 – q
= 1 + q + · · · + qy–1.



Shabibi et al. Advances in Difference Equations        (2021) 2021:466 Page 3 of 17

Also, for the power function (w – s)n
q , its q-analogue for n ∈N0 is expressed as

⎧
⎨

⎩
(w – s)(n)

q =
∏n–1

i=0 (w – sqi) for n ≥ 1,

(w – s)(0)
q = 1,

(3)

such that w, s ∈ R and N0 = N ∪ {0}. The (3) can be expressed for any real number β as
follows:

(w – s)(β)
q = wβ

∞∏

n=0

1 – ( s
w )qn

1 – ( s
w )qβ+n , w �= 0.

If s = 0, it is clear that w(β) = wβ [52].

Definition 2.2 ([29]) The q-gamma function for w ∈R– {0, –1, –2, . . . } is calculated using
the following equation:

�q(w) =
(1 – q)(w–1)

(1 – q)w–1 , (4)

it is worth noting that �q(w + 1) = [w]q�q(w) is valid.

Here we present Algorithm 1 for calculating different values of the q-gamma function;
also in Table 1 some numerical results for q = 1

5 , q = 1
2 , q = 8

9 are provided.

Algorithm 1 The proposed procedure to calculate �q(w)
function Gq = gamma-(w, q)
h = 1;

for k = 0 : x – 2
h = h ∗ (1 – q(k+1));

end
Gq = h/(1 – q)(w–1);
end

Table 1 Numerical result for �q(w)

w q = 1
5 q = 1

2 q = 8
9

0.2 0.8365 0.5743 0.1724
0.5 0.8944 0.7071 0.3333
0.8 0.9564 0.8706 0.6444
1.2 1.0456 1.1487 1.5519
1.5 1.1180 1.4142 3.0002
1.9 1.2224 1.8661 7.2253
2.5 1.1180 1.4142 3.0002
2.8 1.1954 1.7411 5.8000
3.3 1.2831 1.8467 3.6517
3.5 1.3416 2.1213 5.6670
4.5 1.6636 3.7123 15.1821
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Definition 2.3 ([53]) Suppose that �(w) is a continuous function, then the q-derivative of
this function is defined as

(Dq�)(w) =
�(w) – �(qw)

(1 – q)w
,

as well as, (Dq�)(0) = limw→0(Dq�)(w). Moreover, we can extend the q-derivative of this
function to any arbitrary order by means of (Dn

q�)(w) = Dq(Dn–1
q �)(w), such that n ∈ N,

and (Dn
q�)(w) = �(w).

Definition 2.4 ([53]) Let � be a continuous map defined on [0,b], then the q-antiderivative
of � is called the Jackson integral of � and is illustrated as follows:

Iq�(w) =
∫ w

0
�(s) dqs = w(1 – q)

∞∑

j=0

qj
�
(
qjw

)
,

(
w ∈ [0,b]

)

that the right-hand side absolutely converges. The q-antiderivative of � can be extended
to any arbitrary order by means of In

q�(w) = I(In–1
q �(w)).

Remark 2.1 ([53]) Let the function � be continuous at w = 0, then we have

⎧
⎨

⎩
Iq(Dq�(w)) = �(w) – �(0),

Dq(Iq�(w)) = �(w) for all w.

Remark 2.2 ([53]) According to the following relations, we can replace the order of double
q-integral:

∫ w

0

∫ u

0
�(s) dqs dqu =

∫ w

0

∫ w

qs
�(u) dqu dqs

since
∫ w

0

∫ w

qs
�(u) dqu dqs =

∫ w

0
(w – qs)κ–1

�(s) dqs

= w(1 – q)
∞∑

j=0

qj
�
(
qjw

)(
w – qj+1w

)

= w2(1 – q)2
∞∑

j=0

qj
�
(
qjw

)
[ ∞∑

j=0

qj

]

.

Moreover, it can be written for the left

∫ w

0

∫ u

0
�(s) dqs dqu = w(1 – q)

∞∑

j=0

qj
∫ wqj

0
�(u) dqu

= w2(1 – q)2
∞∑

j=0

∞∑

k=0

qj+2k
�
(
qj+kw

)
.
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Definition 2.5 ([54]) The fractional Riemann–Liouville quantum integral of order $ for
a continuous function l(w) : [0,∞] →R is defined by

I$
q l(w) =

1
�q($)

∫ w

0
(w – qs)$–1l(s) dqs. (5)

Definition 2.6 ([54]) The fractional Caputo quantum derivative of order $ for a continu-
ous function l(w) : [0,∞] →R is defined by

cD$l(w) =
1

�q(n – $)

∫ w

0
(w – qs)n–$–1Dn

q l(s) dqs, n = [$] + 1. (6)

Lemma 2.7 ([55]) Let n = [$] + 1, then

(CI$
q

CD$
ql

)
(w) = l(w) –

n–1∑

k=0

wk

�q(k + 1)
(
Dk

ql
)
(0).

Indeed, the general solution for CD$
ql(w) = 0 is l(w) = y0 + y1w + y2w2 + · · · + yn–1wn–1 such

that y0, . . . ,yn–1 ∈R.

Here, to help visualize fractional calculations, we present graphs of two functions in
Figs. 1 and 2.

Notation 2.8 Assume that (K,d) is a metric space. We denote the set of all subsets of K
and the set of all nonempty subsets of K by P(K) and 2K, respectively. Also assume that
the symbols Pbd(K), Pcl(K), Pcp(K), and Pcv(K) represent the class of all bounded, closed,
compact, and convex subsets of K, respectively.

