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1 Introduction
Let © be a bounded domain in RN (N > 1) with sufficiently smooth boundary 3<2. In this
paper, we consider the following biparabolic equation:

U (%, ) + 2Au,(x, £) + A2u(x, ) = F(u(x, t)) in Q x (0, T,
ulpe = Aulye =0 inQ, (1.1)
uy(x,0) =0 in 9L,

under temporal nonlocal condition
u(x,0) +eulx,T) =f(x), xe€dQ. (1.2)

Here u(x, t) is a function of temperature or concentration, F(u) is a source function, ¢ is a
parameter, and f € L2(Q) NH*(2). When ¢ = 0, the problem becomes an initial conditional
problem.

The main equation of problem (1.1) is equivalent to

92 a
P’u=P(Pu) = —u+2—Au + A%u = G(x, t; u),
at? at
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where P is the main operator for the classical parabolic equation,

0
Pu = (E + A)u = G(x, t; u).

As mentioned by Fushchich, Galitsyn, and Polubinskii [9], the new fourth-order partial
differential equation (1.1) is invariant with respect to the Galilei group. From the results

in [9] we realize that the classical heat equations
ur— Au=0

do not completely describe heat and mass transfer processes. Therefore, in many situa-
tions of heat conduction, it tends to replace the classical thermal equation by one of the
hyperbolic form, such as problem (1.1). Problem (1.1) is a form of quadratic PDEs equa-
tions, which have a wide range of applications in various scientific and engineering disci-
plines, such as conduction of heat [7, 9, 24, 33], dynamics of filtration consolidation [6, 8],
strongly damped wave equations [14, 23, 34], ice formulation and accretion problems on
structures, ships, and aircraft [19-21], the transport of liquids and insoluble surfactant
through the lung airways [11, 12], brain imaging for the detection and mapping of sub-
tle abnormalities of shape and volume in the brains of patients with metastatic tumors
[18, 26, 27], and so on.

Whereas there were a number of studies focused on parabolic equations [1-4, 10, 13, 15,
22, 25, 28], the studies on biparabolic equations are still limited. Let us mention previous
works related to biparabolic equation (1.1). Lakhdari and Boussetila [16] applied Kozlov—
Maz’ya iteration method for approximating the final value problem for biparabolic equa-
tion. Bulavatsky [7] studied some boundary value problems for biparabolic equations with
nonlocal boundary conditions. Besma et al. [5] considered the problem of approximating
a solution of an ill-posed biparabolic problem in the abstract Hilbert space. They intro-
duced a modified quasi-boundary value method to get stable solutions for regularizing
the ill-posedness of a biparabolic equation. Tuan et al. [32] studied the problem of finding
the initial distribution for a linear inhomogeneous or nonlinear biparabolic equation. Re-
cently, Phuong et al. [25] studied an inverse source problem of the biparabolic equation.
Very recently, Tuan et al. [31] investigated two terminal value problems for stochastic bi-
parabolic equations perturbed by a standard Brownian motion or a fractional Brownian
motion.

The nonlocal problem focused in this paper is considered as one of the most interest-
ing areas for the readers in various applications, such as chaos, chemistry, biology, and
physics; see [30]. In comparison with the initial or final conditions, the nonlocal condi-
tions are more difficult to handle. The novelty of our problem is the presence of condition
of nonlocal type (1.2). In many real-world applications, it is difficult to collect accurate
data at the beginning or at the end of a process. In addition, many processes happen so
fast and in a short period, in which we only can observe the data at the beginning and the
end of a process, not the data at a specific time in the range of (0,T). Therefore studies on
nonlocal conditional problems can help us to track down a process in more detail and in

an effective way.
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To the best of our knowledge, up to date, there is still no any study considering problem
(1.1) under the nonlocal condition (1.2). This motivates us to focus on problems (1.1)-
(1.2). The main contributions of the paper are as follows.

