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Abstract

This paper proposes two numerical approaches for solving the coupled nonlinear
time-fractional Burgers’ equations with initial or boundary conditions on the interval
[0,L]. The first method is the non-polynomial B-spline method based on
L1-approximation and the finite difference approximations for spatial derivatives. The
method has been shown to be unconditionally stable by using the Von-Neumann
technique. The second method is the shifted Jacobi spectral collocation method
based on an operational matrix of fractional derivatives. The proposed algorithms'’
main feature is that when solving the original problem it is converted into a nonlinear
system of algebraic equations. The efficiency of these methods is demonstrated by
applying several examples in time-fractional coupled Burgers equations. The error
norms and figures show the effectiveness and reasonable accuracy of the proposed
methods.

Keywords: Liouville-Caputo fractional derivative; Non-polynomial B-spline
functions; Fractional coupled Burgers’ equation; Shifted Jacobi polynomial;
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1 Introduction

Many phenomena in engineering and applied sciences can be represented successfully
using fractional calculus models such as anomalous diffusion, materials, and mechan-
ics, signal processing, biological systems, finance, etc. (see, for instance, [1-7]). There is a
tremendous interest in fractional differential equations, as the theory of fractional deriva-
tives itself and its applications have been intensively developed. The theory of fractional
differential equations describes the reality of life more powerfully and systematically. In
recent years, several researchers have studied differential equations of fractional order
through diverse techniques [8-11].

The time-fractional Burgers’ equation is important since it is a kind of sub-diffusion con-
vection equation. Several different methods for solving the equation have been developed
such as the local fractional Riccati differential equation method in [12], the homotopy
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analysis transform method [13], the finite difference method [14], the variational itera-
tion method [15]. The study of coupled Burgers equations is significant for t-dimensional.
The system is a simple sedimentation model or the evolution of scaled volume concen-
trations of two types of fluid suspension or colloid particles under the influence of grav-
ity. Many powerful methods had been developed to find analytic or numerical solutions
of coupled Burgers’ equations such as homotopy perturbation method [16], differential
transformation method [17], non-polynomial spline method [18], septic b-spline collo-
cation method [19], Galerkin quadratic b-spline method [20], Adomian decomposition
method [21], meshless radial point interpolation method [22].

Several vital analytical and numerical techniques have been proposed to solve the cou-
pled nonlinear time-fractional Burger equations NLTFBEs. Prakash et al. [23] suggested
an analytical algorithm based on the homotopy perturbation Sumudu transform method
to investigate the coupled NLFBEs. Hoda et al. [24] introduced the Laplace—Adomian
decomposition method, the Laplace variational iteration method, and the reduced dif-
ferential transformation method for solving the one-dimensional and two-dimensional
fractional coupled Burgers’ equations. In [25] Liu and Hou explicitly applied the gener-
alized two-dimensional differential transform method to solve the coupled space- and
time-fractional Burgers equations (STFBEs). Heydari and Avazzadeh [26] proposed an
effective numerical method based on Hahn polynomials to solve the nonsingular variable-
order time-fractional coupled Burgers’ equations. The authors in [27] suggested a hybrid
spectral exponential Chebyshev approach based on a spectral collection method to solve
the coupled TFBEs. Veeresha and Prakasha [28] and Singh et al. [29] presented the q-
homotopy analysis transform method to solve the coupled TFBEs and STFBEs, respec-
tively. The coupled STFBEs have also been solved using the Adomian decomposition
method by Chan and An [30]. Islam and Akbar [31] obtained exact general solutions of
the coupled STFBEs by using the generalized (G'/G)-expansion method with the assis-
tance of the complex fractional transformation. Prakash et al. [32] proposed the fractional
variational iteration method to solve the same problem. Hussein [33] proposed a continu-
ous and discrete-time weak Galerkin finite element approach for solving two-dimensional
time-fractional coupled Burgers’ equations. Hussain et al. [34] obtained the numerical so-
lutions of the coupled TFBEs using the meshfree spectral method.

In comparison with local methods, spectral methods are often efficient and highly ac-
curate systems. Convergence speed is one of the spectral methods’ great advantages. Fur-
thermore, spectral methods have a high level of precision (often so-called “exponential
convergence”). The primary idea of all spectral method versions is to express the solution
to the problem as a finite sum of certain foundation functions and then to choose the coef-
ficients, to minimize the difference between precise and approximate solutions. Recently,
the classical spectral methods have been developed to obtain accurate solutions for linear
and nonlinear FDEs. Spectral approaches with the assistance of operational matrices of
orthogonal polynomials have been considered to approximate the solution of FDEs (see,
for example, [35-39]).

One of the disadvantages of the non-polynomial method is that the time step size must
be small enough. The main advantage of the proposed methods is that they are easy to
implement. Also, the solutions can be obtained with high accuracy with relatively fewer

spatial grid nodes compared with other numerical techniques. For this reason and because
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the current methods can be directly applied to other applications, we are motivated to
apply these techniques for coupled Burgers equations.

In this paper we develop two accurate numerical methods to approximate the numerical
solutions of the coupled TFBEs. The first method is the non-polynomial B-spline method
[8, 40—42] based on the L1-approximation and finite difference approximations for spatial
derivatives. The second method is the shifted Jacobi spectral collocation method [43-45]
with the assistance of the operational matrix of fractional and integer-order derivatives.
The collocation approach proposed in this paper is somewhat different from those colloca-
tion methods commonly discussed in the literature. Now, we consider the time-fractional
coupled Burgers’ equations of the form

9y 3%y du  d(uv)
W:a—xz‘f'zua—x— e +f(x,t), 0<(x1§1, (1)
042 92 0 0

LAY Whidd () +g(x1), O<ay<l, (2)

- = 4+ y— —
a2 ox? ox ox

subject to the initial and boundary conditions

u(x,0) = p(x), v(x,0) = g(x), a<x<b

u(a, t) :fl (t)! M(b, t) sz(t)’ V(“! t) =g1(t): V(b’ t) =g2(t): t>0,

where o and a5 are parameters describing fractional derivatives, x and ¢ are the space and
time variables, respectively. # and v are the velocity components to be determined. f(x, £)
and g(x, £) are continuous functions on their domains. The functions p(x), g(x), f1(¢), fo(£),
g1(8), £2(2) are sufficient smooth functions. The fractional derivatives of order «; and oy
in Egs. (1) and (2) are treated in the sense of Liouville—-Caputo defined by Jerome and
Oldham [6]. In the case of &; = a3 = 1, Egs. (1) and (2) are reduced to the classical coupled
Burgers equations.

Definition 1 ([1]) A real function u(t), £ > 0, is said to be in the space Cp, £2 € R if there
exists a real number p > §2 such that u(t) = #u; (¢), where u; (t) € C(0, 00), and it is said to
be in the space Cf if and only if u” € Co, n e N.

Definition 2 ([21]) The Liouville—Caputo fractional derivative of u € Cf, (§2 > —1) is de-
fined as

(t-s5)"ds, n-l<a<mn=12,.... (3)

ulxt) 1 /tanu(x,s)
e Tm-a)fy ot

2 Non-polynomial B-spline method

In this section, we take a spline function of the form: H3 = span{1, x, sinh(wx), cosh(wx)},
where o is the frequency of the hyperbolic part of spline functions which will be used to
raise the accuracy of the method.