Definition 2.9 ([56]) Let F : K → 2K be a mapping. It is called a multifunction on K, also
an element p ∈ K is a fixed point of F whenever p ∈ F (p). Moreover, for multifunction

Figure 1 The graph of I$ex
2
, where I$ is the Riemann–Liouville fractional integral
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Figure 2 The graph ofDα sin(x), whereDα is the Riemann–Liouville fractional derivative

F , an element p ∈K is called an endpoint of F whenever F (p) = {p}. Also, we say that F
has an approximate property whenever infp∈K supr∈F (p) d(p, r) = 0.

Suppose that F : K → Pcl(K) is a multifunction and A is an open set in K, then we
say that F is lower semi-continuous(lsm) if the set F–1(A) := {r ∈ K : F (r) ∩ A �= φ} is
open [57]. Also it is called upper semi-continuous(usm) if the set {r ∈ K : F (r) ⊂ A} is
open. A multifunction F : K → Pcp(K) is called compact if F (B) is a compact set of K
for any bounded subset B of K. Let I = [0, 1], and the multifunction F : I → Pcl(R) is
called measurable if the function f �→ d(r,F (f )) = inf{|r – y| : y ∈ F (f )} is measurable for
all r ∈R [57].

Definition 2.10 ([57]) Let (K,d) be a metric space, we define the well-known Pompeiu–
Hausdorff metric Hd : 2K × 2K → [0,∞] by

Hd(U , V ) =
{

sup
u∈U

d(u, V ), sup
v∈V

d(U , v)
}

,

where d(U , v) = infu∈U d(u, v). Then (Pbd,cl(K),Hd) is a metric space and (Pcl(K),Hd) is a
generalized metric space.

A multifunction F : K → Pcl(K) is called an α-contraction if ∃α ∈ (0, 1) whenever
Hd(F (p1),F (p2)) ≤ αd(p1, p2) for all p1, p2 ∈ K. Nadler’s fixed point theorem states that:
if F is a closed-valued contractive set-valued map on a complete metric space, then F has
a fixed point [58].

Definition 2.11 Let A = C(J,R), we define the following spaces:

Zi =
{

l(t) : l(t), l′(t), l′′(t),c D�i
q l(t) ∈A

}

endowed with the norm

‖l‖i = sup
t∈J

∣
∣l(t)

∣
∣ + sup

t∈J

∣
∣l′(t)

∣
∣ + sup

t∈J

∣
∣l′′(t)

∣
∣ + sup

t∈J

∣
∣cD�i

q l(t)
∣
∣.
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Now, regard the space K = Z1 × Z2 endowed with the norm ‖(l1, l2)‖ = ‖l1‖ + ‖l2‖, then
(K,‖.‖) is a Banach space [58].

Definition 2.12 For l = (l1, l2) ∈K, we define

S∗
F ,l =

{
f ∈ L1(J) : f(t) ∈F

(
t, l(t), l′(t), l′′(t),c D�1

q l(t),c D�2
q l(t)

)
for all t ∈ J

}

that is called the set of selection of S∗. If dimK < ∞, then S∗
F ,l �= φ for all l ∈K [58].

To prove our main result, we use the endpoint technique presented in 2010 by Amini-
Harandi [56].

Lemma 2.13 ([56]) Let (K,d) be a complete metric space, and regard:
1 A map ψ : [0,∞) → [0,∞) that is (usm) where ψ(w) < w and

lim infw→∞(w – ψ(w)) > 0 for all w > 0;
2 A multifunction map F : K →Pcl,bd(K) with Hd(F (p),F (r)) ≤ ψ(d(p, r)) for any

p, r ∈K.
Then F has a unique endpoint iff F has an approximate endpoint property.

3 Main results
Now, after stating the above preparations, we can get our main results. First we start with
a lemma.

Lemma 3.1 Let $ ∈ (2, 3] and v(t) ∈ A. Then the quantum fractional problem cD$
ql(t) = v(t)

with boundary condition (2) has a unique solution which is obtained by

l(t) = I$
q v(t) + θB1(t)I$

q v(ð) + θB2(t)I$
q
[
I

$
qv(r)

]
(1) + θB3(t)I$–2

q v(1) (7)

such that

θ =
[(

2P +
c
3

)(
að +

b
2

– S(a + b)
)

– c
(

að2 +
b
3

)(
1
2

– S
)]–1

�= 0 (8)

and

B1(t) = a
(

2P +
c
3

)
(S – t) + ac

(
1
2

– S
)

t2,

B2(t) =
[

c
(

að2 +
b
3

)
– (a + b)

(
2P +

c
3

)]
(t – S)

+ c
[

b
(

S +
1
2

)
+ S(a + b) – að –

b
2

]
t2,

B3(t) = P
(

að2 +
b
3

)
(t – S) + P

(
S(a + b) – að –

b
2

)
t2.

Proof With regard to Lemma 2.7 the solution of cD$
ql(t) = v(t) is

l(t) = I$
q v(t) + y0 + y1t + y2t2 (9)
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such that y0,y1andy2 ∈R. Now, by taking derivative from l(t), we have

⎧
⎨

⎩
l′(t) = y1 + 2y2t + I$–1

q v(t),

l′′(t) = 2y2 + I$–2
q v(t),

(10)

and by exerting the boundary conditions (2) to (10) we have

⎧
⎪⎪⎨

⎪⎪⎩

y0 + Sy1 = 0,

(a + b)y0 + (að + b
2 )y1 + (að2 + b

3 )y2 = –aI$
q v(ð) – bI$

q [I$
qv(r)](1),

cy0 + c
2y1 + (P + c

3 )y2 = –PI$–2
q v(1) – cI$

q [I$
qv(r)](1).

