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Abstract

Developable surfaces have a vital part in geometric modeling, architectural design,
and material manufacturing. Developable Bézier surfaces are the important tools in
the construction of developable surfaces, but due to polynomial depiction and
having no shape parameter, they cannot describe conics exactly and can only handle
a few shapes. To tackle these issues, two straightforward techniques are proposed to
the computer-aided design of developable generalized blended trigonometric Bézier
surfaces (for short, developable GBT-Bézier surfaces) with shape parameters. A
developable GBT-Bézier surface is established by making a collection of control
planes with generalized blended trigonometric Bernstein-like (for short, GBTB) basis
functions on duality principle among points and planes in 4D projective space. By
changing the values of shape parameters, a group of developable GBT-Bézier surfaces
that preserves the features of the developable GBT-Bézier surfaces can be generated.
Furthermore, for a continuous connection among these developable GBT-Bézier
surfaces, the necessary and sufficient G' and G? (Farin-Boehm and beta) continuity
conditions are also defined. Some geometric designs of developable GBT-Bézier
surfaces are illustrated to show that the suggested scheme can settle the shape and
position adjustment problem of developable Bézier surfaces in a better way than
other existing schemes. Hence, the suggested scheme has not only all geometric
features of current curve design schemes but surpasses their imperfections which are
usually faced in engineering.

Keywords: GBTB basis functions; Shape control of developable GBT-Bézier curve,
Developable GBT-Bézier surfaces; Duality; Enveloping developable GBT-Bézier
surfaces; Spine curve developable GBT-Bézier surfaces; Properties; Continuity
conditions; Modeling examples

1 Introduction

Due to the ease of engineering procedure, developable surfaces are especially fascinating
and tempting. A developable surface is acquired by simply twisting a plane in the absence
of any contraction or stretching. In the language of differential geometry, a smooth surface
having zero Gaussian curvature at each point on it is known as a developable surface. De-
velopable surfaces may be distort but have powerful isometric features. They can be calmly
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parameterized remarkably as to conserve arc lengths, they are marvelous applicants for
structure mapping. Consequently, numerous products which utilize leather sheets, metal,
paper, and other identical malleable materials are designed taking developable surfaces.
Actual developable surfaces have an instinctive implementation in several fields of engi-
neering and manufacturing as an aircraft architect uses them to form airplane wings and
a tinsmith uses them to attach two tubes of different designs with flattened sections of
metal sheets. In plat-metal-based manufacturing industries, the designing of developable
surfaces is contemplated as a very imperative petition.

From an assortment of fabrication like computer animation, architecture, automotive,
clothing, footwear, image processing, and shipbuilding, the development of developable
surfaces has taken more consideration. Therefore, the research issue for the construction
and designing of developable surfaces is consistently important in CAD/CAM [2, 3] as itis
concerned with modeling and invigorating objects which are examined in daily life. In this
context, Chung et al. [1] suggested a technique to make shoe uppers by taking triangles
and also to improve the surface to make it more developable.

The designing techniques for developable surfaces have two divisions: The first is the
point geometric representation and the second is the line and plane geometric represen-
tation familiar as dual representation. Further two particular approaches are there in point
geometric representation to bargain with this manifestation. First approach is to build up
a developable surface on the support of the original direction and given directrix, and the
second approach is to formulate it by two interpolating boundary curves. Aumann [4] de-
signed some interpolating developable Bézier patches with some essential and adequate
requirements to free them from singular points. Additionally, he also derived G! and G?
continuity requirements among these patches. Algorithms that present the developable
surfaces using Bézier curve of arbitrary shape and order were generated by Aumann [5, 6]
in which the control of singular points is insured. As a directrix of developable Bézier
surface, Zhang et al. [7] used a space Bézier curve and explored the geometric design of
developable Bézier surfaces. As a generality of Aumann’s algorithm for Bézier developable
surfaces to B-spline developable surfaces, Fernandez [8] provided a linear algorithm for
construction of a random number of pieces and order B-spline control nets of spline de-
velopable surfaces. Chu et al. [9] introduced a CAGD technique to interpolate a strip in
the conical form described by two space curves along with developable patches.

Hwang et al. [10] proposed developable surfaces by folding a planar segment around
cylinders and cones, and also through successive mappings, he designed complicated de-
velopable surfaces taking various cones and cylinders of different shapes and sizes. How-
ever, the point geometric representation has some deficiencies such as the ambiguous de-
scription of a developable surface and the nonlinearity of characteristic equations, which
results in tough computation. Hence, the aforementioned drawbacks limit its area of ap-
plication. On the other hand, dual or plane geometric description presents a developable
surface like a curve in a dual projective space, which removes the flaws of point geometric
representation.

For the first time to create developable surfaces, Bodduluri and Ravani [11, 12] suggested
the dual B-spline and Bézier interpretations and made their practical and effective use to
the engineering designs of the corresponding developable surface. In the meantime, ex-
plicit interpretation of developable surface was given, and further studies have been done
in this context along with some important conclusions [13—17]. In [11-16], the structure
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of a developable surface was decided by its control planes only, which causes a problem
for an engineering appearance model. For the sake of resolving this problem, rational de-
velopable surfaces [13, 14] have been used. These surfaces can be adjusted by modifying
their weight factors without disturbing control planes. Anyhow, usage of rational fractions
further generates some other difficulties such as singularity and complex analysis formula
[20].

To tackle the shape adjustment issue and maintain the advantages of developable sur-
faces, Zhou et al. and Hu et al. proposed developable surfaces manipulating C-Bézier and
A-Bézier basis functions along one shape parameter in [17] and [21] respectively. How-
ever, having one shape parameter the above constructed developable surfaces have limited
shape control. Li and Zhu [18] developed G' connection of four pieces of developable sur-
faces with Bézier boundary curves using de Casteljau algorithm. Chu and Chen [19] con-
structed G? geometric design of developable surfaces that consist of consecutive Bézier
patches In recent times, using multiple shape parameters, Hu et al. [22-25] introduced
some straightforward schemes for computer-aided design of developable Bézier-like, H-
Bézier, generalized quartic H-Bézier, and generalized C-Bézier developable surfaces se-
quentially. For a smooth continuous connection (G' and G?) among the above-proposed
surfaces, the author in [22-25] also computed the essential continuity requirements and
described their application in geometric modeling. Kusno [26] constructed the regular
developable Bézier patches. Recently, Li, Hu et al., and Ammad et al. proposed the de-
signing approaches for developable C-Bézier [27], cubic developable C-Bézier surfaces
[28], and generalized developable cubic trigonometric Bézier surfaces [29], respectively.
These schemes bring a beneficial opportunity for the developable surfaces to the actual
geometric modeling techniques.