2.1 Derivation of the numerical method
Consider x € [a,b] and t € [0,7]. Leta=xg <x1 <---<axn <xns1 =band 0=ty <t <
-+- <ty = T be the uniform meshes of the intervals [a,b] and [0, ], where x; = a + ik,
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h=(0b-a)/(N+1),and t, =nk, k=t/Mforn=0,1,...,Mand i=0,1,...,N + 1. Let U}
and V" be an approximation to u(x;, t,) and v(x;, t,,), respectively, obtained by the segment
Pi(x,t,) of the mixed spline function passing through the points (x;, ') and (x:,1, U},),
(i, V") and (xi,1, V2;). Each segment has the form [8, 42]

Pi(x, t,) = a;(t,) cosh(a)(x - xi)) + bi(t,) sinh(a)(x - xi)) + ci(ty) (x — x;) + di(t,) (4)

foreach i =0,1,...,N. To obtain expressions for the coefficients of Eq. (4) in terms of U}’,
ur,, v, v, St and S, which are as follows:

up = Pi(xi! tVl)! u}il = Pi(xi+11 tn); S'= P(Z)(‘xii t}'l); S;:.l = PEZ)(xi-#l! tn): (5)

i 15 12 1

where sz) (x,8) = %Pi(x, t). Using Eqs. (4) and (5), we get

ai+di:1,[i”

a;cosh + b;sinh0 + ch + d; = U,

15

aiw* =8I,

a;w* coshf + w’b;sinh = ST,

where a; = di(tn), bi = bi(tn), Ci = Ci(tn), di = di(tn), and 0 = wh.
Solving the last four equations, we obtain the following expressions:

a- h—ZSl’?, b - m*(SE, —.Sf‘ cosh@)’
02 02%sinh 0
wr,-ur  h(st,-S h?
;= — Lo L, di=U'"- =S 6
h 62 P g2 (6)

Using the continuity condition of the first derivative at x = x;, that is, Pj(x;, ¢,,) = Pi_; (%, t4),
we get the following equation:

b,w + ¢; = a;_1wsinh @ + b;_jwcoshd +¢;_1. (7)
Using Eq. (6), and after slight rearrangements, Eq. (7) becomes

ur

i+1

=2ur+ut,=ySi,+BS'+ySt,, i=1,2,...,N. (8)

Similarly, we get

n n n n n n .
Vi =2V + VI =yplq+ Bo! +ypi;, i=1,2,...,N, 9)
_ K2 K2 _ 2h%coshf  2h% _
where y = G — 75550 B = Tsane . — gz and 0 = wh.

Remark1 As w — 0, thatis, 6 — 0, (y,8) — (%, %), and Egs. (8) and (9) become as

follows:

hZ
ur, 20+ Ul = Z(S?’ +4S!+S",), i=1,2,...,N,

i+1
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hZ
Via—2Vi+ Vi = g(/’fh +4p" +py), i=12,...,N.

From Egs. (1) and (2), we write S? and p;" in the form

arur  omur ouy av"
n _ i l n —
St= o =+ (V-2 = S i t), (10)
2ve  ynvy v/ auy
! = = Lo+ (ur-2v; V”—— irtn 11
pl axZ ot ( i i ) ox g(x ) ( )

The time-fractional partial derivatives of order «; and «, in Eq. (1) are considered in
the Liouville—Caputo fractional derivatives, which can be approximated by the following
lemma.

Lemma 1 ([46]) Suppose 0 < a < 1 and g(t) € C*[0,t,), it holds that

g'(t) k™
r(1 o) Jo (tn—t)"‘ " TQ2-a)

n-1
x [g(tn) — onglto) = Y (9l 1 - wz_,,)g(w} ‘

q=1

1 [l-a 2@
< _ —o 2— a
_F(2—a)[ n Taoe (F2 )LIP&’? ']k (12)

where 9% = (q+1)'"* —¢' ™%, ¢ > 0.

Lemma 2 ([47]) LetO<a <land ¢;=(q+ 1) —q'™*,g=0,1,..., then 1 = ¢§ > ¢f >
~~>g0;‘—>0,asq—> 00.

Using Lemma 1, the Liouville—Caputo fractional derivative can be approximated as fol-

lows:
vt Uln o n-1 . , . -
s = o | UF = U = (e - et UL |+ Ok ), (13)
gq=1
0% Vin ., 0 n-1 o ., . -
a2 Vi—onhi Vi - Z((pnqul _(pnzq)vi +O(k*2), (14)
gq=1

k1 k=2
where o7 = Foan’ 02 = F(ray)

Substituting Eqs. (13) and (14) into Egs. (10) and (11), the spatial derivatives S/ and p/,

r=i-1,i,i+ 1, are discretized for n = 1 and n > 2 as follows:

1
Sy o (U} - 2,) + 25t (! -3}, - )

2h
77;
2h1(4vl Svil—l z+1) fll’
st
St (U} ~U) + 20y~ Uly) + (VA = V) A as)

st
Sia = o (Ui, — Uy + 2711 (UL, —au; +3U,)
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where 87 = (V' = 2U?), ¢! = (U - 2V]), nl =
Substituting Egs. (15) to (18) into Egs. (8) and (9), after slight rearrangement, yields the

(2021) 2021:439

nz+l
2h

(Vi -4V +3Vi) - firr

1
i-1 (4‘/;1 _ 3‘/11

,0}71 = 0'2(‘/1‘171 - Vi(il) +

1

+ ﬁ(‘LU} -3UL, - ULy) gy
1. 1 0 é‘ 1 1 %—1
p; = O’2(Vi - Vz ) W (VHI Vi—l) 2h(

1~ 0
Piy1 = 02(‘/1+1 Vi

i+1

2h
1

+ 21}11 (Uil,l U +3Uzl+1) gi1+1’

n-1

St 1—01(U (,0” 1U +UIZ @nql Pl q)

gq=1

x (-3Ur, +4Uy - U

i+1

n-1

ul

{1
)+ 2V -4V + 3V

_y!

i+1

i+1 7

i+1

)

)

n;l—l n n
)+ o (-3V, +4V] -

S?:U (U (pn luo +GIZ (pn —q-1 (le q)uq

g=1
n (L[" _ur ) ’71” (V" _yr )
2h i+1 i-1 2% i+1 i-1
Sty = o (Ufy - eyt U l+1 + Ulz Pt -q-1
8;-’{-1 (unl_4u +3un1)+ nl+1 (V
o\ ” 2h

—_

n—

= 0a(Viy ~ 0 VL) + 003 (0 s — Vi

Il
—_

q
n

X (-BVY + 4V, — Vi) + 2

n-1

n
_fi’

(pnq

-4V + 3V}

L(-sur, +4ur,

pl."zo(v —(pnl +UZZ(pnql wnq)vq

g=1
§ n n sn n n
h(‘/l+1 sz'—l) h(qu Ui—l)

noo n
Piv1 —‘72(Vi+1 o z+1 +022 @t -q-1

n
-8

é‘ly‘:’l n n iril n
+ 2L (VL -4V 43V + 22 (U, - 4

i+1

2h 2h

following systems:

AU | + AU} + AU, + AV + A5V + Ag
l+1 Vf; 1 IBf;l -

= A;UD | + AU + AsUL

<pnq

Ur,and &' =

Vl

i+1

1
yfi+1’

Page 6 of 28
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BV}, + By V! + BsVE | + ByU} | + BsU} + Bl

=BV, +BsV; + By Vi, - vgl, - Bg — V& (20)
A UM+ AU + AsUL + AV + AsV] + A V],

= A ULy + AU + AU — () = vfy = B — v (21)
BV + By V" + BsV]i, + ByU!" | + BsU" + BsU"

=BV, 4+ BsVY + BV — (M) - ygly - BEl — v gl (22)

wherei=1,2,...,N,n> 2 and

38, B8Nyl W8 2y
Ar=1-yor+ )/21:1 ¥ ﬂzh yzzl Ay=-2- o1~ yhli‘l + ‘yhl+1‘,
As=1—yoy s o0 PO Bvei, o Svmiy Pni v

24 2h 2h

2y yni,  Bni 3Byni,
A = — }’l — }’I , A = ALl S B S V. 2 S
5= (i =) = on " 2n 2

2h 2h 2h

3y¢ly + B&G v&ia
2h  2h 2k

Vé-l v Bg 3y

A7 =—yoi19,!), Ag = -Bo1g, ', By=1-yoy+

2V§£1 + 2y

By=-2-foy - P By=1-yo, + 2L T ok
_ 3y&l, ﬂ";:n V§,+1 _ 2_)/ no_en
Bi= = o gy Be= g Ea - E)
v&l,  BE'  3véE] o o
Bs = ﬁl - 2_}; - 2—;1’ B; = —yop,’), Bg = —B02¢,7,
n-1
) =01y (o, — et )y (Ul + ufy) + put],
gq=1
n-1
()l =02y (21— o2 )y (VE, + V) + BV
g=1

The system thus obtained on simplifying Egs. (19) to (22) consists of (2N + 4) unknown
variables (Uy, U1, ..., Ux:1) and (Vo, V1,..., V1) in the (2N) linear equations. Four ad-
ditional constraints are necessary to achieve a unique solution to the resulting scheme.
These are obtained as follows by introducing boundary conditions:

u(}; :fl(tn): UKHI :f2(tn)) V(;q :gl(tn), V](l]+1 :gZ(tn)'

Eliminating Uy, Un+1 and Vo, V.1, the system gets reduced to a matrix system of dimen-
sion (2N) x (2N), and the initial values are obtained by the initial conditions.

Remark?2 Thelocal truncation errors (see [46]) T = [Ty;, To;],i = 1,2,...,N, can be written
as follows:

32 n h2 84 n
Ty = (K" - 2y + ﬁ)) ul <E - y>h2WIZ’ +O(K*1 + k), (23)

21/” h? oty
Toi= (1~ 2y + B)) 5 (E - y)hza—x; + Ok + ). (24)

Page 7 of 28
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Equations (23) and (24) design two methods for choices of parameters 8 and y as follows:

1 If2y + B=h2and y # 2, then Tj; = O(k>2 + h%), j = 1,2.

2. If2y + B=h*>and y = %, then Tj; = O(k*™2 + h®), j = 1,2.

2.2 Convergence analysis

. " h?
According to Remark 2, we have chosen 2y + 8 = h2, where y = 15 and B = 57. Let us
rewrite Egs. (21) and (22) as follows:

QR =P, (25)

where R = [U, V1T, U = [uy, Uy,..., U, v = [vi, VE,..., Vii]T and a matrix Q is given

as a block matrix

| Qu|Qu2
Q= |:Q21 sz] '
where

h h
Qi1=Qo + H*01Q1 + EZS» Q2 = EZ"’
, (26)

h , h
Qo = EZS, Qun=Q+hoQ + EZ;,

and square matrices Qy, Q, and Z,,x = §,7,&, ¢ are given by

2 1 0 o0 0]
1 -2 1 0 0
0 1 -2 1 --- 0
Q={. . . . . .
0 0 1 -2 1
| 0 0 0 1 -2
[ -5/6 -1/12 0 0 cos 0
-1/12  -5/6 -1/12 0 0
0 -1/12  -5/6 -1/12 0
Q= . . ) . . . )
0 0 -1/12 -5/6 -1/12
| 0 0 0 -1/12  -5/6 |
X - x| —10a7 !,
r+13 i—1 1 ) 1 0 0
3wy +10x X1 =% 3wy —10x7' 0
12 M 3 v v n 12” M M v
0 3% +10%7 X1 7%io1 3y ~10x7 iy
7 - 12 3 12
e =

v n "
37 +100] —x7 ¢

0 0 -
0 0 0
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0
0
0
, x=8,1,§8¢.
x?+1_x;’—l sz 1—10x —le
v 3 N N 12
X +10%7 7y A o
12 3 -

A matrix P = [Py, P;]T where

A7U8 +A8LI? +A7LI§’ — ()\1);14

-vfo = B = vfy - AU,
AU |+ AU + A7 UYD
P, = -1 8 7Hin 1<i<N,
- ()»1)? -vf =B = vy

A7U](\)]_1 +A8UO +A7u2[+1 — ()»1);1\[
=¥ = BIN = v — AsUR,

AV + AgVY + A7V — (M)}

_ y’ﬂ)ﬂ _ﬂf’l}’l _ yf‘zn —A1V",

AV +AV°+A
P, = 7V + s Vi 1<i<N,

- (M)f’ -y =B —vfi
AV L+ AV + ATV — ()G

— Vi = BR = v —AsVia

Let U = [u, V)T, u = [ur,u3,...,un]T, and v = [v, v, ...,vn]7 be the exact solutions of
Egs. (1) and (2) at nodal points x;, i = 1,2,...,N, and then we have

QU=P+T, (27)

where T = [Ty;, T;]T is the local truncation error described in Remark 2. From Egs. (25)

and (27), we can write the error equation as follows:
QU-R=QE=T, (28)

where E = [Ey;, Ey;]T is the error of discretization with E;; = u; — U and Ey; =v; - V.

L

For sufficiently small step /4, the diagonal blocks Q;; and Qo are invertible and the fol-
lowing condition holds:

[QuQy | [Quai], <1
According to [48], matrix Q is invertible. Moreover,

max{[|Qpi lloo, Q5 lloo} (1 + 11Q12 Q53 lloo)(1 + ||Q21Q111”oo)
1-1Q12Q5 1R Q11 o

Q7 = (29)
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From Eq. (28) and norm inequalities, we have

IEllso < |Q7M ] N T lloo- (30)
Since

1T < Ok* ™ + 1Y), 2y +B=hy £h?*/12,
< OKk* @ + %), 2y +B=hy=Hh/12,

and from classifications of the matrices Q11, Q12, Q21, and Qy; defined in Eq. (26), we have

2—a 2 _ 1,2 2
1B < Ok>* +h?), 2y +B=h,y #Hh*/12, 1)
Ok*> +h*), 2y +pB=h,y=h"/12.

