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Abstract
A highly efficient new three-step derivative-free family of numerical iterative schemes
for estimating all roots of polynomial equations is presented. Convergence analysis
proved that the proposed simultaneous iterative method possesses 12th-order
convergence locally. Numerical examples and computational cost are given to
demonstrate the capability of the method presented.
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1 Introduction
A lot of engineering and physical problems can be formulated as a nonlinear polynomial
equation

f (r) = rn + an–1rn–1 + · · · + a0 =
n∏

j=1

(r – ζj) = (r – ζi)
n∏

j=1
j �=i

(r – ζj), (1)

where ζ1 · · · ζn denote all the simple or complex roots of (1). Classical Newton’s method
has local quadratic convergence given as

s(t) = r(t) –
f (r(t))
f ′(r(t))

(t = 0, 1, . . . , n). (2)

But method (2) has a major drawback, i.e., it requires evaluation of derivative at each step,
which requires high computational cost. To overcome this, using forward difference ap-
proximation of f ′(r(t))

f ′(r(t)) ∼= f (r(t) + f (r(t))) – f (r(t))
f (r(t))

, (3)
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in (2), we get Steffensen’s iterative method [1] of convergence order 2:

s(t) = r(t) –
(f (r(t)))2

f (r(t) + f (r(t))) – f (r(t))
. (4)

Later, Farooq et al. [2] presented the following derivative-free method having local
quadratic convergence:

s(t) = r(t) –
α(f (r(t)))2

f (r(t) + αf (r(t))) – f (r(t))
, (5)

where α ∈ R. In the last few years, a lot of work has been done on those numerical iterative
methods which approximate single root at one time of (1) (see, e.g., [3–7]). Besides these
single root estimating methods in literature, we found another class of derivative-free it-
erative schemes which approximate all roots of (1) simultaneously. Iterative methods for
approximating all roots of (1) have been very popular in recent years due to their global
convergence and parallel implementation on computer (see, e.g., Weierstrass [8], Kanno
[9], Proinov [10], Petković [11], Mir [12], Nourein [13], Aberth [14] and the references
cited therein [15–23]).

Among derivative-free simultaneous methods, Weierstrass–Dochive [24] method is the
most attractive method given by

s(t)
i = r(t)

i – w
(
r(t)

i
)
, (6)

where

w
(
r(t)

i
)

=
f (r(t)

i )
∏n

j=1
j �=i

(r(t)
i – r(t)

j )
(i, j = 1, 2, 3, . . . , n)

is Weierstrass correction. Method (6) has local quadratic convergence.
Nedzibove et al. [25] presented the following simultaneous method having a local

quadratic convergence:

z(t)
i = y(t)

i –
f (r(t)

i )w(r(t)
i )

f (r(t)
i ) – f (y(t)

i )
, (7)

where y(t)
i = r(t)

i – w(r(t)
i ).

Petkovic et al. [11] escalated the convergence order of Ehrlich iterative numerical
schemes from three to ten (abbreviated as NIM10):

s(t)
i = r(t)

i –
1

1
Ni(r

(t)
i )

–
∑n

j=1
j �=i

1
(r(t)

i –
∗
v(t)

j )

, (8)

where
∗
v(t)

j = u(t)
j –

(y(t)
j –u(t)

j )f (u(t)
j )(

f (r(t)
j )

f ′(r(t)
j )

)

(f (r(t)
j )–f (u(t)

j ))2
[f (y(t)

j ) –
(f (r(t)

j ))2

f (y(t)
j )–f (u(t)

j )
], u(t)

j = y(t)
j –

f (r(t)
j )f (y(t)

j )(
f (r(t)

j )

f ′(r(t)
j )

)

(f (r(t)
j )–f (y(t)

j ))2
, y(t)

j =

r(t)
j –

f (r(t)
j )

f ′(r(t)
j )

.
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The main aim of this paper is to construct a high order efficient derivative-free family
of methods among all existing simultaneous methods in the literature.