In surface modeling, the construction of a developable surface using a trigonometric
polynomial function space is a fascinating issue. With the progress of CAD/CAM appli-
cation software, our proposed developable GBT-Bézier surfaces will come up with a con-
temporary set of mathematical theory, and its utilization area also comprises computer
graphics, shipbuilding, automotive, architecture, clothing, footwear, computer animation,
image processing, etc.

In this study, some technical contributions are made which are as follows:

+ Construction of GBT-Bézier surface by a new set of GBTB functions with two shape

parameters.

+ Construction of some computer-based engineering surfaces using GBT-Bézier with
shape parameters.

« The complex computer-based developable surfaces using GBT-Bézier patches are
composed by G¥(k = 1,2, 3) continuity conditions.

« Our described developable GBT-Bézier surfaces take over the most advantageous
features of the classical developable Bézier surfaces. Moreover, the shape adjustment
property is additional to that of classical developable Bézier surfaces which makes it
superior to the classical one.

+ The approach becomes more convenient and efficient because the exclusion of
complex calculations comes from the nonlinearity of characteristic equations.

+ The local and overall shape of a composite developable GBT-Bézier surface with a
smooth connection can be accommodated by modifying its shape parameters without

re-establishing the control planes.
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Figure 1 GBTB basis functions with different shape parameters

This research work is laid out: Definition and features of GBT-Bézier curves are given in
Sect. 2. Section 3 presents the corresponding enveloping developable and spine curve de-
velopable GBT-Bézier surfaces along with their properties. To expose the potency of the
scheme, modeling examples of the proposed enveloping developable and spine curve de-
velopable GBT-Bézier are illustrated in Sect. 4. In Sect. 5, continuity requirements among
these developable GBT-Bézier surfaces with some practical examples are given. Finally,

Sect. 6 gives a summarizing ending.

2 Some preliminaries

2.1 The generalized blended trigonometric Bernstein-like basis functions with
shape parameters

Definition 1 The 2nd degree GBTB basis functions with respect to x having shape pa-

rameters i, v are defined as follows:

8o2(x) = (1 - sin(Fx))(1 — wsin(Fx)),
812(x) = (1 — go2(%) — g22(x)),
£22(%) = (1 - cos(Fx))(1 — v cos(5x)),

where i, v € [-1,1] and x € [0, 1]. Also, for all integers k(k > 3), the GBTB basis functions
gik(x) (i=0,1,2,...,k) can be recursively defined as follows:

Gik(®) = (1 — x)gik—1(%) + xgi_1,k-1(x), (2.1)

where g; (%) are known as GBTB basis functions of degree k [31].
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The GBTB basis functions g;(x) become zero (g;«(x) = 0) for i = —1 or i > k. Different
degrees GBTB basis functions are illustrated in Fig. 1 with different values of their shape

parameters as i, v = —1 (green), —0.3 (purple), 0.3 (yellow), and 1 (pink).

Theorem 1 The GBTB basis functions have the subsequent features:

1. Degeneracy: For t,v = 1 and sin(5x), 1 — cos(5x) = z, the kth degree GBTB basis
functions are just like the traditional kth degree Bernstein basis functions
(gix(x) =Bix(x),i=0,1,...,k k> 2).

2. Non-negativity: gix(x) >0 (i =0,1,2,...,k) for any value of u,v € [-1,1].

3. Partition of unity: Zf:o Zik(x) = 1.

4. Symmetry: Forevery u=v, gix(x) (i=0,1,2,...,k) are symmetric i.e.
ki (X 1, ) = ik (L = %, 10, V).

5. Linear independence: For any u,v € [-1,1], the kth order GBTB basis functions are
linearly independent.

6. Terminal properties: Forall i=0,1,2,3,...,k; k > 2, the GBTB basis functions
20k(0)=1, @ x(1) =1,g4(0)=0(i=1,2,...,k), and gix(1) =0 (i=0,1,...,k - 1).

/17

7. Derivative at corner points: g;,(0), g;,(1), g/;(0), g/4(1), g/7.(0), and g/ (1).

Proof The authentication of all the above consequences is as demonstrated in [31]. O

2.2 Construction of GBT-Bézier curves with shape parameters
Definition 2 For any defined control points R; € RX (k =2,3;i=0,1,...,k), the curves

k
Gx; ,v) = Zgi,k(x)Ri; x€[0,1] (2.2)
i=0

are familiar as GBT-Bézier curves corresponding to GBTB basis functions g;x(x).

Asthe GBT-Bézier curves are defined on the bases of GBTB basis functions, so the afore-
mentioned features of GBTB basis functions demonstrate that the GBT-Bézier curves
have most dominant features of the traditional Bézier curves inclusively, end point con-
strains G(0; u, v), G(1; u, v), G'(0; w, v), G'(1; , v), G”(0; w, v), G"(1; u, v), G”(0; , v), and
G"(1; u, v), convexity, symmetry, variation diminishing feature, shape adjustment feature,
and geometric invariance feature. These features specify that the GBT-Bézier curves in-
terpolate to the end points of its convex hull, and also by choosing appropriate values of
shape parameters w,v in their respective value range u,v € [-1,1], the shape of GBT-

Bézier curves can be adjusted easily according to design requirements [31].

2.3 Shape adjustability of GBT-Bézier curves

A group of GBT-Bézier curves can be derived from expression (2.2) by taking the distinct
values of their shape parameters u, v in their corresponding value range having control
points Ry, Ry, Ry, ..., Ry. Owing to the reality that every GBT-Bézier curve assigns two local
shape parameters u, v, hence the structure of a GBT-Bézier curve can be easily settled
and modified by changing the values of these two shape parameters. From Definition 2,

we acknowledge that the curve G(x; i, v) is a linear function of every shape parameter p, v
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Figure 2 Effects of shape parameters on a cubic GBT-Bézier curve

as:

() 0-m(5) ((5)
= ] 1 —sin| —« sin[ —x (Riv1 — Ri,
ou i 2 2

i=0,1,.... k-2, (2.3)

and

(G ((G) (oen(G) (1-0(5)

X (Ri—=Riy1), i=12,...,k-1 (2.4)

Therefore from equations (2.3) and (2.4), it is obvious that there is no relationship among
%l(f) and u, and %}E’C) and v. Hence modifying one shape parameter u or v, the point
R(x) on the curve moves linearly for a fixed convex hull and defined value of x. Also the

alternation of direction is given by

RiR;,1, i=0,1,...,k—2for u,
RL'+1RL', iZl,Z,.,.,k—lfOI‘l).