+ For the linear source function, we give the well-posedness and investigate the
convergence of the mild solution to problem (1.1)—(1.2) as € approaches 0. In more
detail, we prove that the solution of problem (1.1)—(1.2) converges to a mild solution
with the initial value problem for (1.1).

« For nonlinear source functions, we prove the existence and uniqueness of mild
solutions. In the main analysis, we apply the Banach fixed point theorem. Our next
aim is to demonstrate the convergence of the mild solution as the parameter ¢ tends
to 0.

The main techniques to handle the above problem are based on the ideas of some recent
publications [17, 29, 30]. We overcome some difficulties by setting up complex evaluations
on Hilbert scale spaces. Choosing the right spaces for the input f and for the solution is
also not simple task.

This paper is organized as follows. In Sect. 2, we provide some useful notations and the
definition of a solution in the mild sense. In Sect. 3, we focus on the well-posed results
for the linear case and discuss on what happens as ¢ — 0. The well-posed results for the
nonlinear source term are introduced in Sect. 4. Eventually, the results are summarized in
Sect. 5.

2 Preliminary results and mild solution
In this section, we introduce the notation and the functional setting used in our paper.
Recall that the spectral problem

AY,(x) = =A%), x €,
Yu(x) =0, x €09,

admits eigenvalues0 <Ay <Ay <--- <X, <-.- with X, - oo asn — co. The correspond-
ing eigenfunctions are v, € H}(Q).

Definition 2.1 (Hilbert scale space) We recall the Hilbert scale space given as follows:

oo 2
H () = {feLZ(Q),ZAfl‘(/f(x)l/fn(x)dx) <oo}
n=1 Q2

for s > 0. It is well known that H*(2) is the Hilbert space corresponding to the norm

o o\ 172
|V||Hs<g>=(2x,?s( /Q f(x)wn(x)dx>) . feE (@)
j=1

Let us give an explicit formula of the mild solution. First, taking the inner product of
both sides of (1.1) with v,,(x), we find that

j_;</;2u(x;t)!ﬁn(x)dx>+2kn</9u(x,t)¢,,(x)dx>

+)\fl (/ u(x, £)yr,(x) dx) = / F(u(x, t))lﬁn(x) dx. (2.1)
Q Q
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It is easy to see that the latter problem has a solution given by

/ u(x, ), (x) dx = e (1 + tkn)/ u(x, 0, (x) dx
Q Q

+ /:(t — r)e = (fg F(u(x, 7)) Yr(x) dx) dr. (2.2)

The condition u(x,0) + su(x, T) = f(x) implies that

f u(x, 0)v, (x) dx + 5/ u(x, T) Y, (x) dx
Q

Q

=(L+ee ™ (1+Th,)) / u(x, 0)vr, (x) dx

Q

T
+& /0 (T — r)e” TP (/Q F(u(x, V))I/fn(x) dx) dr

= /Q [ @)Y (x) da. (2.3)
We rewrite it as

/ u(x, 0) Y, (x) dx

fgf(x)wn(x)dx e [ (T = e T2 ([ F(u(x, ) t/fn(x)dx)dr
1+eeT(1+Tx,)

(2.4)

Combining (2.2) and (2.4), we find that

/ (e, ) d = — L ) / Fvn(a)
Q

1+eeT(1+Th,

ge~n(1 +th,) fo = r)eT=Pn ([ F(u(x, 1)) (x) dx) dr
- 1+eeTn(1+Th,)

+ /0 t(t—r)e’(t”)’\” ( /Q F(u(x, 7)) ¥u(x) dx) dr. (2.5)

For any f € L?(2), we define

2 ethn(1+tn,)
Q:(t)f = WZ: Ltee (1t Thy) </f X)Yru(x) dx) Yn(x) (2.6)
and
S)f =e*f = Z e < /Q S @) Pu(x) dx) V(). (2.7)

n=1

Page 4 of 16
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From (2.5) we give an explicit formula of the solution to problem (1.1)—(1.2) in the mild

setting:

u.(t) = Q.(t)f + /0 (t - r)S(¢ = r)F (ue(r)) dr
T
—eQ,(2) /(; (T = r)S(T = r)F(u(r)) dr. (2.8)