Now we can compute y0, y1, y2 as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 = Sθ [a(2P + c
3 )I$

q v(ð) – [c(að2 + b
3 )

– (a + b)(2P + c
3 )]I$

q [I$
qv(r)](1) – P(að2 + b

3 )I$–2
q v(1)],

y1 = θ [[c(að2 + b
3 ) – (a + b)(2P + c

3 )]I$
q [I$

qv(r)](1)

– a(2P + c
3 )I$

q v(ð) + P(að2 + b
3 )I$–2

q v(1)],

y2 = θ [ac( 1
2 – S)I$

q v(ð) + [c(b(S + 1
2 ) + S(a + b) – að – b

2 )]I$
q [I$

qv(r)](1)

+ P(S(a + b) – að – b
2 )I$–2

q v(1)].

Now, by replacing y0, y1, y2 in (9), we obtain (7). �

Notation 3.2 To continue the work and for ease of understanding of the calculations per-
formed, we introduce some symbols here. According to the definition of B1(t), B2(t), B3(t),
we have

∣∣B1(t)
∣∣ ≤ |a|

(
2|P| +

|c|
3

)
|S + 1| + |c|

∣
∣∣
∣
1
2

+
∣
∣∣
∣S|| := B

∗
1,

∣∣B2(t)
∣∣ ≤ |c|

(
|a|ð2 +

|b|
3

)
+ |a + b|

(
2|P| +

|c|
3

)(
1 + |S|)

+ |c|
(

|b|
(

|S| +
1
2

)
+ |S||a + b| + |a|ð +

|b|
2

)
:= B

∗
2,

∣
∣B3(t)

∣
∣ ≤ |P|

(
|a|ð2 +

|b|
3

)(
1 + |S|) + |P|

(
|S||a + b| + |a|ð +

|b|
2

)
:= B

∗
3;

moreover

∣
∣B′

1(t)
∣
∣ ≤ |a|

(
2|P| +

|c|
3

)
+ |a||c|

∣∣
∣∣
1
2

+
∣∣
∣∣S|| := B

∗′
1 ,

∣
∣B′

2(t)
∣
∣ ≤ |c|

(
|a|ð2 +

|b|
3

)
+ |a + b|

(
2|P| +

|c|
3

)

+ 2|c|
(

|b|
(

|S| +
1
2

)
+ |S||a + b| + |a|ð +

|b|
2

)
:= B

∗′
2 ,

∣∣B′
3(t)

∣∣ ≤ |P|
(

|a|ð2 +
|b|
3

)
+ 2|P|

(
|S||a + b| + |a|ð +

|b|
2

)
:= B

∗′
3 ,
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also

∣
∣B′′

1(t)
∣
∣ ≤ |a||c|

∣∣
∣∣
1
2

+
∣∣
∣∣S|| := B

∗′′
1 ,

∣∣B′′
2(t)

∣∣ ≤ 2|c|
(

|b|
(

|S| +
1
2

)
+ |S||a + b| + |a|ð +

|b|
2

)
:= B

∗′′
2 ,

∣∣B′′
3(t)

∣∣ ≤ 2|P|
(

|S||a + b| + |a|ð +
|b|
2

)
:= B

∗′′
3 .

Now, by applying quantum Caputo fractional derivative from order �i ∈ (1, 2], i = 1, 2 on
B1(t), B2(t), B3(t), we get

cD�i
q B1(t) = a

(
2P +

c
3

)[
–

1
�q(2 – �i)

t(1–�i)
]

+ ac
(

1
2

– S
)[

2
�q(3 – �i)

t(2–�i)
]

,

cD�i
q B2(t) =

(
c
(

að2 +
b
3

)
– (a + b)

(
2P +

c
3

))[
1

�q(2 – �i)
t(1–�i)

]

+ c
(

b
(

S +
1
2

)
+ S(a + b) – að –

b
2

)[
2

�q(3 – �i)
t(2–�i)

]
,

cD�i
q B3(t) = P

(
að2 +

b
3

)[
1

�q(2 – �i)
t(1–�i)

]

+ P
(

S(a + b) – að –
b
2

)[
2

�q(3 – �i)
t(2–�i)

]
,

from which it can be concluded

∣
∣cD�i

q B1(t)
∣
∣ ≤ |a|

(
2|P| +

|c|
3

)[
1

�q(2 – �i)

]
+ |a||c|

∣∣
∣∣
1
2

+
∣∣
∣∣S||

[
2

�q(3 – �i)

]
:= B

∗∗
1 ,

∣∣cD�i
q B2(t)

∣∣ ≤ |c|
(

|a|ð2 +
|b|
3

)
+ |a + b|

(
2|P| +

|c|
3

)[
1

�q(2 – �i)

]

+ |c|
(

|b|
(

|S| +
1
2

)
+ |S||a + b| + |a|ð +

|b|
2

)[
2

�q(3 – �i)

]
:= B

∗∗
2 ,

∣∣cD�i
q B3(t)

∣∣ ≤ |P|
(

|a|ð2 +
|b|
3

)[
1

�q(2 – �i)

]

+ |P|
(

|S||a + b| + |a|ð +
|b|
2

)[
2

�q(3 – �i)

]
:= B

∗∗
3 .

The following conditions must be met to prove our main theorem.
(C1) Given the multivalued map F : J × R

5 → Pcp(R) is integrable bounded, so that
F (·, v, u, x, y, z) : [0.1] →Pcp(R) is measurable.

(C2) For the nondecreasing (usc) map ψ : [0,∞) → [0,∞), we have lim infw→∞(w –
ψ(w)) > 0 and ψ(w) < w for any w > 0.