Figure 2 portrays the graphs of cubic GBT-Bézier curves. The remarkable points on cubic
GBT-Bézier curves related to G(0.2), G(0.4), G(0.6), G(0.8) are red, blue, black, and green
respectively. When the shape parameters u, v take different values in their defined value
range [0, 1], Fig. 2 illustrates the adjustment role of shape parameters x, v on the shape of
GBT-Bézier curves. Figure 2(a) represents the graph of GBT-Bézier curves with p,v =1
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d k=5

Figure 3 Some curve design examples of GBT-Bézier curves with different shape parameters

(orange lines), 0.5 (purple lines), O (yellow lines), —0.5 (pink lines), and —1 (gray lines).
Figure 2(b) displays the graph of GBT-Bézier curves with fixed u (1 = 0) and modifying
value of v as v = 1 (orange lines), v = 0.5 (purple lines), v = 0 (yellow lines), v = —0.5 (pink
lines), and v = —1 (gray lines). Figure 2(c) gives GBT-Bézier curves when pu takes different
values as i = 1 (orange lines), i = 0.5 (purple lines), u = 0 (yellow lines), u = —0.5 (pink
lines), = —1 (gray lines), and the value of v remains fixed (v = —1). Figure 2(d) depicts
the curves with i = -1 and v = 1 (orange lines), v = 0.5 (purple lines), v = 0 (yellow lines),
v = —0.5 (pink lines), and v = -1 (gray lines). From all the above figures, we made the
following two conclusions:
1. By modifying the values of shape parameter either  or v or both, the points on the
curves change linearly.
2. With simultaneous increase in the values of shape parameters u, v, the GBT-Bézier
curves gradually move towards their convex hull.
Some curve design examples of GBT-Bézier curves with different shape parameters are
shown in Figs. 3, 4 and 5.
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(a) k=2,5 (b) k=3,5

Figure 4 Some curve design examples of GBT-Bézier curves with different shape parameters

25 3.0

(b) k=4

(c) k=3,4

Figure 5 Curve design examples of several order GBT-Bézier curves
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3 Construction of developable GBT-Bézier surfaces with shape parameters

3.1 Dual generation of a single-parameter family of planes

As stated in the duality principle between points and planes, a single-parameter family of
control points of a curve is dual to a single-parameter family of planes [11-13]. Thus by
treating the control points of a GBT-Bézier curve as GBT-Bézier control planes, a single-
parameter family of planes {I1,} can be developed. Therefore the expression of a single-
parameter family of planes {I1,} of a GBT-Bézier curve is described by using expression
(2.2) as follows:

k
(M) :Hspov) =Y gin@®Q, 0<x<1, (3.1)
i=0

where Q; (i=0,1,2,...,k) are control planes of {I1,}, i, v are shape parameters, and x is the
family parameter of {I1,}. We imagine that Q; = (p;,q;, 75, 8:), pirgis 70> Si € R(i=0,1,2,...,k)
are the coordinates of the control points of a GBT-Bézier curve in a 3D projective space.
In view of the duality principle and (3.1), vector form of expression (3.1) can be defined as

follows:

k
(M}t H pv) = Y gik(#)Qs

i=0
k
H(x; M, V) = Zgi,k(x; uw, V)(pi: qi ri)si) = {I'IO(x)v al(x)¢ 612(96),613(96)},

i=0

k k
=1 gk i v)ps Y gk 1 v) g

i=0 i=0

k k
> @ik )7 Y gkl )i - (3.2)

i=0 i=0

Let

ao(x) = Yo gk ()i,
a1(x) = Y8 @) g

. (3.3)
a(x) = Y ;o ik (X)7i,
a3(x) = 3k o gia(®)si.
Thus, equation(3.3) can be demonstrated as
{I1,}: H(x; M 1)) = {ﬂo(x), al(x)! ﬂg(x), ﬂS(x)}' (34')

3.2 Description of enveloping developable GBT-Bézier surfaces with shape
parameters

We are familiar with the definition and features of developable surfaces i.e. a developable

surface is an envelope of a single-parameter family of planes. Consequently, a developable

GBT-Bézier surface is an envelope of a single-parameter family of planes {I1,} of a GBT-

Bézier curve. The crossing line of two successive planes analogous to any value of x in {I1,}
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will surely lie on the enveloping developable GBT-Bézier surface of {I1,}. Mathematically,
the plane analogous to any value of x in (3.4) can be described in a subsequent linear
equation:

ag(xX)X + a1(x)Y + axy(x)Z = az(x). (3.5)
By taking the derivative of (3.5) with respect to x we attain
ag(®)X +al(®)Y + ay(x)Z = az(x), (3.6)

where prime represents 1st derivative corresponding to x. The generator J(x; i, v) of the
developable GBT-Bézier surface corresponding to x is the crossing line of planes (3.5) and
(3.6), lies on the developable GBT-Bézier surface of {I1,}, and can be calculated in terms
of its plucker coordinates as follows [11, 12]:

J(x; 1, 0) = (¢,6),
¢ =a(x) x a'(x),

0 = az(x)a(x) — as(x)a’(x),

where a(x) = {ay(x), a1 (%), az(x)}, a'(x) = {ag(x), 4] (x), a5(x)}. ¢ expresses the direction vec-
tor of the line J(x; 4, v) and can also be expressed as
¢ =a(x) x a'(x)
= {a1(¥)a) (x) — ax(x)d] (x), a2 (%) ag (x) — ao(x)ay (%), ao(x)a’ (x) — a1 (x)ay(x)}.

