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1 Introduction and preliminaries
It is worth noting that Caccioppoli [1] is the first author who extended the results of Ba-
nach [2] from normed space to metric space. After that, a number of authors have studied
different abstract spaces to advance the Banach and Caccioppoli results. One of the suc-
cessive generalizations was given Bakhtin [3] (and independently by Czerwik [4]) from
metric space to b-metric space. Following this success, many authors have continued to
work on this trend and reported several improvements, advances in the setting of b-metric
spaces, see e.g. [5–12].

Let X be a nonempty set and b : X × X → [0, +∞) be a metric on X . The notion of
b-metric (reported in several papers, e.g., Bakhtin [3], Czerwik [4]) as an extension of a
metric notion is obtained by replacing the triangle inequality of the metric with a general
one

(B) b(u ,ω) ≤ s[b(u ,μ) + b(μ,ω)] for every u ,ω,μ ∈ X ,
for fixed s ≥ 1. The triplet (X , b , s) is said to be a b-metric space. (It is worth pointing out
that in case s = 1 the space (X , b , 1) coincides with a corresponding standard metric space.)

One of the basic examples for b-metric is the following.

Example ([5]) Let (X , d) be a metric space. Then the function b : X ×X → [0, +∞) defined
as b(u ,ω) = (d(u ,ω))p with p > 1 forms a b-metric (here s = 2p–1).

For more examples, see e.g. [5–12].
Like metric spaces, b-metric spaces admit a nice topology. On the other hand, alike met-

ric, b-metric does not need to be continuous. For the sake of the integrity of the article,
we recollect the basic topological notions here.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03605-4
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03605-4&domain=pdf
https://orcid.org/0000-0002-6689-0355
mailto:afulga@unitbv.ro


Fulga Advances in Difference Equations        (2021) 2021:448 Page 2 of 12

We say that a sequence {um} in a b-metric space (X , b , s) is
(1) convergent to u if limn→∞ b(um, u) = 0. The limit of a convergent sequence is unique;
(2) Cauchy if b(um, un) → 0 as n, m → ∞.

Each convergent sequence in a b-metric space is Cauchy and, as usual, if each Cauchy
sequence is convergent, then the b-metric space (X , b , s) is said to be complete.

Definition 1.1 Let (X , b , s) be a b-metric space and P : X → X be a mapping. For u0 ∈ X ,
the orbit of P at u0 is the set

O(u0, P ) =
{

u0, Pu0, P 2u0, . . .
}

.

The mapping P is said to be orbitally continuous at a point � ∈ X if

lim
j→∞ P ju0 = � implies lim

j→∞ PP ju0 = P� .

Additionally, if every Cauchy sequence {P ju0} is convergent in X , then the b-metric space
(X , b , s) is said to be P -orbitally complete.

Definition 1.2 ([13]) Let (X , b , s) be a b-metric space. We say that the mapping P : X → X
is m-continuous, where m = 1, 2, . . . , if limm→∞ P mun = P� , whenever the sequence {un}
in X is such that limm→∞ P m–1un = � .

Remark 1.3 We note that every continuous mapping is orbitally continuous in X and also
every complete b-metric space is P -orbitally complete for any P : X → X , but the converse
is not necessarily true.

On the other hand, it is clear that 1-continuity (which coincides with usual continu-
ity) implies 2-continuity implies 3-continuity and so on, but the converse does not hold.
Indeed, for example, considering the mapping P : X → X , where X = [0,∞), defined by

Pu =

{
5, if u ∈ [0, 5],
1, if u ∈ (5,∞),

we can easily see that P is not continuous (in u = 5), but it is 2-continuous because P 2u = 5.

Let us consider the following class of functions (named the set of b-comparison func-
tions):

� =
{
φ : [0,∞) → [0,∞)

∣∣∣ φ is nondecreasing and
∑

n≥1

snφn(θ ) < ∞ for each θ > 0
}

,

here φn represents the nth iterate of φ. It can be shown that every function φ ∈ � fulfills
the following properties:

(φ1) φ(θ ) < θ for any θ > 0;
(φ2) φ(0) = 0.