This shows that Eq. (25) is a second-order convergence method in the case 2y + 8 = K2,

y #h%/12, and a fourth-order convergence method in the case 2y + 8 = 2, y = h?/12.

2.3 Stability analysis of the method
The stability analysis of the difference schemes listed in Egs. (19) to (22) is discussed by
assuming the nonlinear terms § and n/, r =i - 1,i,i + 1, as local constants D and E re-
spectively.

Let L~1L" and \N/[‘ be the approximate solutions of Egs. (19) to (22) and define

pr=ur-ur, Ql=v'-v!' i=01,.,N+Ln=0,1,...,T.

L 1

With the above definition and regarding Egs. (19) and (21), we can get the following round-

off error equations:

1 1 1 1 1 1
arP_ + arP; +azP;,; +a,Q;_; +asQ; +asQ

i+1
= a7P?_1 + agP? + a7P?+1, (32)
ar P! + axP! + asP! | + as QY | +asQ! + agQl,4
n-1
=arP) )+ asP) + arPy -0y (onl, s — o) [y (Phy + PLy) + BPY), (33)
g=1

wherea; =1-yo; + 2%(ﬂ +2y),ay=-2-Boy,a3=1-yo; — 2%(;‘3 +2y), aq = %(ﬂ +2y),
a5 =0, a6 =—+(B +2y), a7 = —yo1¢,'1, and ag = —Bo1¢, .

The Von Neumann method assumes that

Pi=c, ellioh). (34)

Q' = et (35)

where I = v/-1.

Page 10 of 28
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Substituting Egs. (34) and (35) into Eq. (32), we get

( PIPAGRIIN a Jioh | as LG R (S de e](i+l)¢h) a

_ (a7el(i—1)¢h +6Zg€1i¢h +a7el(i+1)¢h)§o’

after some algebraic manipulation, we have

g1 S0 (36)

T+ ly

where ¢ = o1(B + 2y cos(¢ph)), n = 2(1 — cos(¢ph)) + ¢, and ¥ = %(ﬂ + 2y) sin(¢ph).

¢
= < . 37
ISy U2+‘ﬁ2|§0|_|§0| 37)

Substituting Egs. (34) and (35) into Eq. (33) results in

( a A-Doh a Jioh | as LAEHDOh | da LADoh de e](i+1)q>h) §n

_ ( p (el(i—1)¢h + eI(i+1)¢h) +dg e[i¢h) <

n-1

01 3 (1 — 5t ) [ (N 4 OO o ]
g=1

After some rearrangement we get

n-1
_ @ o] a1
on= n+Iy <¢”1§° * Z(‘/’nqul - ‘pzlq)gq)'

q=1

Using mathematical induction, we can prove that |¢,| < |so| as follows:
Forn=2,

__9
n+Iy

@
n+Iy

19 (o1 co+ (5! — ¢7") 1) = S 5o = Il <lsol

@
n+Iy

Let k € Z, be given and suppose |¢,| < |co| is true for n = k. Then

k

¢

v (wi”go Y (o, - wi‘iqﬂ)gq).
gq=1

Ck+l =
n

By Lemma2,wehave 0 < ¢;' <¢;';,4=0,1,...,and consequently (¢;",_, —¢;" ) > 0. Thus

K
(p2
ISkl =, e (‘PZI ISol + Z(wiiq - <P1(:1q+1)|§q|>
gq=1

k

<@ lsol + Z((p,‘ﬁ 7~ %% g)ls0l  (by induction hypothesis)
gq=1

k
= (goi” Y (o, - wiiq+1)) |50l = #5150l = I5ol-
g=1

Page 11 of 28
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Expanding the summation in the last equation, the intermediate terms cancel each other,
and we are left with the term ¢;" | Go|. Thus, |6, | < |0/ holds for # > 1, and we have stability
for 8,y > 0.

We can obtain similar results for Egs. (20) and (22).

3 Shifted Jacobi spectral collocation method
This section introduces a numerical scheme based on the shifted Jacobi spectral colloca-
tion method (SJSCM) to obtain the approximate solution of the coupled Burgers system
Egs. (1) and (2).

The shifted Jacobi polynomial of degree j is denoted by Pg‘i'")(x); w,n > -1, x¢€[0,L]
constitute an orthogonal system with respect to the weight function wg" ‘")(x) =x"(L —x)"

L
/ P(Ll,liln)(x)Pg,Lj,n)(x)ng,n)(x) dx = 5;‘;//12;’"),
0

where §;; is the Kronecker function and

e _ LMMIPG 4+ DG +n+1)
(Y pAn+ )G+ + 1)

v (38)

The shifted Jacobi polynomial can be obtained with the following three-term recurrence

relation:
)= e BB, 21,
with P%n)(x) =1and Pgtl’n)(x) = 71(u+n+2)x—(n+1), where
Qe+ D@+ +n+2)

4= G+1DG+un+n+1)L
2 +u+n+ D2+ L +n)(+n)+2j(k+n+1))
G+DG+pm+n+1)(2+pm+n)
__ @rp+n+2)(G+ )G +n)
G+DG+p+n+D)2j+p+n)

’

b =

’

J
The analytic form of shifted Jacobi polynomial Pé’fj’")(x) is given by

P () = 4 FG+n+)I'G+k+p+n+1) X

_ — ‘7k
L Q Y Rl e DG 0+ DG-ORIE

The values of the shifted Jacobi polynomials at the boundary points are given by

I 1 I 1
p0) = -y LD gy LUxil)
g r'(n+1 ! I+ 1)t

Suppose that f(x) is a square-integrable function with respect to the shifted Jacobi weight

function a)(L“ " on the interval (0, L), then f(x) can be written in terms of PE’;’”) as follows:

[o¢]
@)=Y apPl”, (39)
j=0
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where
o ff(x)p’“” Yo" (x)dx, j=0,1,....

The shifted Jacobi—Gauss quadrature is used to approximate the previous integral as fol-

lows:
N
/Hz /Hz () \ plessn) ¢ () Y (1)
/ fx) (x) dx = § :-}(xG,L,k)P Lj (xG,L,k)wG,L,k’ (40)
k=0

where xG L k, k= O 1 ., N, are the roots of the shifted Jacobi polynomlal LN +1(x) of de-

gree N + 1 and a)G I k, k=0,1,...,N, are the corresponding Christoffel numbers

o) LM (N + o+ 2)F(N +1+2)

G Lk~ (om) () ¢, () (41)
N+DII'(N+u+n+2)(L - xG )xGLk[B Py GLk)]
Now, if we approximate f(x) in Eq. (39) by the first (N + 1)-terms, then
Fo) = fulw) = Za, D) = AT W, (), (42)
j=0
with AT = [ao a1 - ay]and Wpn(x) = [PY5"(x) PY7(x) - PP )7

Similarly, in terms of the double shifted Jacobi polynomials, a function of two indepen-
dent variables f(x, ) that is infinitely differentiable in [0,L] x [0,7] can be extended as

follows:

iiu,,P‘“’ () (x),

i=0 j=0

which can be approximated by the first (M + 1) x (N + 1) terms with the truncation error

h ey o N a,,P(“ ")(t)P 1) () as follows:

[ 1) = fun m)—ZZal, VD OPY" (x) = W (AW N (3), (43)

i=0 j=0

with the coefficient matrix A given by

apmo am . AMN
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where

%= Jn un>/1‘/ fla P ﬂP“n(xku”"(ﬂaﬂlm@dedt

Tl

i=0,1,...,M,j=0,1,...,N.