Let ¥ (x) indicate the nearest point on the generator J(x; i1, v) to the origin that can be
calculated as follows [11, 12, 17, 21]:

¢ x0
¢’
¥ (x) = {[a2(x)ag (%) — ao(x)a) (%) ][ a2 (x)ay(x) — as(x)ay(x)]

— [a0®)d} (%) — a1 (¥)ag(x) ][ a1 (x)as (%) — as(x)a; (%)],

Yx) =

[a0 (X)) (x) — a1 (x)ag (%) | [ao(x)as(x) — as(x)ag(%)]

— [a1(®)ay (x) — az(x)a) (x) ][ a2 (x)as (x) — as(x)a) (x)],
[a1(x)ay (%) — az(x)a) () ][a1 (x)ay(x) — as(x)a) (%)

— [a2(®)ay(x) — ao(x)ay(x) | [a2(x)ag(x) — ao(x)as(x)]}

H[ar () (%) — as(®)a, ()] + [a2(0)a (x) — ao(x)a) ()]

+ [ao(x)a’ () — cll(ac)ol(')(ac)]2 ).
Consequently, in a parametric form, the generator J(x; i1, v) can be defined as

J(x1, x5 1, v) =x10(x) + ¥(x), wu,ve[-1,1],x€[0,1],x; € [-00,00], (3.7)
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where u, v are the shape parameters. For distinct values of family parameter x in its given
value range, all generators J(x; i, v) construct an enveloping developable GBT-Bézier sur-
face having u, v as shape parameters. Hence, by using equation (3.7), an enveloping devel-
opable GBT-Bézier surface of {I1,} can be described in its linear geometric representation.

3.3 Description of spine curve developable GBT-Bézier surfaces with shape
parameters

A characteristic point S(x) in a single parameter family of planes {I1,} of a GBT-Bézier
curve is a point where its three successive planes related to x coincide and locus of this
point is a curve, identified as a spine curve of the developable GBT-Bézier surface. From
the intersection of equations (3.5) and (3.6) and the second derivatives of (3.5), the char-
acteristic point of a GBT-Bézier curve related to x can be achieved. The second derivative
of (3.5) corresponding to x is

ag®)X +a{(x)Y + a5 (x)Z = az(x), (3.8)

aox)X +a1(x)Y + ay(x)Z = az(x),
ay(x)X +ai(x)Y + ay(x)Z = ay(x), (3.9

aj()X + a{(x)Y + ay(x)Z = ay(x).

Hence the coordinates of intersecting point S(x) of the three coinciding planes related to
x, familiar as a characteristic point, can be expressed as [11, 12, 17, 21]

az(x)[a(x) x a’(x)] + az(x)[a’(x) x a"(x)] + a5(x)[a"(x) x a’(x)]
a(x)[a’(x) x a”’(x)]

S(x) = {as(x)[a1(x)ay(x) — ax(x)a; (¥)] + as(x) [ @) (x)a) (x) — ay(x)a] (x)]

+ as(0)[a] (®)as (x) — @y (¥)ar (x) ],

S(x) =

’

ay(x)| az(x)ay(x) — ao(x)ay ()] + as(x)[a) (x)ag (x) — ag(x)as (x)]
+ ay (%) [ ay (¥)ao(x) — ag(x)az ()],
a3 (x)[ao () (x) — a1 (X)ag(x)] + az(x)[ag(x)a] (x) - & (x)ag(x)]
+ ay(x)[ag(®)ay (x) — af (x)ao(x) ]}
/ { ao(x) [a/l(x)a’z/ (x) — as(x)ay (x)] +ai(x) [a'z(x)ag(x) - a{)(x)a’z'(x)]
+ ay (%) [ag (x)a] (x) — ay (¥)ag (%)]},
where a”(x) = {aj(x), a] (x), a} (x)}.

Modifying parameter x in the interval [0,1], all characteristic points S(x) construct a
space curve termed spine curve. From the definition of a developable surface, let us sup-
pose that S(x) is a spine curve of developable GBT-Bézier surfaces, then the surface made
up of the tangent lines of the spine curve S(x) is a spine curve developable GBT-Bézier

surface. Thus, a parametric spine curve developable GBT-Bézier surface can be described
as [17, 21]

V(2,5 14, ) = S(x) + %28 (%), %o € (—00,00),x € [0,1]. (3.10)
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Finally, in formulating developable GBT-Bézier surfaces (3.7) and (3.10), a single-
parameter family of planes {I1,} using GBTB basis as basis functions is acquired. There-
fore, the developable surfaces introduced in this study are identified as developable GBT-
Bézier surfaces (enveloping and spine curve). It is worth mentioning here that the devel-
opable GBT-Bézier surfaces are considered as a single-parameter family of planes, and
there are numerous dissimilarities among developable GBT-Bézier surfaces and tensor
product GBT-Bézier surfaces. Therefore, for their dual relationship, there are many iden-
tical features among GBT-Bézier curves and developable GBT-Bézier surfaces.

3.4 Some characteristics of developable GBT-Bézier surfaces

Geometric features of a GBT-Bézier curve are directly linked with its control points in-
cluding ending and starting points, tangents and curvatures of the curve at two points.
Hence, in the designing process, the shape of a curve can be handled in a well manner
by using its control points. As stated in duality theory [11, 17], the connection among re-
sulting developable surfaces and control planes is identical to the connection among its
control points and dual curves. Thus, from the definition of {I1,} and the 1st and 2nd order

derivatives of expression (3.2), we can derive some meaningful results as at x = 0 we have

H(O:M:V) = QO;
H'(0, 11,0) = 3(2(k = 2) + (1 + 11))(Q1 — Qo),
H"(0, i, v) (3.11)

= 1[4k = 2)(k -3+ (1 + 11))(Qo — 2Q1 + Q2) + 27 *1(Qo — Q1)
—7(1-v)(Q1 - Q)],

and at x = 1 we have

H(l, ,u,v) = Qk:
H'(1, 1,0) = 3(2(k = 2) + (1 + 1)) (Qk — Q1)
H'(1, 11,) (3.12)

= 1[4k - 2)(k =3 + (1 + v))(Quez — 2Qie1 + Qo)
+ 721 = ) (Qrz — Qre1) = 27%0(Quor — Qo).