(C3) There exists � ∈ C(J, [0,∞)) such that

Hd

(
F (t, u1, u2, u3, u4, u5),F (t, v1, v2, v3, v4, v5)

)

≤ 1
�1 + �2 + �3 + �41 + �42

�(t)ψ

( 5∑

i=1

|uk – vk|
)
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for all t ∈ J and uk , vk ∈ R, k = 1, . . . , 5, where

�1 = ‖�‖
[

1
�q($ + 1)

+
|θ |B∗

1
�q($ + 1)

ð
$ +

|θ |B∗
2

�q($ + 2)
+

|θ |B∗
3

�q($ – 1)

]
,

�2 = ‖�‖
[

1
�q($ – 1)

+
|θ |B∗′

1
�q($ + 1)

ð
$ +

|θ |B∗′
2

�q($ + 2)
+

|θ |B∗′
3

�q($ – 1)

]
,

�3 = ‖�‖
[

1
�q($ – 2)

+
|θ |B∗′′

1
�q($ + 1)

ð
$ +

|θ |B∗′′
2

�q($ + 2)
+

|θ |B∗′′
3

�q($ – 1)

]
,

and for i = 1, 2,

�4i = ‖�‖
[

1
�q($ – �i + 1)

+
|θ |B∗∗

1
�q($ + 1)

ð
$ +

|θ |B∗∗
2

�q($ + 2)
+

|θ |B∗∗
3

�q($ – 1)

]
.

(C4) Let M : K → 2K be given as follows:

M(k) =
{
p ∈K : ∃f ∈ S∗

F ,lp(t) = �(t),∀t ∈ J
}

such that

�(t) = I$
q f(t) + θB1(t)I$

q f(ð) + θB2(t)I$
q
[
I

$
qf(r)

]
(1) + θB3(t)I$–2

q f(1).

Theorem 3.3 Suppose that conditions (C1) – (C4) are satisfied. If M : K → 2K has the
approximate endpoint property, then quantum problem (1)–(2) has a solution.

Proof We prove that the endpoint of M : K → 2K is the solution to inclusion (1)–(2). For
this, we first show that M(k) is a closed subset of K for all k ∈K.

For ∀k ∈K, the map t �→F (t, l(t), l′(t), l′′(t),c D�1
q l(t),c D�2

q l(t)) is measurable and closed
value. So, it has measurable selection, and hence f ∈ S∗

F ,l �= φ for all l ∈K.
Let k ∈K, and {xn}n≥1 be a sequence in M(k) such that xn → x. ∀n ∈ N, choose fn ∈ S∗

F ,l ,
where

xn = I$
q fn(t) + θB1(t)I$

q fn(ð) + θB2(t)I$
q
[
I

$
qfn(r)

]
(1) + θB3(t)I$–2

q fn(1)

for all t ∈ J.
As we know, F has compact values, then the sequence fn has a subsequence that con-

verges to some f ∈ L1[0, 1]. We show this again with fn.
It is easy to check that f ∈ S∗

F ,l and

xn(t) → x(t) = I$
q f(t) + θB1(t)I$

q f(ð) + θB2(t)I$
q
[
I

$
qf(r)

]
(1) + θB3(t)I$–2

q f(1)

for all t ∈ J. Indeed, this gives that x ∈ M(k), therefore K has closed values. Moreover,
since F has compact values, then M(k) for all k ∈K is a bounded set.

Finally, we shall show that Hd(M(u),M(v)) ≤ ψ(‖u – v‖). Let u, v ∈ K and p1 ∈ M(v).
Choose f1 ∈ S∗

F ,l such that

p1(t) = I$
q f1(t) + θB1(t)I$

q f1(ð) + θB2(t)I$
q
[
I

$
qf1(r)

]
(1) + θB3(t)I$–2

q f1(1)

for almost all t ∈ J.
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But since

Hd

(
F (t, u1, u2, u3, u4, u5),F (t, v1, v2, v3, v4, v5)

)

≤ 1
�1 + �2 + �3 + �41 + �42

�(t)ψ

( 5∑

i=1

|uk – vk|
)

,

thus ∃w ∈F (t, l(t), l′(t), l′′(t),c D�1
q l(t),c D�2

q l(t)) such that ∀t ∈ J:

∣
∣f1(t) – w

∣
∣ ≤ 1

�1 + �2 + �3 + �41 + �42

�(t)ψ

( 5∑

i=1

|uk – vk|
)

.

Regard the set-valued map N : J →P(R) by

N(t) =

{

w ∈R :
∣
∣f1(t) – w

∣
∣ ≤ 1

�1 + �2 + �3 + �41 + �42

�(t)ψ

( 5∑

i=1

|uk – vk|
)}

.

Since 1
�1+�2+�3+�41 +�42

�(t)ψ(
∑5

i=1 |uk – vk|) and f1 are measurable, hence the set-valued

map N(·) ∩F (·, l(·), l′(·), l′′(·),c D�1
q l(·),c D�2

q l(·)) is measurable.
Choose f2(t) ∈F (t, l(t), l′(t), l′′(t),c D�1

q l(t),c D�2
q l(t)) such that ∀t ∈ J

∣∣f1(t) – f2(t)
∣∣ ≤ 1

�1 + �2 + �3 + �41 + �42

�(t)ψ

( 5∑

i=1

|uk – vk|
)

.

Now, for all t ∈ J, let p2 ∈ M(k) by

p2 = I$
q f2(t) + θB1(t)I$

q f2(ð) + θB2(t)I$
q
[
I

$
qf2(r)

]
(1) + θB3(t)I$–2

q f2(1).