Using the shifted Jacobi—Gauss quadrature formula [36, 49], we can approximate the co-
efficients a;; as follows:

1 1

Aj = —————
h(flytirﬂ) h(Llj-’ﬂ)

M
x ZE S (G 1) P ()P (6w indiy, (44)
k=0 ¢=0

where xc’fﬁ, £ w0t and wG’LL"C are defined by Egs. (40) and (41).

Theorem 1 ([39]) Let V., 5((t) be shifted Jacobi vector defined in Eq. (42), and let o > 0.
Then

D?\DZM(t) :Daqu,M(t): (45)

where D, is the (M + 1) x (M + 1) operational matrix of derivatives of order o in the
Liouville—Caputo sense and is defined by

o 0 0 |
0 o .. 0
D, - do(la],0) do(le],1) -+ do(la], M) ,
dy (l 0) dy (l 1) da(i:r M)
| da (M, 0 do (M, 1) dy (M, M) |

where |« ] is the floor function and

i

Z (~1)iFkgpan=e PGy DEG+n+ DG+ k+p+n+1)
km F(k+n+1)F(]+u+n+1)F(1+u+n+1)F(k o+ 1)(i-k)!

do (i) =

Xj:(—1)7‘1F(j+l+,u+77+1)1“(u+1)F(l+/<+77—a+1)
i Frl+n+1)I'l+k+pn+n—a+2)(j-DH1

Similarly, the fractional derivative o of Wy y(x) can be expressed as in Eq. (45):
Dy N(x) = Dy Wi N (%), (46)

where D, is the (N + 1) x (N + 1) operational matrix of derivatives of order «.
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3.1 Time-fractional coupled Burgers’ equation
We are going to consider the time-fractional coupled Burgers’ Egs. (1) and (2), which may

be written as follows:

9%y 32 9 9
Bt‘:_8_;+(V_2u)8_z+u8_;_f(x’t):0’ O<a; <1, (47)
%2y 9%y v du

Py —@+(u—2v)a +va—g(x,t):0, O<ay <1 (48)

with the initial-boundary conditions

u(x,0) = p(x), v(x,0)=¢g(x), a<x<b
u(a, t) = fi(t), u(b,t) = fo(t), v(a, t) = g1(2), v(b,t) =g(t), ¢>0.

Using Eq. (43), we approximate u(x, t), v(x, t), f(x, t), and g(x, ) as follows:

u(, t) = upn (%, 8) = W (UYL N (%),
V(x,t) = v (6, 2) = BT, () VN (%),

S 0) = fun(x0) = W] AV N (),

(49)

g, t) = gun(x,8) = W1 ()BY N (x),

where U and V are unknown coefficients (M + 1) x (N + 1) matrices, while A and B are
defined by Eq. (43), where

M N
e ZZf (&g 1) P (e )Py (g oty

ﬂ,‘j
hrz k=0 ¢=0
M N
(on) L (om) \ plisn) (sm) (L om) (o) (o)
ij = ZzngL{’tGrK)Pt (tGTK)PL] (xGL;)wGrK“)GL;
hrz k=0 ¢=0

Using Theorem 1, we have

aal u(x; t) T T
grer \Ijr,M(t)Doq UV N (),
8u(x, t)
~ Wl (UD Wy (x),
Cox
0%u(x, t)
o ~ WZM(t)UDZWL,N(x),
8°2v(x, t) (50)
“y(x, t o T T
W =~ \IJ‘L',M(t)Daz V\IJL,N(x)’
ov(x, t)
— 27~ \I’TT,M(t) VD1V N (%),
ox
3%v(x,t)
~ \IJT O VDY n(x).

0x2

Page 15 of 28
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Substituting Egs. (49) and (50) in Egs. (47) and (48) and collocating at (M + 1) x (N — 1)
points, we have
‘~I‘TT,/\4(ti)D§1 UV ) - ‘IJIT,M(ti)UDz W (%)
+ (W (&) VN () - 20l () UYL N (%))
x (UL (E)UD LN () = Wy (E)A VLN (%)
+ (W)U VLN (7)) (U] 0 (8) VD1 Wi (7)) 22 0,

(51)
W ()DL, VN () — W] () VD W (%)

+ (UL UV N () = 29 () VP N ()

x (U] (t) VD1 W N () = W (8)BY N ()

+ (WL @) VLN () (W () UDy Wy n (7)) ~ 0,

where x5, j = 0,1,...,N — 2, are the roots of shifted Jacobi polynomial Pg%’zl(x) of degree
N-1land¢,i=0,1,...,M, are the roots of shifted Jacobi polynomial Pi‘;(,’[’il(t) of degree
M +1. System (51) consists of 2(M + 1) x (N — 1) algebraic equations in the unknown coef-
ficients u;; and v, i=0,1,...,M,j=0,1,...,N —2. Four additional equations are needed to
obtain a unique solution for the resulting scheme. These are accomplished by the bound-
ary conditions

Wl ) UL (0) = fi(2),
Wl G UYLN(L) = f(8),
‘I’TT,M(ti)V‘I’L,N(O) =g (%),

W@V N(L) = g(8),

i=0,1,...,M. (52)

System (51) can be combined with Eq. (52) to form the system of 2(M + 1)(N + 1) nonlinear
algebraic equations in 2(M + 1)(N + 1) undefined coefficients, which can be resolved using
Newton’s iterative approach. Consequently, un(x, £) and van(x, £) can be calculated by
the formulae given in Eq. (49).

The convergence and error analysis of the shifted Jacobi polynomial has been considered
in [50, 51]. The Caputo fractional derivative of the shifted Jacobi polynomials satisfies the
following estimate:

’CDaPZLj,U)(x)‘ < Cja+q’

where C is a positive generic constant and g = max{u,n,—1/2}. [50, Theorem 3] proved
that the expansion coefficient a;; in Eq. (43) satisfies the following estimate:

4yl = O(7) forallij>3

Finally, by [51, Theorem 3], we find that the truncation error of solutions of Eqs. (47)
and (48) obtained by shifted Jacobi polynomial satisfies the following estimates:

ot — uprnlla = O(M‘3/4N‘3/4), v =varnllz = O(M‘3/4N‘3/4).
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4 Numerical solutions

In this section, we discuss three numerical examples representing the time-fractional cou-
pled Burgers equations to ensure the high accuracy and applicability of the suggested
methods. We compute the L, and L, error norms by the following formulae:

N
c L= B U0 - w0
j=0

Lo = Orgjzg\[‘ U(xj,t) — ulx, 1)

where

h= Oréljzg](v{hj s hj = xj0 — %)
The proposed methods are examined up to 7 = 1, where the time step-size of the first al-
gorithm is k = 1/512. In all figures, sub-figures (a) and (b) represent the approximate solu-
tions and absolute errors of the SJSCM, respectively, and sub-figures (c) and (d) represent
the approximate solutions and absolute errors of the non-polynomial B-spline method,
respectively.