Let X be a nonempty set and α : X ×X → [0,∞) be a function. We say that the mapping
P : X → X is α-orbital admissible if

α(u , Pu) ≥ 1 implies α
(
Pu , P 2u

) ≥ 1 (1.1)

for all u ∈ X .
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Moreover, we say that the b-metric space (X , b , s) is α-regular if for any sequence {ηm}
in X such that limm→∞ ηm = η and α(ηm,ηm+1) ≥ 1 we have α(ηm,η) ≥ 1.

(For more details and examples, see [14].)
Very recently, the notion of the interpolative contraction was introduced in [15]. The

goal of this paper is to revisit the well-known Kannan type contraction in the setting of
interpolation. After that, several famous contractions (Ćirić [16], Reich [17], Rus [18],
Hardy– Rogers [19], Kannan [20], Bianchini [21]) are revisited in this new setting, see
e.g. [15, 22–26]

In this paper, we combine all these notions and trends to get more general results on
the topic in the literature. We observe some interpolative contractions involving distinct
rational forms that provide a fixed point in the framework of b-metric spaces.

2 Main results
Definition 2.1 Let (X , b , s) be a b-metric space. A self-mapping P is called Al

P -admissible
interpolative contraction (l = 1, 2) if there exist φ ∈ � and α : X × X → [0,∞) such that

1
2

b(u , Pu) ≤ b(u ,ω) ⇒ α(u ,ω)d(Pu , Pω) ≤ φ
(
Al

P (u ,ω)
)
, (2.1)

where qi ≥ 0, i = 1, 2, 3, 4, 5, are such that
∑5

i=1 qi = 1 and

A1
P (u ,ω) =

[
b(u ,ω)

]q1 · [b(u , Pu)
]q2

· [b(ω, Pω)
]q3 ·

[
b(ω, Pω)(1 + b(u , Pu))

1 + b(u ,ω)

]q4

·
[

b(u , Pω) + b(ω, Pu)
2s

]q5

,
(2.2)

and

A2
P (u ,ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[b(u ,ω)]q1 [b(u , Pu)]q2 [b(ω, Pω)]q3

· [ b(u ,Pu)b(ω,Pω)+b(u ,Pω)b(ω,Pu)
max{b(ω,Pω),b(ω,Pu)} ]q4 [ b(u ,Pu)b(u ,Pω)+b(ω,Pω)b(ω,Pu)

max{b(u ,Pω),b(ω,Pu)} ]q5 ,

if max{b(u , Pω), b(ω, Pu)} �= 0,

0, otherwise

(2.3)

for any u ,ω ∈ X \ FixP (X ). (FixP (X ) = {u ∈X | Pu = u}.)

The first main results of this paper is given in the following theorem.

Theorem 2.2 Let (X , b , s) be a complete b-metric space and P be an A1
P -admissible inter-

polative contraction such that
(i) P is α-orbital admissible;

(ii) there exists u0 ∈ X such that α(u0, Pu0) ≥ 1;
(iii1) P is m-continuous for m ≥ 1, or
(iii2) P is orbitally continuous.

Then P possesses a fixed point � ∈ X and the sequence {P mu0} converges to this point � .

Proof Let u0 in X be an arbitrary point and the sequence {ηn} be defined as η0 = u0, ηn =
P nη0 for all n ∈N. If we can find some q ∈N such that ηq = ηq+1 = Pηq, then it follows that
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ηq is a fixed point of P and the proof is closed. For this reason, we can assume from now
on that ηn �= ηn–1 for any n ∈N. Using assumption (i), P is α-orbital admissible, we have

α(η0,η1) = α(η0, Pη0) ≥ 1 ⇒ α(η1,η2) = α
(
Pη0, P (Pη0)

) ≥ 1 ⇒ ·· ·
⇒ α(ηn–1,ηn) ≥ 1.

On the other hand, we have that

1
2

b(ηn–1, Pηn–1) =
1
2

b(ηn–1,ηn) ≤ b(ηn–1,ηn).