3 Well-posed results for linear case
In this section, we focus on the case F(¢, #) = F(t). Under the linear case, we recall the mild

solution u, to problem (1.1)—(1.2):

t T
us(t) = Q. (t)f + /0 (t-r)S(t—r)F(r)dr — eQ.(¢) /0 (T —r)S(T —r)E(r)dr. (3.1)

Lemma 3.1 Let f € H)(RQ).
a)Ifs<m+ 1, then

||Qa(t)f||HM(Q) < C(s, )" | llms(e- (3.2)
b) If s < m, then
[S@S gy < Cls, m)E™ f 135(0)- (3.3)

Proof Using Parseval’s equality, we find that

2 ~ - e (1 + th,,) 2 2
QW [ 5mey = ;An <1 TeeT(ls TM)) (/Qf(x)wn(x) dx)
oo 2
<232 (1 4 £222) ( / F@V) dx)
n=1 Q
oo 2
<2Cr Z)‘imﬂe_m" (/ S @)Y (x) dx) . (3.4)
n=1 Q

In view of the inequality e * < C,z™" for all v > 0, we know that
)"}Z’Im+26—2t)~n < Cukim+2(tkn)—2v — t—2v;\im+2—2v.

It follows from (3.4) that

00 2
Qe ey = £ 325 ( / S@)Yx) dx> : (3.5)
n=1 Q
which gives the estimate

||Q8(t),f||Hm(Q) E CTtiv ||_f||]HIW‘+1—”(Q)‘ (36)
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Setting v =m + 1 — s > 0, we know that

|Qe(0)f [ gy < COm )T fllis(-

Using again e * < C,z™" for all v > 0, we find that

oo

2
ISOF iy = € Pongy = 3 1272 ( /Q Flvna) dx)

n=1

2
<G ( / S @) Pn(x) dx)
Q
= Cot ™" I v -

Setting v = m — s for s < m, we get

Theorem 3.1 Let F € L>°(0, T;H*"1(RQ)) and f € H(Q). Then
ll2te | oo, 512y < C(T 8,1, 1) (If s + IE Nl oo o, 751 (2)))-
Proof Applying Lemma 3.1 and noting that m < s < m + 1, we find that
t
it Dy = 1Q @ gy + [ (€= PISE=1FO) g
0

+&

T
Q) f (T = P)S(T - )EG) dr
0

H™(R)

< Clm )t |f ey + /0 (=" |EG)

)dr

Hs-1 (Q

H5(Q) dr

T
+esm 1 /(; (T -r) ”S(T —r)F(r)

= Il(t) + Iz(t) + 13()'5).

Let p be such that 1 < & < —~—. The first term /; is bounded by

m+l-s”

T 1/
1l 2w o, rmm @) < (/ |C(mrs)ts_m_l”f||HS(Q)|Mdt)
0

( T(s—m—l);L+l

1/
m) C(m,S)Hf”HS(Qy

For the second term I, we easily observe that

s—m+1

t
L(t) < </ (t=r)"m" dr) 1 E | oo o, 7m0 1(2))
0

S—m+

1 1Nl oo o, T5ms-1 (2))-

Page 6 of 16
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Then we get the bound

T n 1/
121 i 0, 5 () < (/ dt)
0
s—m+1

=——||F|l; o010 715~ . 3.14
P 1Nl oo o0, 75151 (2)) (3.14)

s—m+1

F THs—1
S_m+1|| Il Lo 0, 75m5-1 (2))

For the third term I3, using Lemma (3.1), we have that

r

T
I3 fsts_m_lfo (T—r)”S(T—r)F(r) HX(Q)d

T
§8C(m,s)t5_m_1/0 (T —r)(T -r)"t HF(r)