Example 1 Consider the system introduced in Egs. (1) and (2) with initial-boundary con-
ditions:

ulx,0)=v(x,0)=0, a<x<b

u(a,t) = via,t) = t> sin(e‘“), u(b,t) = v(b,t) = > sin(e‘b), t>0,

where
3131 gin(e™*
flx,t) = 1_'(47()) + e sin(e‘x) — e cos(e_x),
-]
3132 gin(e~*
glx,t) = 1_'(47()) + % sin(e™) — e ¥ cos(e7).

The exact solution of this problem is u(x, t) = v(x, £) = t> sin(e™).

The L, and L., error norms and the approximation solutions and absolute error distri-
butions of Example 1 are given in Tables 1 to 3 and Figs. 1 to 3, respectively, for suggested
methods with o7 = @y = 0.1,0.4,0.7 for different values of N on [0,1] x [0, 1]. Tables 4 to
6 present the L, and L, error norms obtained while varying N € {6,8,10,12}, o1 = oy =
0.2,0.4,0.6 and x < [0, 3]. Figures 4 to 6 display the graphs of approximate solution and
absolute error for u(x, ) = v(x, t) with a; = a3 =0.2,0.4,0.6, N = 12 on [0, 3] x [0,1].

Table 1 [, and L error norms for u(x, t) = v(x, t) of Example Twhen 0 <x < 1,1 =ap =0.1

N SISCM (u=n=0,M=N) Non-polynomial, k = 1/512
Ly(U) = Lo(V) Loo(U) = Loo(V) Ly(U) = L(V) Loo(U) = Loo(V)
6 51510654 x 107/ 57880948 x 107/ 2422437 x 1070 3370818 x 1070
8 701838 x 1077 90064422 x 1077 961156 x 107/ 1334979 x 1076
10 4531374 x 10710 6.070393 x 10710 4964396 x 107/ 6.874885 x 10~/
12 1.6627626 x 10710 26921354 x 10710 3.126976 x 107/ 4317349 x 107/

Page 17 of 28
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Table 2 [, and L error norms for u(x, t) = v(x,t) of Example Twhen 0 <x < 1,1 =a» =04

N

SISCM (u=n=0,M=N)

LU)=L(V)

Loo(U) = Loo(V)

Non-polynomial, k= 1/512

L(U) =La(V)

10
12

5111073 x 107/

7.2802825 x 1079
20017725 x 107°
5450265 x 107"

5776153 x 107/

8.5466062 x 1079
2.8590415 x 1077
86848639 x 107"

4664657 x 107°
3.26657 x 1070
282207 x 107°
264634 x 1070

6426346 x 107
448675 x 1070
3.86984 x 1070
3.625546 x 1070

Table 3 [, and L error norms for u(x, t) = v(x, t) of Example Twhen 0 <x < 1,1 = =0.7

N SISCM (u=n=0,M=N) Non-polynomial, k = 1/512
Ly(U) = (V) Loo(U) = Loo(V) Ly(U) = La(V) Loo(U) = Loo (V)
6 5241454 x 107/ 6.069457 x 107/ 2979 x 107 406772 x 107
8 3.827265 x 1078 5596145 x 1078 284745 x 107 389513 x 10
10 1.167764 x 1078 1548701 x 1078 280562 x 107 3.83997 x 107
12 9377883 x 107° 1.248364 x 1078 2789 x 107 381738 x 10

(a)

(b)

()

(d)

Figure 1 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example Tat a1 =0 =0.1,N=12,0 <x <1

(a)

(b)

(c)

(d)

Figure 2 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. () and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example Tat o1 =0 =04, N=12,0 <x <1

(a)

(b)

(c)

Figure 3 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (¢) and (d) represent approximate solution and absolute error distribution, respectively, using
non-polynomial B-spline method of Example Tat o =y =07, N=12,0<x <1
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Table 4 [, and L error norms for u(x, t) = v(x, t) of Example Twhen 0 < x < 3,1 = =02

N SISCM (u=n=0,M=N) Non-polynomial, k= 1/512
Ly (V) = (V) Loo(U) = Loo(V) Ly(U) = L2(V) Loo(U) = Loo(V)
6 5114284 x 1074 4209808 x 1074 42199 x 107 3.88868 x 107
8 9.3093919 x 107© 63927994 x 107° 1.56385 x 107 151978 x 1074
10 52277249 x 107~/ 366521 x 107/ 7.1066 x 107 6.84438 x 10™
12 50689196 x 1078 35408358 x 1078 3.72193 x 107 357879 x 10

Table 5 [, and Ly error norms for u(x, t) = v(x, t) of Example Twhen 0 < x < 3,1 =ap =04

N

SISCM (u=n=0,M=N)

Ly(U)=L(V)

Loo(U) = Lo (V)

Non-polynomial, k= 1/512

Ly(U) = L(V)

Loo(U) = Lo (V)

10
12

49796269 x 1074
9.129036 x 107°
517690046 x 10~/
50265239 x 1078

4182894 x 1074
6416412 x 107
3.590876 x 10~/
35125245 x 1078

3.83958 x 1074
147293 x 107
712879 x 107
41178 x 107

3.6628 x 107
144863 x 107
6.89816 x 10
3911 x 107

Table 6 [, and L error norms for u(x, t) = v(x, t) of Example Twhen 0 <x <3, a1 =2 =06

N

SISCM (L =n=0,M=N)

L(U) =L(V)

Loo(U) = Loo(V)

Non-polynomial, k= 1/512

LU =L(V)

Loo(U) = Loo(V)

10
12

4832349 x 107
8926735 x 107°
5.114513 x 107/
497548 x 107°

414606 x 1074
6440879 x 107°
348196 x 107/
36180436 x 1078

3.747639 x 1074
167084 x 1074
1.008135 x 1074
748392 x 107

36251 x 107
16139 x 1074
9.1704 x 107
6.659 x 107

(a)

Figure 4 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. () and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 1ata; = =02, N=12,0<x <3

(a)

(b)

Figure 5 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 1at oy = =04,N=12,0<x <3
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@ (b) © @

Figure 6 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 1at oy = =06, N=12,0<x <3

Table 7 [, and L error norms for u(x, t) = v(x, t) of Example 2 when 0 < x < 1, a1 = ap = 0.01

N SISCM (u=n=0,M=N) Non-polynomial, k= 1/512
Ly(U) = Lo(V) Loo(U) = Loo(V) Ly(U) = L(V) Loo(U) = Loo(V)
5 6.9409 x 1078 8.706985 x 1078 2.83686 x 1078 3.931429 x 1078
7 3.1640527 x 10710 4685609 x 10710 124892 x 1078 1.716939 x 1078
9 56879768 x 107" 7.195683 x 107" 8.169012 x 1072 1112287 x 1078
11 21982224 x 107" 2821826 x 107" 6.625736 x 107° 9.039646 x 107°