Now, taking into account the main assumption that P is an A1
P -admissible interpolative

contraction, if we substitute u with ηn–1 and ω with ηn in (2.1), we get

b(Pun–1, Pun)

≤ α(ηn–1,ηn)b(Pηn–1, Pηn) ≤ φ
(
A1

P (ηn–1,ηn)
)

= φ

(
[b(ηn–1,ηn)]q1 · [b(ηn–1, Pηn–1)]q2 · [b(ηn, Pηn)]q3

· [ b(ηn ,Pηn)(1+b(ηn–1,Pηn–1))
1+b(ηn–1,ηn) ]q4 · [ b(ηn–1,Pηn)+b(ηn ,Pηn–1)

2s ]q5

)

= φ

(
[b(ηn–1,ηn)]q1 · [b(ηn–1,ηn)]q2 · [b(ηn,ηn+1)]q3

· [ b(ηn ,ηn+1)(1+b(ηn–1,ηn))
1+b(ηn–1,ηn) ]q4 · [ b(ηn–1,ηn+1)+b(ηn ,ηn)

2s ]q5

)

= φ

([
b(ηn–1,ηn)

]q1+q2 · [b(ηn,ηn+1)
]q3+q4 ·

[
b(ηn–1,ηn+1)

2s

]q5)
.

(2.4)

But by (B), together with the monotony of the function φ, it follows

b(ηn,ηn+1)

= b(Pηn–1, Pηn)

≤ φ

([
b(ηn–1,ηn)

]q1+q2 · [b(ηn,ηn+1)
]q3+q4 ·

[
b(ηn–1,ηn) + b(ηn,ηn+1)

2

]q5)
;

(2.5)

moreover, by (φ1) we have

b(ηn,ηn+1) <
[
b(ηn–1,ηn)

]q1+q2 · [b(ηn,ηn+1)
]q3+q4 ·

[
b(ηn–1,ηn) + b(ηn,ηn+1)

2

]q5

.

If there exists m0 ∈ N such that b(ηm0–1,ηm0 ) ≤ b(ηm0 ,ηm0+1), then the above inequality
becomes

b(ηm0 ,ηm0+1) <
[
b(ηm0–1,ηm0 )

]q1+q2 · [b(ηm0 ,ηm0+1)
]q3+q4+q5 ,

which is a contradiction since (keeping in mind that 1–(q3 +q4 +q5) = q1 +q2) it is equivalent
with

b(ηm0 ,ηm0+1) < b(ηm0–1,ηm0 ).
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Therefore, for any n ∈N,

b(ηn,ηn+1) < b(ηn–1,ηn).

Furthermore, returning to inequality (2.5), we have

b(ηn,ηn+1) ≤ φ
(
b(ηn–1,ηn)

) ≤ · · · ≤ φn(b(η0,η1)
)
. (2.6)

Let q ∈ N. Then, by (B), together with (2.6), we obtain

b(ηn,ηn+q) ≤ s
[
b(ηn,ηn+1) + b(ηn+1,ηn+q)

]

≤ sb(ηn,ηn+1) + s2b(ηn+1,ηn+2) + · · · + sqb(ηn+q–1,ηn+q)

≤ sφn(b(η0,η1)
)

+ s2φn+1(b(η0,η1)
)

+ · · · + sqφn+q–1(b(η0,η1)
)

=
1

sn–1

n+q–1∑

j=n

sjφj(b(η0,η1)
)

≤ 1
sn–1

n+q–1∑

j=1

sjφj(b(η0,η1)
) → 0 as q, n → ∞.

It follows that {ηn} is a Cauchy sequence in a P -orbitally complete b-metric space. There-
fore, we can find � ∈ X such that limn→∞ P nη0 = � .

We claim that � is a fixed point of the mapping P under of any hypothesis, (iii)1 or (iii)2.
Indeed,

� = lim
n→∞ηn = lim

n→∞ P (ηn–1).

Moreover,

lim
n→∞ P mηn = � for every m ≥ 1. (2.7)

If P is m-continuous, then limn→∞ P mηn = P� , and by (2.7) it follows that P� = � .
If P is assumed to be orbitally continuous on X , then

� = lim
n→∞ηn–1 = lim

n→∞ Pηn–1 = lim
n→∞ P

(
P n–1η0

)
= P� .