Afterwards, let supt∈J |�(t)| = ‖�‖, so

∣
∣p1(t) – p2(t)

∣
∣ ≤ I$

q [f1 – f2](t) + θB1(t)I$
q [f1 – f2](ð)

+ θB2(t)I$
q
[
I

$
q[f1 – f2](r)

]
(1) + θB3(t)I$–2

q [f1 – f2](1)

≤ 1
�1 + �2 + �3 + �41 + �42

‖�‖ψ(‖u – v‖)
[

1
�q($ + 1)

+
|θ |B∗

1
�q($ + 1)

ð
$

+
|θ |B∗

2
�q($ + 2)

+
|θ |B∗

3
�q($ – 1)

]
=

�1

�1 + �2 + �3 + �41 + �42

ψ
(‖u – v‖).

Also,

∣∣p′
1(t) – p

′
2(t)

∣∣ ≤ 1
�1 + �2 + �3 + �41 + �42

‖�‖ψ(‖u – v‖)
[

1
�q($ – 1)

+
|θ |B∗′

1
�q($ + 1)

ð
$

+
|θ |B∗′

2
�q($ + 2)

+
|θ |B∗′

3
�q($ – 1)

]
=

�2

�1 + �2 + �3 + �41 + �42

ψ
(‖u – v‖),
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and

∣
∣p′′

1(t) – p
′′

2(t)
∣
∣ ≤ 1

�1 + �2 + �3 + �41 + �42

‖�‖ψ(‖u – v‖)
[

1
�q($ – 2)

+
|θ |B∗′′

1
�q($ + 1)

ð
$

+
|θ |B∗′′

2
�q($ + 2)

+
|θ |B∗′′

3
�q($ – 1)

]
=

�3

�1 + �2 + �3 + �41 + �42

ψ
(‖u – v‖).

Moreover, for i = 1, 2, we have

∣
∣cD�i

q f1(t) –c D�i
q f2(t)

∣
∣

≤ 1
�1 + �2 + �3 + �41 + �42

‖�‖ψ(‖u – v‖)
[

1
�q($ – �i + 1)

+
|θ |B∗∗

1
�q($ + 1)

ð
$

+
|θ |B∗∗

2
�q($ + 2)

+
|θ |B∗∗

3
�q($ – 1)

]
=

�4i

�1 + �2 + �3 + �41 + �42

ψ
(‖u – v‖).

Finally, according to the above relations, it can be concluded that

‖p1 – p2‖ = sup
t∈J

∣∣p1(t) – p2(t)
∣∣ + sup

t∈J

∣∣p′
1(t) – p

′
2(t)

∣∣ + sup
t∈J

∣∣p′′
1(t) – p

′′
2(t)

∣∣

+ sup
t∈J

∣
∣cD�1

q f1(t) –c D�1
q f2(t)

∣
∣ + sup

t∈J

∣
∣cD�2

q f1(t) –c D�2
q f2(t)

∣
∣

≤ 1
�1 + �2 + �3 + �41 + �42

ψ
(‖u – v‖)(�1 + �2 + �3 + �41 + �42 )

= ψ
(‖u – v‖),

so Hd(M(u),M(v)) ≤ ψ(‖u – v‖) for all u, v ∈K.
Using Lemma 2.13 and the endpoint property of M, there exists u∗ ∈ K such that

M(u∗) = {u∗}. Thereupon, u∗ is a solution for quantum inclusion problem (1)–(2). �

4 Illustrative examples
To better understand our main result, we give an example in this section.

Example 4.1 Consider the nonlinear second order differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD
5
2
q l(t) ∈F [0, 3t2

50(1+t2) sin l(t) + 3
50 cos l′(t) + 3

50
|l′′(t)|

1+|l′′(t)| + 3
50

e|cD
3
2q l(t)|

1+e|cD
3
2q l(t)|

],

l(0) + 2l′(0) = 0,
11

100 l( 3
50 ) + 22

100
∫ 1

0 l(t) dt = 0,
1

16 l′′(1) + 33
100

∫ 1
0 l(t) dt = 0,

(11)

such that t ∈ J = [0, 1]. Regard the multifunction F : J×R
4 →Pcp(R) as follows:

F (t, u1, u2, u3, u4)

=
[

0,
3t2

50(1 + t2)
sin u1(t) +

3
50

cos u2(t) +
3

50
|u3(t)|

1 + |u3(t)| +
3

50
e|u4(t)|

1 + e|u4(t)|

]
.
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In this case it is clear that we set: $ = 5
2 , �1 = 3

2 , a = 11
100 , b = 22

100 , c = 33
100 , ð = 3

50 ,
S =

∑4
j=0 uj = 2 by uj = 1

2 , P =
∏j=k

j=0 wj = 1
16 by wj = 1

2 , and about functions �, ψ , we have
� : [0, 1] → [0,∞) with �(t) = 5

70 t, ‖�‖ = 5
70 , and ψ(t) = t

8 . It is obvious that ψ is nonde-
creasing (usc) on J. Hence, we have

θ =
[(

2P +
c
3

)(
að +

b
2

– S(a + b)
)

– c
(

að2 +
b
3

)(
1
2

– S
)]–1

=
[(

2
1

16
+

11
100

)(
11

100
3

50
+

11
100

– 2
(

11
100

+
22

100

))

–
33

100

(
11

100

(
3

50

)2

+
22

300

)(
1
2

– 2
)]–1

= 4.21.