Following is the geometrical significance of (3.11) to (3.12). The first equations of expres-
sions (3.11) and (3.12) demonstrate that the first and the last plane in {I1,} are defined
by the architecture according to their own requirements and considered as the 1st and
the last control plane sequentially. Also at x = 0 and x = 1, these two planes are tangent to
the defined developable GBT-Bézier surface with its generators J(x; i1, v). Furthermore, at
x =0, the generator J(0; u, v) of a developable surface obtained from the intersection of the
first two equations of expression (3.11) is labeled as a starting generator. Consequently, the
generator J(0; i, v) is the connection of the planes Qg and %(2(k —-2)+7m(1+wm)(Q1 - Qo)
and can be expressed in the following vector form:

t().W=S(),
(k=2+ F(1+w)) (e —10). W= (k =2+ F(1+4))(s1 = S0)s

(3.13)

where ) = (po, g0, 10), t1 = (P1,q1,11), W = (X, Y, Z).
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Clearly, from interpretation of 1st two planes of (3.13), the control plane Q; can be at-
tained. Thus J(0; i, v), the starting generator is the intersection of control plane Qp and
control plane Q;. Moreover, J(0; i, v) is tangent to the GBT-Bézier curve described by the
control points Q; (i=0,1,2,...,k) as J(0; 4, v) is dual to the line connecting the points Qg
and Q; (as 3D Euclidean space control planes are treated as 4D homogeneous space con-
trol points). Similarly, at x = 1 the last two control planes, control plane Q_; and control
plane Qy, represent the ending generator of a developable GBT-Bézier surface denoted as
J(1; i, v) obtained from the first two equations of expression (3.12). Consequently, expres-

sions (3.11) and (3.12) can be interpreted in terms of matrices as follows:

Q| |! 0 0 H(0, 11, v)
Q| = 1 2(k—2)+m(1+0) 0 H'(0, u,v)
2(8ky +m2(1-v+2u) 1 1
Q 1 Q*k-2)+r(L+w) (k1 -721-v)  ki-1r2(1-v) H(0, ;)
and

Q 1 02 0 H(1; 1, v)
Qi | = 1 T 2k=2)+m(1+v) 0 H1;u,v) |,
Qk—Z 1 - 2(8k2+n2(1—;1,+2v) 1 H”(l; w, V)

Qk-2)+7 (L+v)) (k272 (1-p))  kp+Fw2(1-p))

where k; = (k—2)(k -3+ (1 + u)) and ky = (k= 2)(k -3 + (1 + v)).

Owning to the fact that the characteristic point S(x) of spine curve developable GBT-
Bézier surfaces is the intersection of the planes H(x; u,v), H' (x; i, v), H  (x; i, v), from
expression (3.11), the coordinates of the control planes Qy, Q1, Q- can be attained from
the linear combination of H(0; i, v), H'(0; u, v), H”(0; i, v). Hence the intersection of the
control planes Qp, Q, Q is the characteristic point S(0) of the spine curve developable
GBT-Bézier surfaces that occurs on the starting generator V(xy,0; u, v). Identically the
characteristic point S(1) of the spine curve lies on ending generator V(x,, 1; 4, v), which
can be achieved from the intersection of the control planes Qx_, Qk_1, Qk of expression
(3.12).

4 Some designing pattern of developable GBT-Bézier surfaces

We can analyze from all the above discussion that a developable GBT-Bézier surface can
be designed as far as its control planes are given, and its shape can be modified using dif-
ferent values of its shape control parameter w, v. Therefore, based on control planes, some
modeling examples of cubic and quartic developable GBT-Bézier surfaces using multiple
values of shape parameter are presented here to clear the influence role of shape parame-
ters in designing features of developable GBT-Bézier surfaces. In all designing examples of
enveloping developable GBT-Bézier surfaces, we assume that the midpoints of all planes
of the enveloping developable GBT-Bézier surfaces lie in the same plane and have the same

distance from the origin.

4.1 Designing examples of enveloping developable GBT-Bézier surfaces
Example 4.1 Designing features of a cubic enveloping developable GBT-Bézier surface

along various values of its shape parameters are demonstrated in this example. As de-
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Figure 6 Cubic enveloping developable GBT-Bézier surfaces for fixed

scribed above in designing a cubic enveloping developable GBT-Bézier, it is assumed that
the midpoints of the four control planes of a cubic enveloping developable GBT-Bézier
surface have the same distance from the origin and are laid in the same plane. The four
control planes of cubic enveloping developable GBT-Bézier surface are defined as follows:

Qo = (0,-20, 10,400),
Q1 = (0,-10,20,400),
Q2 = (0,10, 20,400),
Qs = (0,20, 10,400).

To manifest the impact of shape parameters on the shape of a cubic enveloping devel-
opable GBT-Bézier surface apparently from the same viewpoint and coordinate system,
Figs. 6-8 depict the graphs of cubic enveloping developable GBT-Bézier surfaces with
multiple values of their shape parameters p,v. From these figures, we can conclude that
with fixed control planes, the shape parameters affect the shape of the enveloping devel-
opable GBT-Bézier surface in the following manners:

1. Whenever the values of 1 stay unchanged, the location of the starting generator

J(0; 1, v) and the length and location of the ending generator J(1; i, v) will not
modify with modifying the value of v; however the length of the starting generator
J(0; ¢, v) will modify. In other words, increasing the value of v will bring an increase
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Figure 7 Cubic enveloping developable GBT-Bézier surfaces designed for fixed v

in the length of the starting generator. Particularly at v = 1, the length of J(0; i, v)
becomes maximum, see Fig. 6.

2. For fixed values of v, the location of J(0; u, v) and J(1; u, v) will not fluctuate with
fluctuating values of u, but the lengths of ending generators J(1; u, v) will modify.
That is, the length of generators J(1; , v) increases with increasing value of u and
will be maximum at u = 1, see Fig. 7.

3. For identical values of u, v, the length and location of both starting J(0; i, v) and
ending J(1; u, v) generators will modify with modifying values of p, v. With
increasing values of u, v, the length of both generators increases. At the same instant,
the structure of the enveloping developable surface will also modify as the height
enveloping developable GBT-Bézier surface increases with decreasing values of p, v,
see Fig. 8.

Example 4.2 In another construction of a developable GBT-Bézier surface, the control
planes of the cubic enveloping developable GBT-Bézier surfaces are taken as follows:

Qo = (5+/2,-5+/2,5,125),
Q1 = (-5+/2,-5+/2,5,125),
Q2 = (-5+/2,-5+/2,5,125),
Qs = (5+/2,-5+4/2,5,125).
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Figure 8 Cubic enveloping developable GBT-Bézier surfaces for identical shape parameters

We can analyze from Figs. 9-12 that, with fluctuating values of shape parameters pu, v,
a class of enveloping developable GBT-Bézier surfaces can be designed on the require-
ment of provided control planes. A detailed effect of 1, v on the shape of an enveloping
developable GBT-Bézier surface is described as follows:

1. When we fix the value of v, the length of generator J(1; u, v) will modify, but the
location of generator J(1; u, v) and the length and location of generator J(0; u, v) will
not modify with fluctuating values of w. In other words, the length of the ending
generator will increase simultaneously with an increase in the value of u, see
Figs. 9-10.