Therefore, � ∈ FixP (X ). �

Example Let X = [0, +∞) and b : X × X → [0, +∞) be the b-metric defined as b(u ,ω) =
(u – ω)2 for all u ,ω ∈ X . Let the mapping P : X → X be defined by

P (u) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 , if u ∈ [0, 1),
u
4 , if u ∈ [1, 2],
√

u2+u+3
u2+u+2 + ln(u2+u+2)

u2+u+4 , if u ∈ (2, +∞),
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and a function α : X × X → [0, +∞), where

α(u ,ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
u2 + ω2 + 4, if u ,ω ∈ [0, 1),

3, if u = 0,ω = 2,

u2 + ω/3, if u = 1
4 ,ω ∈ {3, 9},

0, otherwise.

Let also the comparison function φ : [0,∞) → [0,∞), φ(t) = t/3, and we choose q1 = q5 =
1/10, q2 = q4 = 1/5, q3 = 2/5. Thus, we can easily observe that assumptions (i) and (ii) are
satisfied, and since P 2(u) = 1/2 is continuous, assumption (iv) is also verified.

Case (i.) For u ,ω ∈ [0, 1], we have b(Pu , Pω) = 0, so inequality (2.1) holds.
Case (ii.) For u = 0 and ω = 2, we have 1

2 b(0, 1
2 ) = 1

8 < 4 = b(0, 2) and b(Pu , Pω) = 0. Thus,
(2.1) holds.

Case (iii.) For u = 1/4 and ω = 3, we have 1
2 b(0, 1

2 ) = 1
8 < 9 = b(0, 3) ⇒

α

(
1
4

, 3
)

b
(

1
4

, 3
)

= 0.003625861 < 0.534529784 = φ

(
A1

P

(
1
4

, 3
))

.

Case (iv.) For u = 1/4 and ω = 9, we have 1
2 b(0, 1

2 ) = 1
8 < 81 = b(0, 9) ⇒

α

(
1
4

, 9
)

b
(

1
4

, 9
)

= 0.368908954 < 2.453226625 = φ

(
A1

P

(
1
4

, 9
))

.

All other cases are of no interest because α(u ,ω) = 0 and (2.1) is satisfied.
Therefore, the mapping P is an A1

P -admissible interpolative contraction. On the other
hand, since P 2(u) = 1/2 is continuous and P is α-orbital continuous, by Theorem 2.2 we
get that there exists a fixed point of the mapping P ; that is, u = 1

2 .

Theorem 2.3 Let (X , b , s) be a complete b-metric space and P be an A2
P -admissible inter-

polative contraction such that
(i) P is α-orbital admissible;

(ii) there exists u0 ∈ X such that α(u0, Pu0) ≥ 1;
(iii1) P is m-continuous for m ≥ 1, or
(iii2) P is orbitally continuous.

Then P possesses a fixed point � ∈ X .

Proof As in the previous proof, for u0 ∈ X , we build the sequence {ηn}, where η0 = u0 and
ηn = Pηn–1 = P nη0 for any n ∈N. Since ηn–1 �= ηn for any n ∈ N∪ 0, taking into account that
the mapping P is supposed to be A2

P -admissible interpolative contraction, we have

1
2

b(ηn–1, Pηn–1) =
1
2

b(ηn–1,ηn) ≤ b(ηn–1,ηn) ⇒

α(ηn–1,ηn)b(Pηn–1, Pηn) ≤ φ
(
A2

P (ηn–1,ηn)
)
,

where

A2
P (ηn–1,ηn) =

[
b(ηn–1,ηn)

]q1 · [b(ηn–1, Pηn–1)
]q2 · [b(ηn, Pηn)

]q3
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·
[

b(ηn–1, Pηn–1)b(ηn, Pηn) + b(ηn–1, Pηn)b(ηn, Pηn–1)
max{b(ηn, Pηn), b(ηn, Pηn–1)}

]q4

·
[

b(ηn–1, Pηn–1)b(ηn–1, Pηn) + b(ηn, Pηn)b(ηn, Pηn–1)
max{b(ηn–1, Pηn), b(ηn, Pηn–1)}

]q5

=
[
b(ηn–1,ηn)