2 Construction of simultaneous method
Consider well-known three-step Newton methods [26] of convergence order eight as fol-
lows:

v(t) = u(t) –
f (u(t))
f ′(u(t))

, (9)

where u(t) = s(t) – f (s(t))
f ′(s(t)) and s(t) = r(t) – f (r(t))

f ′(r(t)) . Taking Weierstrass correction [24]

f (r(t)
i )

f ′(r(t)
i )

= w
(
r(t)

i
)

=
f (r(t)

i )
∏n

j=1
j �=i

(r(t)
i – r(t)

j )
, (10)

and replacing r(t)
j =

∗
s(t)

j in (10), we have

f (r(t)
i )

f ′(r(t)
i )

=
f (r(t)

i )
∏n

j=1
j �=i

(r(t)
i –

∗
s(t)

j )
, (11)

where
∗
s(t)

j = r(t)
j –

α(f (r(t)
j ))2

f (r(t)
j +αf (r(t)

j ))–f (r(t)
j )

. Using f (r(t)
i )

f ′(r(t)
i )

= f (r(t)
i )

∏n
j=1
j �=i

(r(t)
i –

∗
s(t)
j )

, f (s(t)
i )

f ′(s(t)
i )

= f (s(t)
i )

∏n
j=1
j �=i

(s(t)
i –s(t)

j )
, and

f (u(t)
i )

f ′(u(t)
i )

= f (u(t)
i )

∏n
j=1
j �=i

(u(t)
i –u(t)

j )
in (9), we have

v(t)
i = u(t)

i –
f (u(t)

i )
∏n

j=1
j �=i

(u(t)
i – u(t)

j )
, (12)

where u(t)
i = s(t)

i – f (s(t)
i )

∏n
j=1
j �=i

(s(t)
i –s(t)

j )
and s(t)

i = r(t)
i – f (r(t)

i )
∏n

j=1
j �=i

(r(t)
i –

∗
s(t)
j )

.

Thus, we have constructed a new simultaneous iterative method (12), which is abbrevi-
ated as NIM12.

2.1 Convergence aspect
In this section, we prove that method NIM12 has local convergence order 12.

Theorem 1 Let ζ1, . . . , ζn be the n simple roots of (1). If r(0)
1 , . . . , r(0)

n are the initial estimates
of the roots respectively and sufficiently close to actual roots, then NIM12 has a convergence
order 12.

Proof Let εi = r(t)
i – ζi, ε′

i = s(t)
i – ζi, ε′′

i = u(t)
i – ζi, and ε′′′

i = v(t)
i – ζi be the errors in ri, si, ui,

and vi, respectively. From (12), the first step of NIM12, we have

s(t)
i – ζi = r(t)

i – ζi – wi
(
r(t)

i
)
,
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ε′
i = εi – εi

wi(r(t)
i )

εi
,

ε′
i = εi(1 – Ei), (13)

where

Ei =
wi(r(t)

i )
εi

=
n∏

j �=i
j=1

(r(t)
i – ζj)

(r(t)
i –

∗
s(t)

j )
, (14)

r(t)
i – ζj

r(t)
i –

∗
s(t)

j

= 1 +
∗
s(t)

j – ζj

r(t)
i –

∗
s(t)

j

= 1 + O
(
ε2),

and
∗
s(t)

j – ζj = O(ε2) see [2]. For a simple root ζ and small enough ε, |r(t)
i –

∗
s(t)

j | is bounded
away from zero, and so

n∏

j �=i
j=1

(r(t)
i – ζj)

(r(t)
i –

∗
s(t)

j ))
=

(
1 + O

(
ε2))n–1 = 1 + (n – 1)O

(
ε2) = 1 + O

(
ε2),

Ei = 1 + O
(
ε2),

Ei – 1 = O
(
ε2).

Thus, (13) gives

ε′
i = O(ε)3. (15)

From the second step of NIM12, we have

u(t)
i – ζi = s(t)

i – ζi – wi
(
s(t)

i
)
,

ε′′
i = ε′

i – ε′
i
wi(s(t)

i )
ε′

i
,

ε′′
i = ε′

i(1 – Ui), (16)

where

Ui =
wi(s(t)

i )
ε′

i
=

n∏

j �=i
j=1

(s(t)
i – ζj)

(s(t)
i – s(t)

j )
,

s(t)
i – ζj

s(t)
i – s(t)

j

= 1 +
s(t)

i – ζj

s(t)
i – s(t)

j

= 1 + O
(
ε′

i
)
.

For a simple root ζ and small enough ε, |s(t)
i –

(t)
s j| is bounded away from zero, so

n∏

j �=i
j=1

(s(t)
i – ζj)

(s(t)
i – s(t)

j )
=

(
1 + O

(
ε′))n–1 = 1 + (n – 1)O

(
ε′) = 1 + O

(
ε′),
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Ui = 1 + O
(
ε′),

1 – Ui = O
(
ε′),

ε′′
i = O

(
ε′)2.