In the same way, we can write

B
∗
1 = |a|

(
2|P| +

|c|
3

)
|S + 1| + |c|

∣∣
∣∣
1
2

+ |S|
∣∣
∣∣

=
11

100

(
2

1
16

+
11

100

)
(3) +

33
100

5
2

= 0.9025.

Also,

⎧
⎪⎪⎨

⎪⎪⎩

B∗
1 = 0.9025, B∗

2 = 0.6947, B∗
3 = 0.0623,

B∗′
1 = 0.0968, B∗′

2 = 0.9774, B∗′
3 = 0.1016,

B∗′′
1 = 0.9075, B∗′′

2 = 0.8755, B∗′′
3 = 0.0970.

By using Algorithm 1 and Table 1 for q = 1
5 , we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B∗∗
1 = 0.0060[ 1

�q( 1
2 )

] + 0.1815[ 1
�q( 3

2 )
] = 0.2828,

B∗∗
2 = 0.1018[ 1

�q( 1
2 )

] + 0.8755[ 1
�q( 3

2 )
] = 0.7830,

B∗∗
3 = 0.0046[ 1

�q( 1
2 )

] + 0.0970[ 1
�q( 3

2 )
] = 0.0918.

In the same way, one can compute for q = 1
5 and get �1 = 0.1957, �2 = 0.2678, �3 =

0.2643, �4 = 0.2377. Then it is easy to review that

Hd

(
F (t, u1, u2, u3, u4),F (t, v1, v2, v3, v4)

) ≤ 1
�1 + �2 + �3 + �4

�(t)ψ

( 4∑

i=1

|uk – vk|
)

,

and infu∈K(supv∈M(u) ‖u–v‖) = 0. Hence, by the endpoint property and using Theorem 3.3,
inclusion problem (11) has a solution. In Figs. 3 and 4 some of the functions in Example
4.1 are illustrated.
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Figure 3 The graph of F (t, l(t))

Figure 4 The graph of F (l′(t), l′′(t))

5 Conclusion
Understanding and interpreting physical phenomena have always been one of the topics of
interest to researchers. Attempts to provide a better explanation of these phenomena have
led to progress in various scientific fields and the connection between them. Quantum
calculus, as an interdisciplinary subject in mathematics and physics, is one of the tools of
modeling and approximation. In this paper, we investigated a quantum differential inclu-
sion problem using the endpoint property technique with the new boundary conditions.
One illustrative example and some numerical results have been provided to validate our
results and to show their importance.

Acknowledgements
The first author was supported by Islamic Azad University, Mehran Branch. The second author would like to thank Bu-Ali
Sina University. The third and fourth authors were supported by Azarbaijan Shahid Madani University. The authors express
their gratitude to dear unknown referees for their helpful suggestions which improved the final version of this paper.

Funding
Not applicable.



Shabibi et al. Advances in Difference Equations        (2021) 2021:466 Page 15 of 17

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved
the final manuscript.

Author details
1Department of Mathematics, Islamic Azad University, Mehran Branch, Mehran, Ilam, Iran. 2Department of Mathematics,
Bu-Ali Sina University, 65178, Hamedan, Iran. 3Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz,
Iran. 4Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 31 August 2021 Accepted: 4 October 2021

References
1. Rezapour, S., Imran, A., Hussain, A., Martinez, F., Etemad, S., Kaabar, M.K.A.: Condensing functions and approximate

endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 13(3), 469 (2021).
https://doi.org/10.3390/sym13030469

2. Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J.
Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70

3. Rezapour, S., Azzaoui, B., Tellab, B., Etemad, S., Masiha, H.P.: An analysis on the positivesSolutions for a fractional
configuration of the Caputo multiterm semilinear differential equation. J. Funct. Spaces 2021, Article ID 6022941
(2021). https://doi.org/10.1155/2021/6022941

4. Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A.., Etemad, S., Rezapour, S.: Investigation of the p-Laplacian
nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021,
68 (2021). https://doi.org/10.1186/s13662-021-03228-9

5. Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral
boundary value conditions by using three operators. Alex. Eng. J. 59(5), 3019–3027 (2020).
https://doi.org/10.1016/j.aej.2020.04.053

6. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver
with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020).
https://doi.org/10.1016/j.chaos.2020.109705

7. Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of cd4+ T-cell with a new approach
of fractional derivative. Adv. Differ. Equ. 2020, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w

8. Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for Covid-19 transmission by using the Caputo
fractional derivative. Chaos Solitons Fractals 140, 110107 (2020). https://doi.org/10.1016/j.chaos.2020.110107

9. Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo–Fabrizio fractional modeling
for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021).
https://doi.org/10.1016/j.chaos.2021.110668

10. Nieto, J.J., Pimentel, J.: Positive solutions of a fractional thermostat model. Bound. Value Probl. 2013, 5 (2013).
https://doi.org/10.1186/1687-2770-2013-5

11. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value
conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0

12. Garai, H., Dey, L.K., Chanda, A.: Positive solutions to a fractional thermostat model in Banach spaces via fixed point
results. J. Fixed Point Theory Appl. 20, 106 (2018). https://doi.org/10.1007/s11784-018-0584-8

13. Sabetghadam, F., Masiha, H.P.: Fixed-point results for multi-valued operators in quasi-ordered metric spaces. Appl.
Math. Lett. 25(11), 1856–1861 (2012). https://doi.org/10.1016/j.aml.2012.02.046

14. Sabetghadam, F., Masiha, H.P., Altun, I.: Fixed-point theorems for integral-type contractions on partial metric spaces.
Ukr. Math. J. 68, 940–949 (2016). https://doi.org/10.1007/s11253-016-1267-5