Table 8 [, and Ly error norms for u(x, t) = v(x, t) of Example 2when 0 <x < 1,1 =a» =0.1

N SISCM (u=n=0,M=N) Non-polynomial, k = 1/512
Ly(U) = (V) Loo(U) = Loo(V) Ly(U) = L(V) Loo(U) = Loo(V)
5 7.8708446 x 1078 0936349 x 1078 1.01813 x 1077 13893 x 1077
7 337123 x 1079 426876 x 1077 8638697 x 1078 1.17964 x 1077
9 6.065073 x 10710 7651944 x 10710 8218934 x 1078 1.12234 x 107~/
11 2817315 x 10710 3.645546 x 10710 8.06838 x 1078 110175 x 1077

Example 2 Consider Egs. (1) and (2) with initial-boundary conditions:

u(x,0)=vx,0)=0, a<x<b

£ £
ula,t) =via,t) = , ubb,t)=——, t>0,
@t =via.t) = =2 D=5
where
3131 sin(e™* 2137 e
flx,t) = ) _ + )
e*+2) M4 —oy) (e*+2)3 (e*+2)?
311322 gin(e~¥) 213~ e
glx,t) = - + .
(e*+2)IT(d—ay) (e*+2)% (e™*+2)2
The exact solutions of this problem are u(x, t) = v(x,t) = %

Example 2 is solved by the presented methods for two sets of parameters: o; = oy =
0.01,0.1,0.5 on [0,1] x [0,1] and &7 = @y = 0.05,0.2,0.4 on [0, 3] x [0, 1]. Tables 7 to 9 list
the L, and L, error norms, and Figs. 7 to 9 illustrate the approximate solutions and the ab-
solute errors of suggested methods for the first set of parameters. Results achieved by the

established methods with respect to the second set of parameters are shown in Tables 10
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Table 9 [, and Lo error norms for u(x, t) = v(x, t) of Example 2when 0 <x < 1,1 =a» =0.5

N SISCM (u=n=0,M=N) Non-polynomial, k = 1/512
Ly(U) = Lo(V) Loo(U) = Loo(V) Lr(U) =La(V) Loo(U) = Loo(V)
5 6448889 x 1078 7.7196524 x 1078 3.74912 x 1070 5119798 x 107°
7 138115 x 1078 1.8558 x 1078 3.73579 x 1076 51 %100
9 6.20399 x 1077 8.2554947 x 107° 3.732156 x 10°° 5.094726 x 107°
11 263339 x 1077 3515616 x 107° 3.730849 x 107° 5.09279 x 1076

(c)
Figure 7 (a) and (b) represent approximate solution and absolute error distribution, respectively, using

SJSCM. () and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at @y =, =001, N=11,0<x <1

(a) (d)

Figure 8 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at a1 =0 =0.1,N=11,0 <x <1

© (@)

Figure 9 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. () and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at o1 =0 =05, N=11,0<x <1

to 12 and Figs. 10 to 12. It is remarkable that in Example 2 the approximate solutions
obtained using SJSCM and the non-polynomial B-spline method are more accurate than
those obtained using the method in [27].

A comparison between the maximum absolute errors (L) obtained via the proposed
methods with the corresponding results obtained in [27] is displayed in Tables 13 and
14.
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Table 10 [, and Ly error norms for u(x, t) = v(x,t) of Example 2 when 0 < x < 3, &y = = 0.05

N SISCM (u=n=0,M=N) Non-polynomial, k = 1/512
L(U)=L(V) Loo(U) = Leo (V) Ly(U)=L(V) Loo(U) = Loo(V)
5 275698 x 107 213309 x 107 4007281 x 10°° 353822 x 10°°
7 1.077029 x 107© 8115332 x 10~/ 1.10546 x 1070 9276 x 107/
9 1494298 x 1078 1.051348 x 1078 3.629646 x 107/ 3.80652 x 107/
11 9.744539 x 10710 7.271968 x 10710 2.095027 x 10~/ 2551637 x 10~/

Table 11 [, and Ly error norms for u(x, t) = v(x,t) of Example 2when 0 <x < 3,1 =a» =0.2

N SISCM (u=n=0,M=N) Non-polynomial, k = 1/512
L(U)=L(V) Loo(U) = Loo (V) Ly (U) = (V) Loo(U) = Leo(V)
5 27154 x 107 2.1068 x 107 2548224 x 1076 2953777 x 1076
7 1.061264 x 107° 8.12598 x 107/ 1899158 x 107© 1637765 x 107°
9 15098 x 1078 1481109 x 1078 2294514 x 1076 162347 x 107
11 1.919235 x 1072 145927 x 107° 2471077 x 107° 1.83265 x 107°

Table 12 [, and Ly error norms for u(x, t) = v(x,t) of Example 2when 0 < x < 3, a1 =a =04

N SISCM (u=n=0,M=N) Non-polynomial, k = 1/512
Ly(U) = (V) Loo(U) = Loo(V) Ly(U) = (V) Loo(U) = Loo(V)
5 263747 x 107 2047483 x 107 132849 x 10 9403099 x 107°
7 1.039717 x 107© 82290569 x 107/ 1492744 x 107 1.113938 x 107
9 3426634 x 1078 3481425 x 1078 1539241 x 107 1.17148 x 107
11 41872258 x 107° 3.043468 x 107° 1.555968 x 107 1.1919 x 107

(a)

Figure 10 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (¢) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at a1 = =0.05,N=11,0<x <3

(d)

Figure 11 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at oy = =02, N=11,0<x <3
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(d)

@)) (b)

Figure 12 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at oy =y =04, N=11,0<x <3

Table 13 [, error norm for u(x, t) = v(x, t) of Example 2 with 0 <x <3, a1 =ap =04, N=5 and

n=n=0

k Non-polynomial

TQF [27, Table 1]

FDM [27, Table 1]

1/64 3.14429 x 1074
1/128  1.04448 x 107
1/256 330541 x 107
/512 94031 x 107

162969572 x 1073
407935306 x 1074
940924121 x 107
158381076 x 107

1.58537183 x 1072
542638453 x 1073
1.82754471 x 1073
604886113 x 1074

Table 14 L error norm for u(x, t) = v(x, t) of Example 2with0 <x <3, a1 = =04and u=n=0

N SISCM TQF (t =1/128) FDM (T = 1/128)
M=N) [27, Table 2] [27, Table 2]

3 414476 x 10°* 321997018 x 107%  3.02999632 x 1073

4 183386 x 107 232880457 x 107* 248938916 x 103

5 204748 x 107° 124955778 x 10%  1.51170703 x 1073

7 8229057 x 107 - -

Example 3 Finally, consider Egs. (1) and (2) with the initial-boundary conditions:

u(x,0)=v(x,0)=0, a<x<b

u(a, t) = via,t) = t° %, u(b,t) =", t>0,

where
6o e
x,t) = — —t°%7%,
S t) 7 —a)
6115 2¢™
ant) = S b,
(7 —ay)

The exact solutions of Eqs. (1) and (2) are u(x, ) = v(x, t) = t%*.