Since from (15), ε′
i = O (ε)3. Thus,

ε′′
i = O

(
(ε)3)2,

ε′′
i = O(ε)6. (17)

From the third step of NIM12, we have

v(t)
i – ζi = u(t)

i – ζi – wi
(
u(t)

i
)
,

ε′′′
i = ε′′

i – ε′′
i

wi(u(t)
i )

ε′′
i

,

ε′′′
i = ε′′

i (1 – Gi), (18)

where

Gi =
wi(ui)

ε′′
i

=
n∏

j �=i
j=1

(u(t)
i – ζj)

(u(t)
i – u(t)

j )
,

u(t)
i – ζj

u(t)
i – u(t)

j

= 1 +
u(t)

j – ζj

u(t)
i – u(t)

j

= 1 + O
(
ε′′

i
)
. (19)

With the same argument used in (16), we have

n∏

j �=i
j=1

(u(t)
i – ζj)

(u(t)
i – u(t)

j )
=

(
1 + O

(
ε′′))n–1 = 1 + (n – 1)O

(
ε′′) = 1 + O

(
ε′′).

Therefore,

Gi = 1 + O
(
ε′′),

1 – Gi = O
(
ε′′),

ε′′′
i = O

(
ε′′)2. (20)

Since from (17) ε′′
i =O(ε)6, we obtain

ε′′′
i = O

(
(ε)6)2,

ε′′′
i = O(ε)12. (21)

Hence, (21) proves 12th order convergence. �
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Table 1 Number of operations (real arithmetic)

Methods ASm Mm Dm

NIM12 7m2 + O(m) 5m2 + O(m) 2m2 + O(m)
NIM10 22m2 + O(m) 18m2 + O(m) 2m2 + O(m)

3 Computational aspect
In this section, we compare the computational efficiencies of methods NIM10 and NIM12.
As presented in [11], we can formulate the efficiency indices as follows:

ρ(NIM12, NIM10) =
(

E(NIM12)
E(NIM10)

– 1
)

× 100 (22)

or

ρ(NIM10, NIM12)) =
(

E(NIM10)
E((NIM12))

– 1
)

× 100, (23)

where

E(IN) =
log r

Q
. (24)

The cost of computation is represented by Q [11] and convergence order by r given as

Q = Q(m) = wasASm + wmMm + wdDm. (25)

Using the expression of Q in (24), we have

EL(m) =
(

log r
wasASm + wmMm + wdDm

)
. (26)

The number of operations of real arithmetic of a complex polynomial with real and com-
plex roots reduces to operations of real arithmetic as given in Table 1.

Figure 1(a)–(b) shows the percentage ratios of NIM10 and NIM12. It is evident from
Fig. 1(a)–(b) that NIM12 is much better than NIM10.

Figure 1(a)–(b) shows the computational efficiency of simultaneous method NIM12 and
NIM10 with respect to each other. Figure 1(a)–(b) clearly shows the dominance efficiency
of our newly constructed method NIM12 over NIM10.

4 Numerical results
For numerical calculations, we use the following stopping criteria to terminate the com-
puter programme using Maple 18 with 125-digit floating point arithmetic:

e(t)
i =

∥∥r(t+1)
i -r(t)

i
∥∥

2 < 10–30,

where e(t)
i represents the absolute error. In all the tables, CPU means computational time

in seconds. In all numerical calculations, we take α = 12/130.

Application in engineering

In this section, we also discuss some applications from engineering.
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Figure 1 Percentage computational efficiency of simultaneous method NIM12 w.r.t NIM10

Table 2 Residual errors of simultaneous methods NIM10 and NIM12 for finding all roots of f1(r)

Method CPU e(3)1 e(3)2 e(3)3 e(3)4 e(3)5 e(3)6 e(3)7 e(3)8

NIM10 0.766 6.9e–10 2.3e–12 6.1e–11 5.0e–11 2.7e–9 1.7e–11 7.6e–9 1.0e–13
NIM12 0.250 2.7e–25 4.5e–25 1.1e–23 1.6e–23 5.0e–24 1.2e–23 4.5e–24 8.0e–25

Example 1 ([27]) Consider

f1(r) = (r + 1)(r + 2)
(
r2 – 2r + 2

)(
r2 + 1

)
(r – 2)(r + 2 – i),

with exact roots

ζ1 = –1, ζ2 = –2, ζ3,4 = 1 ± i, ζ5,6 = ±i, ζ7 = 2, ζ8 = –2 + i.