15. Masiha, H.P., Sabetghadam, F., Shahzad, N.: Fixed point theorems in partial metric spaces with an application. Filomat
27(4), 617–624 (2013)

16. Afshari, H., Shojaat, H., Moradi, M.S.: Existence of the positive solutions for a tripled system of fractional differential
equations via integral boundary conditions. Results Nonlinear Anal. 4(3), 186–193 (2021).
https://doi.org/10.53006/rna.938851

17. Sahlan, M.N., Afshari, H.: Three new approaches for solving a class of strongly nonlinear two-point boundary value
problems. Bound. Value Probl. 2021, 60 (2021). https://doi.org/10.1186/s13661-021-01536-3

https://doi.org/10.3390/sym13030469
https://doi.org/10.3906/mat-2010-70
https://doi.org/10.1155/2021/6022941
https://doi.org/10.1186/s13662-021-03228-9
https://doi.org/10.1016/j.aej.2020.04.053
https://doi.org/10.1016/j.chaos.2020.109705
https://doi.org/10.1186/s13662-020-02544-w
https://doi.org/10.1016/j.chaos.2020.110107
https://doi.org/10.1016/j.chaos.2021.110668
https://doi.org/10.1186/1687-2770-2013-5
https://doi.org/10.1186/s13661-020-01361-0
https://doi.org/10.1007/s11784-018-0584-8
https://doi.org/10.1016/j.aml.2012.02.046
https://doi.org/10.1007/s11253-016-1267-5
https://doi.org/10.53006/rna.938851
https://doi.org/10.1186/s13661-021-01536-3


Shabibi et al. Advances in Difference Equations        (2021) 2021:466 Page 16 of 17

18. Afshari, H., Gholamyan, H., Zhai, C.B.: New applications of concave operators to existence and uniqueness of solutions
for fractional differential equations. Math. Commun. 25(1), 157–169 (2020)

19. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional
differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A
Mat. 2021, 155 (2021). https://doi.org/10.1007/s13398-021-01095-3

20. Hazarika, B., Karapinar, E., Arab, R., Rabbani, M.: Metric-like spaces to prove existence of solution for nonlinear
quadratic integral equation and numerical method to solve it. J. Comput. Appl. Math. 328, 302–313 (2018).
https://doi.org/10.1016/j.cam.2017.07.012

21. Karapinar, E., Panda, S.K., Lateef, D.: A new approach to the solution of Fredholm integral equation via fixed point on
extended b-metric spaces. Symmetry 10(10), 512 (2018). https://doi.org/10.3390/sym10100512

22. Karapinar, E., Atangana, A., Fulga, A.: Pata type contractions involving rational expressions with an application to
integral equations. Discrete Contin. Dyn. Syst. 14(10), 3629–3640 (2021). https://doi.org/10.3934/dcdss.2020420

23. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a
fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652

24. Agarwal, R.P., Aksoy, U., Karapinar, E., Erhan, I.M.: F-contraction mappings on metric-like spaces in connection with
integral equations on time scales. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114, 147 (2020).
https://doi.org/10.1007/s13398-020-00877-5

25. Aksoy, U., Karapinar, E., Erhan, I.M.: Fixed point theorems in complete modular metric spaces and an application to
anti-periodic boundary value problems. Filomat 31(17), 5475–5488 (2017). https://doi.org/10.2298/FIL1717475A

26. Aksoy, U., Karapinar, E., Erhan, I.M.: Fixed points of generalized α-admissible contractions on b-metric spaces with an
application to boundary value problems. J. Nonlinear Convex Anal. 17(6), 1095–1108 (2016)

27. Panda, S.K., Karapinar, E., Atangana, A.: A numerical schemes and comparisons for fixed point results with applications
to solutions of Volterra integral equations in dislocated extended b-metric space. Alex. Eng. J. 59(2), 815–827 (2020).
https://doi.org/10.1016/j.aej.2020.02.007

28. Jackson, F.H.: q-difference equations. Am. J. Math. 32, 305–314 (1910). https://doi.org/10.2307/2370183
29. Jackson, F.H.: On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)
30. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty

type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)
31. Alqahtani, B., Aydi, H., Karapinar, E., Rakocevic, V.: A solution for Volterra fractional integral equations by hybrid

contractions. Mathematics 7(8), 694 (2019). https://doi.org/10.3390/math7080694
32. Bachir, F.S., Abbas, S., Benbachir, M., Benchohra, M.: Hilfer–Hadamard fractional differential equations; existence and

attractivity. Adv. Theory Nonlinear Anal. Appl. 5, 49–57 (2021)
33. Baitiche, Z., Derbazi, C., Benchohra, M.: ψ -Caputo fractional differential equations with multi-point boundary

conditions by topological degree theory. Results Nonlinear Anal. 3, 167–178 (2020)
34. Baleanu, D., Rezapour, S., Saberpour, S.: On fractional integro-differential inclusions via the extended fractional

Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0
35. Karapinar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application

to nonlinear fractional differential equations. Mathematics 7(5), 444 (2019). https://doi.org/10.3390/math7050444
36. Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Switzerland (2015).

https://doi.org/10.1007/978-3-319-25562-0
37. Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional q-difference inclusions

with q-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 59(107)(2), 119–134 (2016)
38. Samei, M.E., Rezapour, S.: On a system of fractional q-differential inclusions via sum of two multi-term functions on a

time scale. Bound. Value Probl. 2020, 135 (2020). https://doi.org/10.1186/s13661-020-01433-1
39. Abdeljawad, T., Baleanu, D.: Caputo q-fractional initial value problems and a q-analogue Mittag–Leffler function.