]q1 · [b(ηn–1,ηn)
]q2 · [b(ηn,ηn+1)

]q3

·
[

b(ηn–1,ηn)b(ηn,ηn+1) + b(ηn–1,ηn+1)b(ηn,ηn)
max{b(ηn,ηn+1), b(ηn,ηn)}

]q4

·
[

b(ηn–1,ηn)b(ηn–1,ηn+1) + b(ηn,ηn+1)b(ηn,ηn)
max{b(ηn–1,ηn+1), b(ηn,ηn)}

]q5

=
[
b(ηn–1,ηn)

]q1+q2 · [b(ηn,ηn+1)
]q3 ·

[
b(ηn–1,ηn)b(ηn,ηn+1)

b(ηn,ηn+1)

]q4

·
[

b(ηn–1,ηn)b(ηn–1,ηn+1)
b(ηn–1,ηn+1)

]q5

=
[
b(ηn–1,ηn)

]q1+q2+q4+q5 · [b(ηn,ηn+1)
]q3 .

Therefore, since by assumption (i) it follows that α(ηn–1,ηn) ≥ 1 for all n ∈N, we have

b(ηn,ηn+1) ≤ α(ηn–1,ηn)b(Pηn–1, Pηn) ≤ φ
(
A2

P (ηn–1,ηn)
)

= φ
([

b(ηn–1,ηn)
]q1+q2+q4+q5 · [b(ηn,ηn+1)

]q3)

<
[
b(ηn–1,ηn)

]q1+q2+q4+q5 · [b(ηn,ηn+1)
]q3 .

(2.8)

(Here, we used the property (φ1) of the function φ.)
Thus,

[
b(ηn,ηn+1)

]1–q3 <
[
b(ηn–1,ηn)

]q1+q2+q4+q5 =
[
b(ηn–1,ηn)

]1–q3 ,

and then b(ηn,ηn+1) < b(ηn–1,ηn) for any n ∈N. Furthermore, by (2.8) and keeping in mind
(φ2), we obtain

b(ηn,ηn+1) < φ
(
b(ηn–1,ηn)

)
< φ2(b(ηn–2,ηn–1)

)
< · · · < φn(b(η0,η1)

)
,

and following the same steps as in the proof of Theorem 2.2, we can easily find that the
sequence {ηn} is Cauchy. Moreover, since (X , b , s) is supposed to be P -orbitally complete,
we can find a point � ∈ X such that limn→∞ P nη0 = � . Assuming that P is m-continuous,
we have

P� = lim
n→∞ P mηn = lim

n→∞ηn+m = � ,

and assuming that P is orbitally continuous, we get

P� = lim
n→∞ P

(
P nη0

)
= lim

n→∞ Pηn = lim
n→∞ηn+1 = � ,

that is, � is a fixed point of P . �
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In case we replace the continuity condition of the mapping with the continuity of the
b-metric b , we get the following results.

Theorem 2.4 Let (X , b , s) be a complete, α-regular b-metric space, where the b-metric b is
continuous, and P : X → X is such that

1
2s

b(u , Pu) ≤ b(u ,ω) ⇒ α(u ,ω)d(Pu , Pω) ≤ φ
(
Al

P (u ,ω)
)
, (2.9)

where φ ∈ � and Al
P , for l = 1, 2 are given by (2.2) and (2.3). If

(i) P is α-orbital admissible;
(ii) there exists u0 ∈ X such that α(u0, Pu0) ≥ 1.

Then P possesses a fixed point � ∈ X , and the sequence {P mu0} converges to this point � .

Proof From the proof of Theorem 2.2 we know that the sequence {ηn}, where ηn = Pηn–1 =
P nη0 converges to a point � ∈ X , and we claim that � is a fixed point of the mapping P .
For this purpose, we claim that

1
2s

b(ηn, Pηn) ≤ b(ηn,� ) (2.10)

or

1
2s

b
(
Pηn, P (Pηn)

) ≤ b(Pηn,� ). (2.11)

Indeed, supposing the contrary

1
2s

b(ηn, Pηn) > b(ηn,� ) and
1
2s

b
(
Pηn, P (Pηn)

)
> b(Pηn,� ),

we get that

b(ηn,ηn+1) = b(ηn, Pηn) ≤ s
[
b(ηn,� ) + b(� , Pηn)

]

< s
[

1
2s

b(ηn, Pηn) +
1
2s

b
(
Pηn, P (Pηn)

)]

=
1
2
[
b(ηn,ηn+1) + b(ηn+1,ηn+2)

] ≤ b(ηn,ηn+1).