2. When we take positive values of u, v, the length and location of J(0; i, v) and
location of J(1; u, v) will not alter with the altering values of u, v, but the length of the
ending generator J(1; , v) will modify, see Fig. 11.

3. When we take negative values of u, v, the location of J(0; i, v) and J(1; i, v) will not
fluctuate with fluctuating values of w, v; however, the length of the ending and
starting generator will modify along with the shape of the enveloping developable

GBT-Bézier surface, see Fig. 12.
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Figure 9 The influence of parameters w on cubic enveloping developable GBT-Bézier surface

4.2 Some designing examples of spine curve developable GBT-Bézier surfaces
To demonstrate the designing feature of a spine curve developable GBT-Bézier surface

constructed from the tangent lines of the spine curve Sx, some design examples are given
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Figure 10 The influence of parameters v on cubic enveloping developable GBT-Bézier surface

in this portion. For constructing a cubic spine curve developable GBT-Bézier surface, the
central points of the control planes of a cubic spine curve developable GBT-Bézier surface

are taken in four different quadrants I, II, IIl, IV with nonidentical distance from the ori-
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Figure 11 The effects of positive values of shape parameters 1, v on cubic enveloping developable

GBT-Bézier surface

gin, and the particular coordinates of control planes Qp, Q1, Q2, Qs of a cubic spine curve

developable GBT-Bézier surface are described as follows:



Magsood et al. Advances in Difference Equations (2021) 2021:459 Page 20 of 32

©) p,v=-06 (d) p,v=-03

Figure 12 The effects of negative values of shape parameters u, v on cubic enveloping developable
GBT-Bézier surface

Qo = (6.5,6.5,6.5/2,169),

Qi = (-5.5,7.5,7.5+/2,225),

Q, = (-10,-10,10+/2400),

Qs = (12.5,-12.5,12.51/2,625).

With different values of shape parameters ¢ and v, a class of cubic spine curve developable
GBT-Bézier surfaces can be designed on the requirement of provided control planes Qy,

Q1, Q2, Qs in Fig. 13 and Fig. 14 respectively, with distinct shapes.
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Figure 13 Cubic spine curve developable GBT-Bézier surfaces designed by different values of v

5 Continuity requirements among developable GBT-Bézier surfaces

The designing of free-form complicated surfaces is a major issue in product designing,
graphics, and CAD/CAM. In practical applications, the appearing design of many prod-
ucts is relatively complex and cannot be presented by an individual surface. Therefore,
there is a requirement to construct these surfaces by using adjoining surfaces. The eval-
uation criteria for unwrinkled joining among two adjoining developable GBT-Bézier sur-
faces are G! and G? (Farin—Boehm and beta) continuity, etc. [15, 17, 21, 25, 30]. Now, we
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Figure 14 Cubic spine curve developable GBT-Bézier surfaces designed by different values of
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take an interpretation of GBT-Bézier curve having weight coefficients in 4D homogeneous

space as
k

G(x, u,v) = Zgi,k(x, WVR;, 0<x<I1, (5.1)
i=0

where gix(z, ,v) (i =0,1,...,k) are k" order GBTB basis functions; R= [IAQO,IA?l,...,IAQk],
here R; = (w;R;, ;) is the weighted control point of R; (i = 0,1,...,k) having weight fac-
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tor w;. It is understood that the weighted GBT-Bézier curve share the basic features with
GBT-Bézier curves. When the weighted control points R; = (iR, w;) (i=0,1,...,k) in a
4D homogeneous space are considered as the control planes Q; (i = 0,1,...,k) in a 3D
Euclidean space, the planes {I1,} constructed from control planes Q; (i =0,1,...,k) are
dual to the weighted GBT-Bézier curves constructed from R; = (wiR, )i = 0,1,...,k).
Hence some geometric design methods of developable GBT-Bézier surfaces (like conti-
nuity requirements, tangent planes, and terminal properties) in a 4D homogeneous space
are identical to those of GBT-Bézier curves. Therefore, for continuity requirements of de-
velopable GBT-Bézier surfaces, it is imagined that the single parameter families of planes
of two developable GBT-Bézier surfaces H(x; 11, v1) and Ha(x; o, v2) of order k and [,

respectively, that require to be joined together are defined as follows:

(M1} : Hi(%5 1, v1) = a0,1(%), a1,1 (%), a1 (%), a1 (), 0<x<1, (5.2)

(T2} : Ha(%5 po, v2) = @02 (%), a1,2(x), a2 (%), aza(x), 0<x<1,

where w;,v; (i = 1,2) are shape parameters and the control planes of {I1,;} and {I1,,} are
Qi1 (i=0,1,...,k) and Q2 (j =0,1,...,]), respectively.

5.1 G' continuity among developable GBT-Bézier surfaces

Here, we want to establish the first order geometric continuity or G' continuity among two
or more weighted GBT-Bézier curves in a 4D homogeneous space. Now suppose that the
single-parameter families of planes of the two contiguous weighted GBT-Bézier curves,

which need to be spliced together, are as follows:

G, 1, v) = Zi'(:ogi,k(xnu«lr Vl)&i,b 0<x=<1, (5.3)
G, o, 1) = Z;:ogj,l(x: 12, V)R, 0<x<1, '
where 1, v; (i = 1,2) are shape parameters of two weighted GBT-Bézier curves G, i v;)
(i=1,2). R; = (@1Ri1, ;1) (i = 0,1,....,K) and Rip = (@;2Qj2 ®;2) (= 0,1,...,1) are con-
trol points of G;(x, jt;, v;) (i=1,2), and w;; (i=0,1,...,k) and wj» (j=0,1,...,1) are weight
factors of G;(x, i, v;) (i = 1,2) respectively. Thus, from the definition of G continuity
among two parametric curves, the adequate and essential requirements for G contin-

uous connection among two or more contiguous weighted GBT-Bézier curves G; (x) and

G, (x) are

GZ(O, M2, \)2) = Gl(lr 1238) vl)»