Example 3 is solved by both suggested algorithms in two space intervals, firstly, when
x € [0,3] and ¢ = 1. Tables 15 to 17 exhibit the L, and Ly, error norms for u(x, t) = v(x, t)
at oy = @y = 0.01,0.1, and 0.5 with the various choices of N. We can see that the proposed
method’s numerical results achieve greater precision as the number of grid points in both
space and time directions increases. Figures 13 to 15 show the graphical results of numer-

ical solutions and absolute error distributions for u(x, ) = v(x, ) at o; = @ = 0.01,0.1,0.5.
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Table 15 [, and L error norms for u(x, t) = v(x, t) of Example 3 when 0 < x < 3, &y = o = 0.01

SISCM (u=n=0,M=N)

Non-polynomial, k= 1/512

N Lr(U) =La(V) Loo(U) = Loo(V) N Lr(U) = Lo(V) Loo(U) = Loo(V)
5 2.000018 x 107 155667 x 107 15 935962 x 107~/ 7.7069 x 107~/
6 1597 x 107 1258 x 107 18 3.955739 x 10~/ 325713 x 107/
8 8652582 x 1078 5769225 x 1078 21 1.529046 x 107/ 125894 x 1077

10 3.859747 x 10710 3.023012 x 10710 25 5536353 x 107° 3.76237 x 1077

Table 16 [, and Ly error norms for u(x, t) = v(x,t) of Example 3when 0 <x < 3, a1 =ap =0.1

SISCM(w=1=0, M=N)

Non-polynomial, k = 1/512

N Ly(U) = Lo(V) Loo(U) = Loo(V) N Ly(U)=L(V) Loo(U) = Leo (V)
5 191879 x 107 145959 x 107 6 2494759 x 107 2064916 x 107
6 157354 x 107 125669 x 107 8 7.733064 x 107° 6.378449 x 1070
8 8558197 x 1078 5786146 x 1078 10 2225244 x 1076 1.835108 x 107°
10 3466398 x 10710 2693946 x 10710 12 4146772 x 1078 3.77408 x 1078

Table 17 [, and L error norms for u(x, t) = v(x, t) of Example 3when 0 < x < 3,1 =3 =0.5

SISCM (w=n=0,M=N)

Non-polynomial, k = 1/512

N Ly(U) = Lo(V) Loo(U) = Loo(V) N Ly(U) = Lo(V) Loo(U) = Loo(V)
5 1432179 x 1074 8.154948 x 10~ 6 6.550636 x 10~ 5571277 x 107
6 1447048 x 10 1.23073 x 107 8 767568 x 107 6420748 x 107
8 79814818 x 1078 5.851884 x 108 10 80361074 x 10 6.844183 x 10~
10 3.384447 x 10710 2633776 x 10710 12 8179127 x 107 6.90079 x 107

(d) N =25

(a) N = iO

Figure 13 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. () and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3at oy =a; =0.01,0<x <3

(b)N:io (d)N:iz

(a) N = iO

Figure 14 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. () and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3ata; =a; =0.1,0 <x <3

Secondly, when x € [0,1] and ¢ = 1 the L, and L, error norms at @; = a3 = 0.2,0.4, and 0.5
are reported in Tables 18 to 20, and the corresponding graphical solutions and absolute
errors distributions are shown in Figs. 16 to 18.
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(a) N = iO

(b) N =10

(¢) N= i2

(d) N =12

Figure 15 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. () and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3ata; =a; =05,0<x <3

Table 18 [, and L error norms for u(x, t) = v(x, t) of Example 3when 0 < x < 1,1 = =0.2

SISCM (=1 =0, M=N)

Non-polynomial, k= 1/512

N Ly(U) = L2(V) Loo(U) = Loo(V) N Ly(U) = Lo(V) Loo(U) = Loo(V)
5 1524323 x 107 1.884563 x 107 6 1.880435 x 107° 25662615 x 1070
6 13191225 x 1078 1.64544 x 1078 8 1.935247 x 107° 26462824 x 107°
8 15476466 x 10710 1983014 x 10710 10 1952716 x 107© 2670859 x 107°
10 9.0724022 x 10712 1.141775 x 107 12 1.959632 x 107° 2679572 x 1076

Table 19 [; and Ly error norms for u(x, t) = v(x,t) of Example 3when 0 <x < 1,1 =a =04

SISCM (L =1 =0, M=N)

Non-polynomial, k = 1/512

N Lr(U) =Lo(V) Loo(U) = Loo(V) N Lr(U) =L(V) Loo(U) = Loo(V)
5 4948996 x 107 6.13079 x 107 6 121119 x 107 165186 x 107
6 1247094 x 1078 1.542544 x 1078 8 121657 x 107 166207 x 107
8 3.80395 x 107 5983358 x 107" 10 1218289 x 10 1.6646 x 107

10 1.830749 x 107" 280379 x 107" 12 1218968 x 10 1.6649 x 107

Table 20 [, and Ly error norms for u(x, t) = v(x,t) of Example 3when 0 <x < 1,1 =a» =06

SISCM (w=n=0,M=N)

Non-polynomial, k = 1/512

N Ly(U) = Lo(V) Loo(U) = Loo(V) N Ly(U) = (V) Loo(U) = Loo(V)
5 1.0633419 x 107 132559 x 1074 6 6.033058 x 107 822097 x 107
6 1342882 x 1078 13744817 x 1078 8 6.03903 x 10™ 8.24068 x 10™
8 6.013554 x 10710 8475583 x 10710 10 6.040936 x 107 824265 x 107

10 3.003675 x 107 4244149 x 107" 12 6.041691 x 107 823957 x 107

(a) N = iO

Figure 16 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. () and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3ata; =, =02,0 <x <1

Note The computations associated with the experiments discussed above were per-
formed in Wolfram Mathematica 12.2 on a PC with Windows 64-bit OS + processor Intel
Core i7 ~2.4 GHz. The time taken to execute the non-polynomial algorithm is 14.3906
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(d)N:iz

(a) N=10

Figure 17 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. () and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3at oy =y =04,0 <x <1

(a) N =10 (b) N =10 (c) N =12

Figure 18 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3ata; =y =0.6,0 <x <1

Sec., 29.2656 Sec., and 29.7344 Sec. at N = 5, N = 9, and N = 11, respectively, for SJSCM
the time is 1.1875 Sec., 24.75 Sec., and 77.2813 Sec. at N = 5, N = 9, and N = 11, respec-
tively.

5 Conclusion

In this paper, we solved the coupled TFBEs by two different methods. Firstly, we developed
the non-polynomial B-spline method based on L1-formula to approximate the Liouville—
Caputo time-fractional derivative. The study of stability using the Von Neumann method
showed that the scheme is unconditionally stable. Secondly, we applied the shifted Jacobi
spectral collocation method based on the operational matrix of fractional derivatives in
the Liouville—Caputo sense with the aid of Jacobi—Gauss quadrature. From the tables and
figures introduced in Sect. 4, it is clear that the SJSCM is more accurate and stable than
the non-polynomial B-spline method for all different values o4, «z, and N. We also note
that the accuracy of the non-polynomial B-spline method increases whenever the value
of o1 and «, decreases. The validity is tested by solving three problems of the presented
methods. The elicited results confirm the high precision of the methods presented.
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