This is a contradiction, and then (2.10) or (2.11) holds. Under the regularity assumption
of the space (X , b , s), we have that α(ηn,� ) ≥ 1 for any n ∈N.

Case 1. (l = 1)
(1.a) If (2.10) holds, we get

b(ηn+1, P� ) ≤ α(ηn,� )b(Pηn, P� ) ≤ φ
(
A1

P (ηn,� )
)

< A1
P (ηn,� )

=
[
b(ηn,� )

]q1 · [b(ηn,ηn+1)
]q2 · [b(� , P� )

]q3

·
[

b(� , P� )(1 + b(ηn,ηn+1))
1 + b(ηn,� )

]q4

·
[

b(ηn, P� ) + b(� ,ηn+1)
2s

]q5

.

(2.12)
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(1.b) If (2.11) holds,

b(ηn+2, P� ) ≤ α(ηn+1,� )b
(
P 2ηn, P�

) ≤ φ
(
A1

P (Pηn,� )
)

< A1
P (Pηn,� )

=
[
b(Pηn,� )

]q1 · [b(ηn+1,ηn+2)
]q2 · [b(� , P� )

]q3

·
[

b(� , P� )(1 + b(ηn+1,ηn+2))
1 + b(ηn+1,� )

]q4

·
[

b(ηn+1, P� ) + b(� ,ηn+2)
2s

]q5

.

(2.13)

We can distinguish the following two situations:
(i) q1 + q2 > 0.

Letting n → ∞ in (2.12) respectively (2.13), we obtain b(� , P� ) = 0. Thus,
P� = � .

(ii) q1 = q2 = 0.
In this case, when n → ∞, from (2.12), (2.13) and keeping in mind the continuity

of b-metric b , we get

b(� , P� ) <
[
b(� , P� )

]q3+q4+q5 = b(� , P� ),

which is a contradiction.
Consequently, P� = � , that is, � is a fixed point of the mapping P .

Case 2. (l = 2)
(2.a) If (2.10) holds, we get

b(ηn+1, P� ) ≤ α(ηn,� )b(Pηn, P� ) ≤ φ
(
A2

P (ηn,� )
)

< A2
P (ηn,� )

=
[
b(ηn,� )

]q1 · [b(ηn,ηn+1)
]q2 · [b(� , P� )

]q3

·
[

b(� , P� )b(ηn,ηn+1) + b(� ,ηn+1)b(ηn, P� )
max{b(ηn,ηn+1), b(ηn+1, P� )}

]q4

·
[

b(� , P� )b(� ,ηn+1) + b(ηn,ηn+1)b(ηn, P� )
max{b(� ,ηn+1), b(ηn+1, P� )}

]q5

.

(2.14)

(2.b) If (2.11) holds,

b(ηn+2, P� ) ≤ α(ηn+1,� )b
(
P 2ηn, P�

) ≤ φ
(
A2

P (Pηn,� )
)

< A2
P (Pηn,� )

=
[
b(ηn+1,� )

]q1 · [b(ηn+1,ηn+2)
]q2 · [b(� , P� )

]q3

·
[

b(� , P� )b(ηn+1,ηn+2) + b(� ,ηn+2)b(ηn+1, P� )
max{b(ηn+1,ηn+2), b(ηn+2, P� )}

]q4

·
[

b(� , P� )b(� ,ηn+2) + b(ηn+1,ηn+2)b(ηn+1, P� )
max{b(� ,ηn+2), b(ηn+2, P� )}

]q5

.

(2.15)

We can distinguish the following two situations:
(i) q1 + q2 + q4 + q5 > 0.