R R (5.4)
G5(0, 2, v2) = ¥ Gy (L, i1, v1),
where y > 0 is a constant. For control points R;; (i = 0,1,...,k;j = 1,2) of two weighted
GBT-Bézier curves Gi(x, Wi v;) (i = 1,2) in a 4D homogeneous space understood as the
control planes in 3D Euclidean space, the geometric continuity among two curves in a
4D homogeneous space certifies the geometric continuity among two conforming devel-
opable surfaces developed by using the duality principle in a 3D Euclidean space. Hence,

from expression (5.4), the subsequent result can be acquired.
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Theorem 2 Adequate and essential requirements for G' smooth connection among two
contiguous developable GBT-Bézier surfaces Hy(x, jt1,v1) of order k and Hy(x, j12, v2) of or-
der [ at the connection are

Qo2 = Q15
k=2+% (1+v1) (5.5)

Q2 = Qo + ¥ o gy (Qkt = Qe-1.0):

Proof If Hy(x, j11,v1) and Hy(x, (o, v2) want to reach G! continuity, it is compulsory that

H,y (x, 1, v1) and Hy(x, 112, v7) reach G° continuity at the common first, which implies

Qo2 = Qk1- (5.6)

In addition, H;(x, i1, v1) and Hj(x, (o, vo) want to share a common tangent plane at con-

nection, that is to say,
HQ(O! 2, VZ) = yHi(l’Ml) 1)1). (5.7)

According to (3.11) and (3.12), we have

Hi(1, g, vr) = (k=2 + 5(1+v1))(Qr1 = Qk-1,1),

(5.8)
Hy(0, ua,v2) = (1 =2 + 5 (1 + 122))(Q1,2 = Qo2)-
Using (5.8) into (5.7), we get
T b4
Y (k -2+ 5(1 + Ul))(Qk,1 = Q1) = (l -2+ 5(1 + Mz))(Ql,z = Qo2)- (5.9)
Ultimately, on the ground of (5.6), we can achieve
k=2+%(1+v)
Qi2=Qx1+¥ (Qu1 = Qk-1,1)- (5.10)

[-2+3(1+ )

Hence equations (5.6) and (5.10) comprise the adequate and essential requirements of G*
smooth connection betwixt two developable GBT-Bézier surfaces of order k and [ sequen-
tially. d

5.2 Farin-Boehm G2 continuity requirements among developable GBT-Bézier
surfaces

Now, we will derive the Farin-Boehm G? continuity requirements at the joints for the
construction of piecewise developable GBT-Bézier surfaces. Similar to the G! continu-
ity, when the control points of the two GBT-Bézier curves Gi1(%, 1, v1), Ga(x, o, 1) in a
4D homogeneous space are taken as control planes Q;; (i=1,2,...,k;j = 1,2) in a 3D Eu-
clidean space, then the Farin—-Boehm G? continuity among two GBT-Bézier curves in a
4D homogeneous space ensures the Farin-Boehm G? continuity among two developable
GBT-Bézier surfaces determined by Q;; (i = 1,2,...,k;j = 1,2) ina 3D Euclidean space [22].
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Therefore, when two contagious developable GBT-Bézier surfaces in (5.2) want to reach
Farin—-Boehm G? continuity, they must satisfy the following requirements:

H2(Or M2, VZ) = Hl(l: M1, \)1),
HQ(O’I‘LZ’ U2) :Hi(l,ﬂl, Vl), (511)
H;(0, pa, v2) = Hy (1, w1, v1).

Equation (5.2) represents that the developable GBT-Bézier surfaces defined by H;(x,
1, v1), Ha(x, o, vo) need to have the same tangent plane, characteristic point, and gener-

ator at the joint.

Theorem 3 The essential and satisfactory requirements for achieving Farin—Boehm G*
continuity betwixt two contiguous developable GBT-Bézier surfaces Hy(x, 1, v1) of order k
and Hj(x, [, V) of order [ at the connection are

QO,Z = Qk,l;
Q12 = Q1 + c(Qx1 — Qi-1,1)s
Q22 = Qi1 + c(Qr1 — Qk-1,1) (5.12)

+ iy [ (Qet = 2Qee11 + Queza) = (1~ 1)

cp+m

X (Qi-1,1 — Quez1) + (221 + cler + 272 1)) (Qr1 — Qre1,1)]5

where ¢ = %fm cx=4k=2) k=3 +m(1+v1), ;=40 —-2)(I -3+ 7L+ ).

Proof If Hy(x, i1, v1) and Hy(x, iy, v2) want to reach Farin-Boehm G? continuity, it is es-
sential that Hj(x, i1, v1) and Hy(x, o, 1) fulfil G continuity at the joint boundary first,

which implies

QO’Z i ril’ 2(k=2)+m (1+v1) (513)
Q2= Q1 + m(Qk,l = Qk-11),
also
Hg(oy 2, VZ) :Hil(lr/‘l*l’ Vl)- (5.14')
According to (3.11) and (3.12), we have
4(1-2)(1-3+m(1+ 112))(Qoz — 2Q12 + Qa2) + 27 142(Qo2 — Q1.2)
= (1= 2)(Qu2 — Q22) = 4(k - 2)
X (k -3+m(l+ Vl))(Qk—Z,l —2Qk-11 + Qx,1)
+ 772(1 — 11)(Qr=2,1 — Qu-1,1) — 27T2V1(Qk71,1 = Q1) (5.15)

Simply by using the values of Qo 3, Q1,2 from expression (5.6) into expression (5.8), we can
get the required Farin—-Boehm G? continuity requirements (5.5). g
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5.3 G? beta continuity among developable GBT-Bézier surfaces
Theorem 4 For a smooth continuous connection among two adjoining developable GBT-
Bézier surfaces Hi(x, i1, v1) and Hy(x, i12, v2) of order k and 1, respectively, the necessary

and sufficient G* beta continuity requirements are

Qo2 = Q1,
Q12 = Qi1 + ey (Qr1 — Qr-1,1),
Q22 = Q1 + ¢y (Qu1 — Qi-1,1)
+ %[CH’Z(QIM = 2Qk-1,1 + Qrez1) = Y2 (1 = )

cl+m

(5.16)

