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Abstract
In our manuscript, we extend the controllability outcomes given by Bashirov (Math.
Methods Appl. Sci. 44(9):7455–7462, 2021) for a family of second-order semilinear
control system by formulating a sequence of piecewise controls. This approach does
not involve large estimations which are required to apply fixed point theorems.
Therefore, we avoid the use of fixed point theory and the contraction mapping
principle. We establish that a second-order semilinear system drives any starting
position to the required final position from the domain of the system. To achieve the
required results, we suppose that the linear system is exactly controllable at every
non-initial time period, the norm of the inverse of the controllability Grammian
operator increases as the time approaches zero with the slower rate in comparison to
the reciprocal of the square function, and the nonlinear term is bounded. Finally, an
example has been presented to validate the results.
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1 Introduction
Differential equations arise in many areas of science and technology, specifically when-
ever a deterministic relation involving some continuously varying quantities (modeled by
functions) and their rates of change in space and/or time is known or postulated. This is
illustrated in classical mechanics where the motion of a body is described by its position
and velocity as time varies. For the studies related to the existence of solution for integer-
and fractional-order systems, one can refer to [2–30]. The concept of controllability is one
of the underlying ideas in mathematical control theory. Controllability analysis is used in
several real-life problems which include, but are not limited to, rocket launching problems
for satellite and aircraft control, missiles and anti-missiles problems in defense, regulating
inflation rate in the economy, controlling sugar level in the blood, etc. A systematic study
of controllability was initiated by Kalman [31] in 1963 when the theory of controllability
for time-invariant and time-varying control systems in state-space form was developed.
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Several engineering and scientific problems can be expressed by infinite-dimensional
differential equations. Therefore, it becomes necessary to discuss the controllability re-
sults for infinite-dimensional systems. The controllability problems for finite-dimensional
nonlinear systems have been immensely analyzed by several authors. Many authors
have advanced the idea of controllability from finite-dimensional systems to infinite-
dimensional systems and determined appropriate requirements for the controllability of
nonlinear systems. Different techniques have been practiced for the examination of con-
trollability including fixed point theorems [32–34]. For more problems on controllability
and recent progresses on fractional calculus and its applications, please refer to [35–47].

Second-order differential equations represent abstract mathematical interpretations of
several partial differential equations which occur in many applications related to the oscil-
lation of fastened bars, the transverse motion of an extensible beam, and several other real-
world physical phenomena. Hence it becomes really important to determine the control-
lability outcomes for this kind of system. Controllability discussions for various second-
order nonlinear systems have been widely studied by several authors [33, 48–58]. Fixed
point theorems have been utilized greatly in determining the existence and controllability
results for different first-order and second-order systems which involve large estimations
on system constants see [33, 59, 60]. Recently Bashirov [1] obtained the exact controlla-
bility results for first-order semilinear systems using a new technique that is based on the
piecewise formulation of driving controls and without using fixed point theory. Earlier
the same approach was applied in terms of approximate controllability [61]. Motivated by
Bashirov [1], we extend the controllability results for second-order semilinear systems ex-
cluding the use of fixed point theory. It is centered on a piecewise formulation of steering
controls and does not involve large estimations which are required to apply fixed point
theorems. By constructing a piecewise sequence of controls, we determine that a second-
order semilinear system is exactly controllable to the domain of the system operator, that
is, it drives the system from any starting position to the required final position from the
domain of the system. To achieve the required results, we suppose the subsequent require-
ments:

(a) The corresponding linear system is exactly controllable at every non-initial time
period.

(b) The norm of the inverse of the controllability Grammian operator increases as the
time approaches zero with the slower rate in comparison to the reciprocal of the
square function.

(c) The nonlinear term is bounded.
Let us consider Z = L2[0, b;X] and Y = L2[0, b;U] as the function spaces defined on J =

[0, b], 0 ≤ b < ∞, where X and U are two Hilbert spaces. Consider the following second-
order semilinear control system:

⎧
⎪⎪⎨

⎪⎪⎩

p′′(t) = Ap(t) + Bv(t) + r(t, p(t)), for t ∈ (0, b],

p(0) = p0,

p′(0) = q0,

(1.1)

where
1 p(t) represents the state having values in Hilbert space X.
2 Control function v is defined from [0, b] →U.
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3 B is a bounded and linear operator from U into X.
4 The function r : [0, b] ×X→X is a purely nonlinear function which produces

nonlinearity in the system.
5 A : dom(A) ⊆X →X is linear, closed where dom(A) is a dense subset of X .