The initial guessed values have been taken as follows:

(0)
r1 = –1.3 + 0.2i,

(0)
r2 = –2.2 – 0.3i,

(0)
r 3 = 1.3 + 1.2i,

(0)
r 4 = 0.7 – 1.2i,

(0)
r 5 = –0.2 + 0.8i,

(0)
r 6 = 0.2 – 1.3i,

(0)
r 7 = 2.2 – 0.3i,

(0)
r 8 = –2.2 + 0.7i.

Table 2 evidently illustrates the supremacy behavior of NIM12 over NIM10 in estimated
absolute error and in CPU time on the same number of iterations n = 3 for guesstimating
all roots of the nonlinear polynomial equation used in Example 1.



Shams et al. Advances in Difference Equations        (2021) 2021:465 Page 8 of 10

Table 3 Residual errors of simultaneous methods NIM10 and NIM12 for finding all roots of f2(r)

Method CPU e(4)1 e(4)2 e(4)3 e(4)4

NIM10 0.071 1.3e–25 1.4e–25 4.5e–28 1.2e–28
NIM12 0.031 0.0 0.0 1.3e–37 1.3e–38

Example 2 ([28] Fractional conversion) The expression described in [29, 30]

f2(r) = r4 – 7.79075r3 + 14.7445r2 + 2.511r – 1.674 (27)

is the fractional conversion of nitrogen, hydrogen feed at 250 atm. and 227k.
The exact roots of (27) are:

ζ1 = 3.9485 + 0.3161i, ζ2 = 3.9485 – 0.3161i, ζ3 = –0.3841, ζ4 = 0.2778.

The initial calculated values of (27) have been taken as follows:

(0)
r1 = 3.5 + 0.3i,

(0)
r2 = 3.5 – 0.3i,

(0)
r 3 = –0.3 + 0.01i,

(0)
r 4 = 1.8 + 0.01i.

Table 3 evidently illustrates the supremacy behavior of NIM12 over NIM10 in estimated
absolute error and in CPU time on the same number of iterations n = 4 for guesstimating
all roots of the nonlinear polynomial equation used in Example 2.

Example 3 ([27] Continuous stirred tank reactor (CSTR)) An isothermal CSTR is con-
sidered here. Items E1 and E2 are fed to the reactor at rates of R and q-R, respectively.
Complex chain reactions are developed in the reactor given as follows:

E1 + E2 −→ E3, E3 + E2 −→ E4, E4 + E2 −→ E5, E4 + E2 −→ E6.

This problem was first tested by Douglas (see [31]), and the following equation of transfer
function of the rector was found:

Hc
2.98(r + 2.25)

(r + 1.45)(r + 2.85)2(r + 4.35)
= –1, (28)

Hc being the gain of the proportional controller. This transfer function yields the following
nonlinear equation by taking Hc = 0:

f3(r) = r4 + 11.50r3 + 47.49r2 + 83.06325r + 51.23266875 = 0. (29)

The transfer function has four negative real roots, i.e., r1 = –1.45, r2 = –2.85, r3 = –2.85,
r4 = –4.45.

The initial calculated values of (29) have been taken as follows:

(0)
r1 = –1.0,

(0)
r2 = –1.1,

(0)
r 3 = –2.2,

(0)
r 4 = –3.9.

Table 4 evidently illustrates the supremacy behavior of NIM12 over NIM10 in estimated
absolute error and in CPU time on the same number of iterations n = 4 for guesstimating
all roots of the nonlinear polynomial equation used in Example 3.
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Table 4 Residual errors of simultaneous methods NIM10 and NIM12 for finding all roots of f3(r)

Method CPU e(4)1 e(4)2 e(4)3 e(4)4

NIM10 0.016 0.1 0.05 0.20 1.9e–3
NIM12 0.015 1.1e–8 1.1e–8 8.0e–32 2.7e–32

5 Conclusion
We have developed here a family of three-step simultaneous methods of order 12 which
is the highest order derivative-free simultaneous iterative method among existing meth-
ods in the literature. From Tables 1–4 and Fig. 1(a), (b), we observe that our family of
derivative-free simultaneous methods NIM12 is admirable in terms of efficiency, CPU
time, and residual errors as compared to the NIM10 method.
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