X (Qr-1,1 = Qu-2,1) + (Y 2721y + cep + 2em [42)
+ Ak =2+ Z(1+v)(Qk1 — Qu-11)],

where ¢ = %M’ =4k -2)k=3+m(1+v)), g =4I-2)I-3+m(1+ uy)).
Proof To reach G? beta continuity among H (x, i1, v1) and Ha(x, (42, 1), there are some

subsequent requirements which must be satisfied at the common boundary

Qo2 = Ha(0, o, v2) = Hi(1, 1, v1) = Qg1s
Hé(or M2, VZ) = )/Hi(l) M1, Vl); ]/ > 0; (5'17)
Hg(or M2, UZ) = y2Hf(1,,u1, Vl) + )"Hi(lr M1, Vl)r

where y > 0 and A are constants. From the terminal properties of developable GBT-
Bézier surfaces and substituting expressions (3.11) and (3.12) into expression (5.17), we
can achieve G? beta continuity expression (5.16). Hence the three equations of expression
(5.16) establish the adequate and essential requirements of G> beta continuity require-

ments among two or more developable GBT-Bézier surfaces. d

5.4 Steps for smooth continuous connection between two adjacent developable
GBT-Bézier surfaces

Using smooth continuity requirements among two contiguous developable surfaces, a
huge amount of complicated surfaces can be made easily. To show G? smooth continuity
(Farin—-Boehm and beta) steps betwixt two adjoining developable GBT-Bézier surfaces,
an example is used here. For establishing a G* beta continuous connection among two or
more contiguous cubic enveloping developable GBT-Bézier surfaces, the following steps
are performed.

Step 1. Preliminary developable GBT-Bézier surface Hi(x; i1,v1), its control planes
Qi1 (i=0,1,2,3), and shape parameters (1, v; can be given openly.

Step 2. Let Q1 = Qo or in other words, the developable GBT-Bézier surfaces expressed
by H (x; i1, v1) and Hy (x; 142, 12)) have a combined control plane to fulfil the G° continuity
condition.

Step 3. For any provided values of 15, v; and constant y > 0, the 2nd control plane Q;»
of the developable GBT-Bézier surface Hj(x; ito, V) can be calculated from the second

equation of (5.16).
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Figure 15 Farin-Boehm G? continuity among two cubic enveloping developable GBT-Bézier surfaces

Step 4. From the 3rd equation of (5.16), the control plane Q, of the developable GBT-
Bézier surface Hy(x; i, v2) can be determined on the bases of Step 2 and Step 3 for a
defined value of constant A.

Step 5. The last control plane Qs of Hy(x; (2, v2) can be selected openly for establishing
G? beta smooth continuous connection among two or more adjoining developable GBT-

Bézier surfaces.
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Figure 16 Farin-Boehm G? continuity betwixt two cubic enveloping developable GBT-Bézier surfaces

From iteration of the above steps among two developable GBT-Bézier surfaces, G* beta
smooth continuity can be attained among multiple developable GBT-Bézier surfaces, and
it can also be applied on other continuity conditions in the same manners.
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Figure 17 G? beta smooth continuity among two cubic developable GBT-Bézier surfaces

5.5 Some modeling examples of smooth developable GBT-Bézier surfaces
This portion will give some designing examples of G> smooth connection (beta and Farin—
Boehm) among two adjoining cubic developable GBT-Bézier surfaces sequentially. Addi-

tionally, the effect of shape parameters on combined surfaces is also examined.

Example 5.1 Figures 15-16 exhibit the graphs of Farin—-Boehm G? continuity among two
adjoining cubic enveloping developable GBT-Bézier surfaces. In these figures, the blue

surfaces are primary developable GBT-Bézier surfaces with subsequent control planes

Qo1 = (0,-20,10,400),
Q1,1 = (0,-10,20,400),
Q.1 = (0,10,20,400),
Qs,1 = (0,20,10,400).

(5.18)

The green surfaces are the secondary enveloping developable GBT-Bézier surfaces. For
all spliced surfaces, the last control plane Qs is given openly, and the first three con-
trol planes are derived from Farin-Boehm G? continuity conditions. Figure 15 demon-
strates the influence of shape parameter « on combined developable GBT-Bézier surfaces

with fixed value of v. These four graphs indicate that without disturbing control planes,
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Figure 18 The effects of scale factor A on composite developable GBT-Bézier surface with G? beta smooth
continuity

the shape of the combined developable GBT-Bézier surface can be simply modified by
amending the shape parameters. Figure 16 represents the impact of shape parameter v on

the combined developable GBT-Bézier surface for a fixed value of u.

Example 5.2 Geometric design of G? beta continuity among two contiguous cubic en-
veloping developable GBT-Bézier surfaces is illustrated in Fig. 17. In Fig. 17, the green sur-
face represents first cubic enveloping developable GBT-Bézier surface H1(x; i1, v1) with
control planes described in (5.18), whereas red surface represents the 2nd cubic envelop-
ing developable GBT-Bézier surface H2(x; (2, o) which fulfills the G? beta continuity re-
quirements with H1(x; 1, v1). By setting all shape parameters 141, v1, (42, v of the corre-
sponding cubic enveloping developable GBT-Bézier surfaces equal to 1, the coordinates

of the control planes of cubic enveloping developable GBT-Bézier surface H2(x; ua, v2) are
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calculated as follows:

Qo,2 = (0,20,10,400),
Q1,2 = (0,30,0,400),
Q2,2 = (0,45.708,-35.708, 400),

where the last control plane Qs is given without restraint, and the control planes
Qo,2, Q1,2, Q2,2 are calculated according to (5.16) (y = 1,1 = 0). Figure 17 represents the
combined enveloping developable GBT-Bézier surface having G? beta connection among
them after amending the values of its shape parameters, while Fig. 18 indicates the com-
bined enveloping developable GBT-Bézier surface for multiple values of scale factor y.
Figure 18 indicates that a unified merged developable GBT-Bézier surface can be achieved
by setting scaling factor y = 1, unconcerned of modifying the shape parameter, and at con-
nection a gap will be achieved on merged developable GBT-Bézier surfaces when y # 1.
We can use these characteristics to design a complex surface according to our needs.

6 Conclusions

In this research work, developable GBT-Bézier surfaces (enveloping developable and spine
curve developable) along two shape parameters have been proposed. The geometric fea-
tures and influence role of shape parameters on these newly constructed developable
GBT-Bézier surfaces have been examined. Additionally, the geometric continuity require-
ments (G', G2 Farin—Boehm and G? beta) among two contiguous developable GBT-Bézier
surfaces have been derived for the construction of complicated developable GBT-Bézier
surfaces. These proposed developable GBT-Bézier surfaces have been shown to reduce
the flaws of line and plane geometric description in modeling developable GBT-Bézier
surface design, and we proved that they are more beneficial than the actual developable
Bézier surfaces. In contrast with other Bézier curves and surfaces techniques having mul-
tiple shape parameters, our interpretation of basis functions determined in this research

is simple and extra succinct.
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