The linear system corresponding to (1.1) with state vector q(t) and control v is defined
by

⎧
⎪⎪⎨

⎪⎪⎩

q′′(t) = Aq(t) + Bv(t), for t ∈ (0, b],

q(0) = p0,

q′(0) = q0.

(1.2)

The article is structured in the subsequent manner:
1 Sect. 2 presents a few basic results related to control theory and second-order

systems.
2 Sect. 3 provides the assumptions which are required to obtain the controllability

results.
3 Sect. 4 discusses the controllability results using the new technique.
4 Sect. 5 presents an example to verify the established outcomes.

2 Auxiliary results
Here, we will review fundamental theories and a few definitions which would be helpful
for further discussions.

Definition 2.1 [62] A one-parameter family {C(t), t ∈ R} of bounded linear operators
mapping the Hilbert space X into itself is called a strongly continuous cosine family if
and only if

1 C(0) = I ;
2 C(s + t) + C(s – t) = 2C(s)C(t);
3 C(t)x is continuous in t on R for each fixed x ∈ X.

If {C(t), t ∈ R} is a strongly continuous cosine family in X, then {S(t), t ∈ R} is a one-
parameter family of operators in X defined by

S(t) =
∫ t

0
C(s) ds, t ∈R.

The infinitesimal generator of a strongly continuous cosine family {C(t), t ∈ R} is the op-
erator A : X→X defined by

Ax =
d2

dt2 C(0)x.

The domain of operator A is defined as

dom(A) =
{

x ∈X : C(t)x is a twice continuously differentiable function of t
}

.

These cosine and sine families defined above and generator A fulfill the following proper-
ties.
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Lemma 2.2 ([28]) Suppose that A is the infinitesimal generator of a cosine family of oper-
ators {C(t) : t ∈R}. Then the following hold:

(1) There exist M′ ≥ 1 and ω ≥ 0 such that ‖C(t)‖ ≤ M′eω|t|, and hence ‖S(t)‖ ≤ M′eω|t|.
(2) A

∫ r
s S(u)x du = [C(r) – C(s)]x for all 0 ≤ s ≤ r < ∞.

(3) There exists N ′ ≥ 1 such that ‖S(s) – S(r)‖ ≤ N ′| ∫ r
s eω|s| ds| for all 0 ≤ s ≤ r < ∞.

The uniform boundedness principle together with (1) implies that both {C(t) : t ∈ J} and
{S(t) : t ∈ J} are uniformly bounded and M = M′eω|b|.

Proposition 2.3 ([62]) Let {C(t), t ∈ R} be a strongly continuous cosine family in X with
infinitesimal generator A. The following are true:

1 S(0) = 0.
2 C(t) = C(–t) and S(t) = –S(–t) for all t ∈R.
3 If x ∈ E, then S(t)x, C(t)x ∈ dom(A) and d

dt S(t)x = C(t)x, and d
dt C(t)x = AS(t)x,

where E = {x : C(t)x is once continuously differentiable function of t}.
4 If x ∈ dom(A), then S(t)x ∈ dom(A) and AS(t)x = S(t)Ax.
5 If x ∈ dom(A), then C(t)x ∈ dom(A) and d2

dt2 C(t)x = AC(t)x = C(t)Ax.
6 If x ∈ E, then limt→0 AS(t)x = 0.

Proposition 2.4 ([62]) Let {C(t), t ∈ R} be a strongly continuous cosine family in X. The
operator Â : X→X defined by

Âx = lim
t→0

(C(2t)x – x)
2t2 ,

with domain x ∈ X for which this limit exists, is the infinitesimal generator of the cosine
family {C(t), t ∈R}.

Suppose Uad = L2[0, b;U], which is the set of admissible controls. We define the mild so-
lution of the given semi linear system (1.1) and its corresponding linear system as follows.