Letting n → ∞ in (2.14), respectively (2.15), we obtain b(� , P� ) = 0. Thus,
P� = � .
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(ii) q1 = q2 = q4 = q5 = 0.
In this case, when n → ∞, from (2.14) and (2.15), we get

b(� , P� ) <
[
b(� , P� )

]q3 = b(� , P� ),

which is a contradiction.
Consequently, P� = � , that is, � is a fixed point of the mapping P . �

Example Let X = {1, 2, 3, 5} and b : X × X → [0, +∞) be a b-metric space (s = 2), defined
by

b(u ,ω) =

⎧
⎨

⎩
(u + ω)2, if u �= ω,

0, if u = ω.

Let P be a self-mapping on X , with P 1 = P 5 = 1 and P 2 = P 3 = 2. Taking α : X × X →
[0, +∞), α(u ,ω) = 2 for all u ,ω ∈ X , φ(t) = t/2 and the constants qi = 1

5 for i ∈ {1, 2, 3, 4, 5},
we have

1
2s

b(3, P 3) =
25
4

< 64 = b(3, 5) ⇒

α(3, 5)b(P 3, P 5) = 18 < 19.37742 = φ
(
A2

P (3, 5)
)
.

Thus, by Theorem 2.4, the mapping P has (at least) a fixed point.

3 Consequences
Corollary 3.1 Let (X , b , s) be a complete b-metric space and P : X → X be a mapping such
that

α(u ,ω)b(Pu , Pω) ≤ φ
(
Al

P (u ,ω)
)

for any u ,ω ∈ X \FixP (X ), where Al
P , l = 1, 2, are defined by (2.2) and (2.3) and φ ∈ �. Then

P possesses a fixed point � ∈ X provided that
(i) P is α-orbital admissible;

(ii) there exists u0 ∈ X such that α(u0, Pu0) ≥ 1;
(iii1) P is m-continuous for m ≥ 1, or
(iii2) P is orbitally continuous.

Corollary 3.2 Let (X , b , s) be a complete b-metric space and P : X → X be a mapping such
that

1
2

b(u , Pu) ≤ b(u ,ω) ⇒ b(Pu , Pω) ≤ φ
(
Al

P (u ,ω)
)

for any u ,ω ∈ X \FixP (X ), whereAl
P , l = 1, 2, are defined by (2.2) and (2.3). Then P possesses

a fixed point � ∈ X , provided that either P is m-continuous for m ≥ 1 or P is orbitally
continuous.

Proof Put α(u ,ω) = 1 in Theorem 2.2, respectively 2.3. �



Fulga Advances in Difference Equations        (2021) 2021:448 Page 11 of 12

Corollary 3.3 Let (X , b , s) be a complete b-metric space and P : X → X be a mapping such
that there exists κ ∈ [0, 1) such that

1
2

b(u , Pu) ≤ b(u ,ω) ⇒ b(Pu , Pω) ≤ κ ·Al
P (u ,ω)

for any u ,ω ∈ X \FixP (X ), whereAl
P , l = 1, 2, are defined by (2.2) and (2.3). Then P possesses

a fixed point � ∈ X , provided that either P is m-continuous for m ≥ 1, or P is orbitally
continuous.

Proof Put φ(t) = κ · t in Corollary 3.2. �

Corollary 3.4 Let (X , b , s) be a complete b-metric space such that b is continuous. A map-
ping P : X → X has a fixed point in X provided that

1
2s

b(u , Pu) ≤ b(u ,ω) ⇒ b(Pu , Pω) ≤ φ
(
Al

P (u ,ω)
)
,

where φ ∈ � and Al
P , for l = 1, 2 are given by (2.2) and (2.3).

Proof Put α(u ,ω) = 1 in Theorem 2.4. �

Corollary 3.5 Let (X , b , s) be a complete b-metric space such that b is continuous. A map-
ping P : X → X has a fixed point in X provided that there exists κ ∈ [0, 1) such that

1
2s

b(u , Pu) ≤ b(u ,ω) ⇒ b(Pu , Pω) ≤ κAl
P (u ,ω),

where Al
P for l = 1, 2 are given by (2.2) and (2.3).

Proof Put φ(t) = κ · t in Corollary 3.4. �
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