Commun. Nonlinear Sci. Numer. Simul. 16(12), 4682–4688 (2011). https://doi.org/10.1016/j.cnsns.2011.01.026
40. Li, Y., Liu, J., O’Regan, D., Xu, J.: Nontrivial solutions for a system of fractional q-difference equations involving

q-integral boundary conditions. Mathematics 8(5), 828 (2020). https://doi.org/10.3390/math8050828
41. Asawasamrit, S., Tariboon, J., Ntouyas, S.K.: Existence of solutions for fractional q-integro-difference equations with

nonlocal fractional q-integral conditions. Abstr. Appl. Anal. 2014, Article ID 474138 (2014).
https://doi.org/10.1155/2014/474138

42. Etemad, S., Ntouyas, S.K., Ahmad, B.: Existence theory for a fractional q-integro-difference equation with q-integral
boundary conditions of different orders. Mathematics 7(8), 659 (2016). https://doi.org/10.3390/math7080659

43. Sitthiwirattham, T.: On nonlocal fractional q-integral boundary value problems of fractional q-difference and
fractional q-integro-difference equations involving different numbers of order and q. Bound. Value Probl. 2016, 12
(2016). https://doi.org/10.1186/s13661-016-0522-x

44. Sitho, S., Sudprasert, C., Ntouyas, S.K., Tariboon, J.: Noninstantaneous impulsive fractional quantum Hahn
integro-difference boundary value problems. Mathematics 8(5), 671 (2020). https://doi.org/10.3390/math8050671

45. Zhao, Y., Chen, H., Zhang, Q.: Existence results for fractional q-difference equations with nonlocal q-integral boundary
conditions. Adv. Differ. Equ. 2013, 48 (2013). https://doi.org/10.1186/1687-1847-2013-48

46. Rezapour, S., Samei, M.E.: On the existence of solutions for a multi-singular pointwise defined fractional
q-integro-differential equation. Bound. Value Probl. 2020, 38 (2020). https://doi.org/10.1186/s13661-020-01342-3

47. Al-Salam, W.A.: q-analogues of Cauchy’s formula. Proc. Am. Math. Soc. 17(3), 182–184 (1952).
https://doi.org/10.2307/2035378

48. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)
49. Aubin, J., Cellna, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin (1984)
50. Ghorbanian, R., Hedayati, V., Postolache, M., Rezapour, S.: On a fractional differential inclusion via a new integral

boundary condition. J. Inequal. Appl. 2014, Article ID 319 (2014). https://doi.org/10.1186/1029-242X-2014-319
51. Rezapour, S., Hedayati, V.: On a Caputo fractional differential inclusion with integral boundary condition for

convex-compact and nonconvex-compact valued multifunctions. Kragujev. J. Math. 41(1), 143–158 (2017)
52. Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete

Math. 1(1), 311–323 (2007)

https://doi.org/10.1007/s13398-021-01095-3
https://doi.org/10.1016/j.cam.2017.07.012
https://doi.org/10.3390/sym10100512
https://doi.org/10.3934/dcdss.2020420
https://doi.org/10.1002/mma.6652
https://doi.org/10.1007/s13398-020-00877-5
https://doi.org/10.2298/FIL1717475A
https://doi.org/10.1016/j.aej.2020.02.007
https://doi.org/10.2307/2370183
https://doi.org/10.3390/math7080694
https://doi.org/10.1186/s13661-019-1194-0
https://doi.org/10.3390/math7050444
https://doi.org/10.1007/978-3-319-25562-0
https://doi.org/10.1186/s13661-020-01433-1
https://doi.org/10.1016/j.cnsns.2011.01.026
https://doi.org/10.3390/math8050828
https://doi.org/10.1155/2014/474138
https://doi.org/10.3390/math7080659
https://doi.org/10.1186/s13661-016-0522-x
https://doi.org/10.3390/math8050671
https://doi.org/10.1186/1687-1847-2013-48
https://doi.org/10.1186/s13661-020-01342-3
https://doi.org/10.2307/2035378
https://doi.org/10.1186/1029-242X-2014-319


Shabibi et al. Advances in Difference Equations        (2021) 2021:466 Page 17 of 17

53. Adams, C.R.: The general theory of a class of linear partial q-difference equations. Trans. Am. Math. Soc. 26, 283–312
(1924). https://doi.org/10.2307/1989141

54. Graef, J.R., Kong, L.: Positive solutions for a class of higher order boundary value problems with fractional
q-derivatives. Appl. Math. Comput. 218(19), 9682–9689 (2012). https://doi.org/10.1016/j.amc.2012.03.006

55. El-Shahed, M., Al-Askar, F.: Positive solutions for boundary value problem of nonlinear fractional q-difference
equation. Int. Sch. Res. Not. 2011, 385459 (2011). https://doi.org/10.5402/2011/385459

56. Amini-Harandi, A.: Endpoints of set-valued contractions in metric spaces. Nonlinear Anal., Theory Methods Appl.
72(1), 132–134 (2010). https://doi.org/10.1016/j.na.2009.06.074

57. Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer Academic, Dordrecht (1991)
58. Covitz, H., Nadler, S.B.: Multivalued contraction mappings in generalized metric spaces. Isr. J. Math. 8, 5–11 (1970).

https://doi.org/10.1007/BF02771543

https://doi.org/10.2307/1989141
https://doi.org/10.1016/j.amc.2012.03.006
https://doi.org/10.5402/2011/385459
https://doi.org/10.1016/j.na.2009.06.074
https://doi.org/10.1007/BF02771543

	Some analytical and numerical results for a fractional q-differential inclusion problem with double integral boundary conditions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Illustrative examples
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