Definition 2.5 The mild solution of system (1.1) is defined by a function p(·) ∈ X which
satisfies the following integral equation:

⎧
⎪⎪⎨

⎪⎪⎩

p(t) = C(t)p0 + S(t)q0 +
∫ t

0 S(t – s){Bv(s) + r(s, p(s))}ds, t ∈ (0, b],

p(0) = p0,

p′(0) = q0,

(2.1)

and the mild solution of the corresponding linear system (1.2) is described by the following
integral equation:

⎧
⎪⎪⎨

⎪⎪⎩

q(t) = C(t)p0 + S(t)q0 +
∫ t

0 S(t – s)Bv(s) ds, t ∈ (0, b],

q(0) = p0,

q′(0) = q0.

(2.2)

Definition 2.6 ([1]) System (1.1) is said to be approximately controllable in the time in-
terval [0, b] if, for the given starting position (p0, q0) ∈ X and the required final position
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(pF , qF ) ∈X and ε > 0, there exists a control function v ∈ Uad such that the solution of (1.1)
satisfies

∥
∥p(b) – pF

∥
∥ < ε,

∥
∥p′(b) – qF

∥
∥ < ε,

where p(b) is the state value of system (1.1) at time t = b. If p(b) = pF , then the system is
said to be exactly controllable. The system is said to be exactly controllable to dom(A) on
[0, b] if, for the given starting position (p0, q0) ∈X and the required final position (pF , qF ) ∈
dom(A), there exists a control function v ∈ Uad such that the solution of the system satisfies
p(b) = pF , p′(b) = qF .

Remark 2.7 Note that the exact controllability to dom(A) lies in between the exact and
approximate controllability. Therefore, it is a weaker concept than the exact controllabil-
ity. In real life applications, sometimes we are more concerned with attaining the points
from dom(A). If it is possible to reach the points from X\dom(A) as well, then it can be
considered as an additional capability of the system.

3 Assumptions
Let us introduce the controllability Grammian operator W associated with linear system
(1.2) by

W (t) =
∫ t

0
S(s)BB∗S∗(s) ds, 0 ≤ t ≤ b,

where S∗(s) denotes the adjoint of S(s).

Theorem 3.1 The corresponding linear system (1.2) is exactly controllable on the interval
[h, b] iff W (b – h) is coercive. The control which drives the system from the starting position
(q(h), q′(h)) ∈ X to the final position (pF , qF ) ∈ X is given by

v(t) = B∗S∗(b – t)
(
W (b – h)

)–1(pF – C(b – h)q(h) – S(b – h)q′(h)
)

(h ≤ t ≤ b). (3.1)

Proof The result can be seen in [59]. Moreover, it can be easily verified by substituting
the above defined control in the mild solution of the corresponding linear system that it
transfers (q(h), q′(h)) to (pF , qF ) on the interval [h, b]. �

Remark 3.2 The coercivity of W (t) indicates that (W (t))–1 is a bounded linear operator.
We say that W (t) is coercive if there exists γ > 0 such that 〈W (t)x, x〉 ≥ γ ‖x‖2 for all x ∈ X.
Here W (0) = 0 and, therefore, it fails to be coercive. But it may be coercive for 0 < t ≤ b.
Therefore, the above result holds on [h, b].

To determine the main result, we make the following assumptions on the controllability
Grammian operator W and the nonlinear function r(t, p):

(I) W (t) is coercive for all 0 < t ≤ b.
(II) There exists some N ≥ 0 such that

t1+α
∥
∥
(
W (t)

)–1∥∥ ≤ N for all 0 < t ≤ b, 0 ≤ α < 1.
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That is, ‖(W (t))–1‖ → ∞ as t → 0+ with the slower rate in comparison to the
reciprocal of the square function as

∥
∥
(
W (t)

)–1∥∥ ≤ N
t1+α

<
N
t2 ,

for small values of t.
(III) The nonlinear function r is Lebesgue measurable in t.
(IV) r is Lipschitz continuous in p.
(V) r is bounded in [0, b] ×X, i.e., there exists K > 0 such that

∥
∥r(t, p)

∥
∥ ≤ K for all (t, p) ∈ [0, b] ×X.

4 Results on controllability
In this section, we primarily focus on the study of exact controllability of the assumed
system.

Theorem 4.1 System (1.1) is exactly controllable to dom(A) on the interval [0, b] for every
b > 0 provided assumptions (I)–(V) hold.

Proof: We construct a piecewise sequence of driving controls to formulate the required
control function v which drives the given system from the starting position (p0, q0) ∈X to
the final position (pF , qF ) ∈ dom(A) in the following manner.

For this, consider the sequence {hn} which is defined by hn = b
2n for n = 1, 2, . . . .

We have
∑∞

n=1 hn = b. For the sake of simplicity, let us take h0 = 0 and

b0 = h0, b1 = h0 + h1, . . . , bn =
n∑

k=0

hk , . . .

Then limn→∞ bn =
∑∞

k=0 hk = b.
Using Theorem 3.1, the corresponding linear system (1.2) is exactly controllable on

[b0, b1] along with the control

v1(�) = B∗S∗(b1 – �)
(
W (h1)

)–1(C(h1)(pF – p0) + S(h1)(qF – q0)
)
, b0 ≤ � ≤ b1,

which steers the initial state p0 to C(h1)pF + S(h1)qF .
That is,

C(h1)pF + S(h1)qF = C(h1)p0 + S(h1)q0 +
∫ b1

b0

S(b1 – s)Bv1(s) ds.

Define v on [b0, b1] by letting v(�) = v1(�). Then, from (2.1), we obtain

p(b1) = C(h1)pF + S(h1)qF +
∫ b1

b0

S(b1 – s)r
(
s, p(s)

)
ds.

For brevity, let p(b1) = p1. Next, consider (1.2) on [b1, b2]. By Theorem 3.1, the control

v2(�) = B∗S∗(b2 – �)
(
W (h2)

)–1(C(h2)(pF – p1) + S(h1)
(
qF – p′(b1)

))
, b1 ≤ � ≤ b2,
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steers p1 to C(h2)pF + S(h2)qF . Writing p′(b1) = q1, then the control u2(�) can be written
as

v2(�) = B∗S∗(b2 – �)
(
W (h2)

)–1(C(h2)(pF – p1) + S(h2)(qF – q1)
)
, b1 ≤ � ≤ b2.

That is,

C(h2)pF + S(h2)qF = C(h2)p1 + S(h2)q1 +
∫ b2

b1

S(b2 – s)Bv2(s) ds.

Define v on (b1, b2] by letting v(�) = v2(�). Then, from (2.1), we obtain

p(b2) = C(h2)pF + S(h2)qF +
∫ b2

b1

S(b2 – s)r
(
s, p(s)

)
ds.

For the sake of convenience, let p(b2) = p2. Progressing in this fashion, we acquire a se-
quence of driving controls

vn(�) = B∗S∗(bn – �)
(
W (hn)

)–1(C(hn)(pF – pn–1) + S(hn)(qF – qn–1)
)
,

bn–1 ≤ � ≤ bn, (4.1)

where qn–1 = p′(bn–1).
After combining the above sequence of controls, we get the control function as follows:

v(�) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1(�) if b0 ≤ � ≤ b1,

v2(�) if b1 < � ≤ b2,

. . . . . .

vn(�) if bn–1 < � ≤ bn,

. . . . . .

and

pn = p(bn) = C(hn)pF + S(hn)qF +
∫ bn

bn–1

S(bn – s)r
(
s, p(s)

)
ds. (4.2)

Now by using the assumption (V), we get

‖pn – pF‖ ≤ ∥
∥C(hn)pF – pF

∥
∥ +

∥
∥S(hn)qF

∥
∥ +

∫ bn

bn–1

∥
∥S(bn – s)

∥
∥
∥
∥r

(
s, p(s)

)∥
∥ds

≤ ∥
∥C(hn)pF – pF

∥
∥ +

∥
∥S(hn)qF

∥
∥ + KMhn, n = 1, 2, . . . , (4.3)

where M = sup[0,b] ‖C(�)‖ and K = sup[0,b]×X ‖r(�, p)‖.
Since C(�) is strongly continuous, S(0) = 0 and limn→∞ hn = 0.
Therefore, limn→∞ pn = pF . Also,

qn = p′(bn) = AS(hn)pF + C(hn)qF +
∫ bn

bn–1

C(bn – s)r
(
s, p(s)

)
ds.
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Thus, we have

‖qn – qF‖ ≤ ∥
∥AS(hn)pF

∥
∥ +

∥
∥C(hn)qF – qF

∥
∥ +

∫ bn

bn–1

∥
∥C(bn – s)

∥
∥
∥
∥r

(
s, p(s)

)∥
∥ds

≤ ∥
∥AS(hn)pF

∥
∥ +

∥
∥C(hn)qF – qF

∥
∥ + KMhn, n = 1, 2, . . . . (4.4)

Since C(�) is strongly continuous, S(0) = 0 and limn→∞ hn = 0.
Therefore, limn→∞ qn = qF .
Next we prove that v ∈ Uad . Since every vn of v is continuous on the interval (bn–1, bn]

for n = 0, 1, 2, . . . , hence v is measurable. Also,

∫ bn

bn–1

∥
∥vn(�)

∥
∥2 d�

=
∫ bn

bn–1

∥
∥B∗S∗(bn – �)

(
W (hn)

)–1(C(hn)(pF – pn–1) + S(hn)(qF – qn–1)
)∥
∥2 d�

=
∫ bn

bn–1

〈
S(bn – �)BB∗S∗(bn – �)

(
W (hn)

)–1(C(hn)(pF – pn–1) + S(hn)(qF – qn–1)
)
,

(
W (hn)

)–1(C(hn)(pF – pn–1) + S(hn)(qF – qn–1)
)〉

d�

=
〈(

C(hn)(pF – pn–1) + S(hn)(qF – qn–1)
)
,

(
W (hn)

)–1(C(hn)(pF – pn–1) + S(hn)(qF – qn–1)
)〉

≤ M2∥∥
(
W (hn)

)–1∥∥
(‖pF – pn–1‖2 + ‖qF – qn–1‖2), n = 1, 2, . . .

Therefore, by (4.3) and (4.4),

∫ b

0

∥
∥v(�)

∥
∥2 d�

=
∞∑

n=0

∫ bn+1

bn

∥
∥vn+1(�)

∥
∥2 d�

≤ M2
∞∑

n=0

∥
∥
(
W (hn+1)

)–1∥∥
(‖pF – pn‖2 + ‖qF – qn‖2)

≤ M2
∞∑

n=0

∥
∥
(
W (hn+1)

)–1∥∥
[(∥

∥C(hn)pF – pF
∥
∥ +

∥
∥S(hn)qF

∥
∥ + KMhn

)2

+
(∥
∥AS(hn)pF

∥
∥ + |∥∥C(hn)qF – qF

∥
∥ + KMhn

)2].

Since C(h0)pF = pF and KMh0 = 0, we obtain

∫ b

0

∥
∥v(�)

∥
∥2 d�

≤ M2
∞∑

n=1

∥
∥
(
W (hn+1)

)–1∥∥.
(∥
∥C(hn)pF – pF

∥
∥ +

∥
∥S(hn)qF

∥
∥ + KMhn

)2
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+ M2
∞∑

n=1

∥
∥
(
W (hn+1)

)–1∥∥.
(∥
∥AS(hn)pF

∥
∥ +

∥
∥C(hn)qF – qF

∥
∥ + KMhn

)2

≤ M2
∞∑

n=1

(hn+1)(1+α)∥∥
(
W (hn+1)

)–1∥∥
(

hn

hn+1

)2

.
(

1
(hn+1)α–1

)(‖C(hn)pF – pF‖
hn

+
‖S(hn)qF‖

hn
+ KM

)2

+ M2
∞∑

n=1

(hn+1)(1+α)∥∥
(
W (hn+1)

)–1∥∥
(

hn

hn+1

)2( 1
(hn+1)α–1

)

.
(‖AS(hn)pF‖

hn

+
‖C(hn)qF – qF‖

hn
+ KM

)2

= 4M2
∞∑

n=1

(hn+1)1+α
∥
∥
(
W (hn+1)

)–1∥∥
(

1
(hn+1)α–1

)(
hn

2
.
2‖C(hn)pF – pF‖

h2
n

+
‖S(hn)qF‖

hn
+ KM

)2

+ 4M2
∞∑

n=1

(hn+1)1+α
∥
∥
(
W (hn+1)

)–1∥∥
(

1
(hn+1)α–1

)(‖S(hn)ApF‖
hn

+
hn

2
2‖C(hn)qF – qF‖

h2
n

+ KM
)2

.

Since lim�→0
C(2t)pF –pF

2t2 = ÂpF , using proposition (2) results in

lim
n→∞

2(C(hn)pF – pF )
h2

n
= ÂpF and lim

n→∞
2(C(hn)qF – qF )

h2
n

= ÂqF ,

which implies

2‖C(hn)pF – pF‖
h2

n
≤ P and

2‖C(hn)qF – qF‖
h2

n
≤ P′

for some P, P′ > 0.
Then, by using assumption (II),

∫ b

0

∥
∥v(�)

∥
∥2 d� ≤ 4M2N

∞∑

n=1

(
1

(hn+1)α–1

)(

P
hn

2
+ C + KM

)2

+ 4M2N
∞∑

n=1

(
1

(hn+1)α–1

)(

L + P′ hn

2
+ KM

)2

,

where ‖qF‖ ≤ C and ‖ApF‖ ≤ L for some C, L > 0.
Since 0 < α < 1, therefore the series

∞∑

n=1

1
(hn+1)α–1 ,

∑∞
n=1

hn
(hn+1)α–1 and

∑∞
n=1

h2
n

(hn+1)α–1 are convergent.
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This shows that v ∈ Uad . Therefore, p is continuous and

lim
t→b

p(�) = lim
n→∞ pn = pF and lim

t→b
p′(�) = lim

n→∞ qn = qF .

Thus, p(b) = pF and p′(b) = qF .

5 Example
Consider the partial differential equation:

∂2

∂t2 u(�, y) = uxx(�, y) + γ (�, y) + σ (�, u(�, y));
u(�, 0) = u(�,π ) = 0 for t > 0.

}

(5.1)

Let X = L2[0,π ] and γ : [0, b] × (0,π ) → R be a continuous control function in �. Define
the operator A : D(A) →X by

Aη = η′′; η ∈ D(A)

with D(A) = {η ∈ X : η,η′ are absolutely continuous η′′ ∈ X,η(0) = η(π ) = 0}. A is an in-
finitesimal generator of a strongly continuous cosine family C(�) on X. Moreover, the
spectrum of A consists of eigenvalues –n2 for n = 1, 2, 3, . . . , with the associated normal-
ized eigenvectors ηn(s) = (2/π )1/2 sin(ns). In particular,

Aη =
∞∑

n=1

(
–n2)(η,ηn)ηn, η ∈ D(A).

The cosine function C(�) and the sine function S(�) are defined in the following way:

C(�)η =
+∞∑

n=1

cos n�(η,ηn)ηn, η ∈X,

S(�)η =
+∞∑

n=1

1
n

sin n�(η,ηn)ηn, η ∈X,

respectively. Define r : J ×X →X by

r(�, u)(y) = σ
(
�, u(y)

)
; u ∈X, y ∈ [0,π ].

Let v : [0, b] →U be defined by

v(�)(y) = γ (�, y); y ∈ [0,π ].

Define the controllability operator in the following way:

W (�) =
∫ �

0
S(s)BB∗S∗(s) ds, 0 ≤ � ≤ b

=
∫ �

0
S(s)S∗(s) ds, as B = I.
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Let us choose the system operator A in such a way that W (�) is coercive for all 0 < � ≤ b
and there exists some N ≥ 0 such that

�1+α
∥
∥
(
W (�)

)–1∥∥ ≤ N ∀0 < � ≤ b and 0 ≤ α < 1.

Also, the nonlinear function σ can be considered satisfying conditions (III)–(V).
The considered PDE (5.1) can be converted to (1.1). Therefore, system (5.1) is exactly

controllable to dom(A).

6 Conclusion
In the present manuscript, the exact controllability to dom(A) for a second-order semi-
linear system has been discussed using a new technique which avoids fixed point theo-
rems and does not involve large estimations on the system constants. The control func-
tion has been formulated by the piecewise construction of steering controls. These results
can be further extended for systems with delay or deviated arguments with impulses and
fractional-order systems.
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