HS—I(Q) dl"

< eCm, ) TIIF |l oo rms1@pt ™" (3.15)

This immediately implies that

T 1/
sl 2o o, im0y < ( / |eC(m, ) T||F |l oo (o, 71t " " dt)
0

Tls=m-1)p+1 U/
= eC(m, 8)T || F | oo (0,551 (52)) (m) (3.16)
Combining (3.11), (3.12), (3.14), and (3.16), we find that
et | Lo, () < M1llzermm) + 12 llLwo,mimm (@) + 3110, T ()
< C(T,s,m, ) (If llmse) + I Fll oo o, myms-1(e)) - (3.17)
Let us recall the formula
t
u(t) =S@)f + / (t-r)S(t—=r)E(r)dr. (3.18)
0
Since (3.1), we get that
T
ue () — u(t) = (Q:(t) — S(0))f — Q. (t) / (T =r)S(T - r)E(r)dr. (3.19)
0
From (3.16) we know that
T
Q. (2) / (T —r)S(T —r)F(r)dr
0 LI (0, T;H™(R))
T(s—m—l);u—l 1/
< eC(m,s)T||F || oo 0, 1151 () (m) (3.20)

Our next aim is estimating the term (Q.(¢) — S(£))f. We clearly see that

. e (1 +th,) o
(Q.()-S(®)f = Zl[ TreeTnisTiy ¢ 07 mn)] ( /Q F@)Ya(x) dx) e
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[ e (L + Thy)e (1 + thy)
S ey ([ e

n

Parseval’s equality implies that

1(Qe(6) = SO [ omien

x ~Thn ~thn 2 2
) Zkim[ge M1+ Thy)e ™ (1 +t)»n)i| (/Qf(x)l//n(x)dx)
n=1

1+ee T (1+Th,)
oo 2
<2 Zxﬁme*“na + Th,)2e 2 ( / F@)Wa(x) dx> . (3.21)
n=1 Q
Using the inequality e < C,z™" for all v > 0, we arrive at
e 2 < C(m,s)(t)»n)_z(mﬂ_s). (3.22)
It is obvious that
e 21+ Ta,)? <C.

It follows from (3.21) that

o] 2
[ (Qe(t) = SO)f gy < CEX2"2 Y 222 ( /Q @) n(x) dx)
n=1

2425—2m-2 2
= C(m) S)(E‘ = ”f”Hs—l(Q)~ (323)
This implies that
T 1/
|| (Q& - S)_f‘ L0, T;H™ ($2)) = C(I’l’l, 5)8 ”f”]HIS’l(Q) (/ ﬁSimil)M dt)
0
Ts=m=1p+1 1/
=C(m, s— B — 3.24
(m, s)ef llm I(Q)<(s—m—1)u+1) (3.24)

where we recall that 1 < i < ——. Combining (3.19), (3.20), and (3.24), we arrive at

m+l-s
lete — w10, ()

T
<@ -5y £Q.(0) /0 (T = NS(T - PE(r) dr

woTmmE) * LI, TS ()

T(s—m—l)u+l 1/
< C(m, S)8|lf||Hs1(Q)< )

(s—-m-1u+1
T(s—m—l)u+l 1/
+8C(m, ) T||F || pooo,ryms-1 (22)) (m) (3.25)

Page 8 of 16
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4 Well-posed results for nonlinear case
Theorem 4.1 Let f € H¥(R2) for s > p. Let F be such that

|F(@) = FO) | o =< Krllp = ¥ 1w (4.1)

Sor all o, e HP(Q) and p < q < p + 1. Then for any € > 0 and Ky small enough, problem
(1.1)=(1.2) has a unique mild solution in X**((0, T);HP(R2)), which satisfies

us(t) = Q:.(t)f + /0 (t—r)S(t— r)F(ug(r)) dr

- | (ST - DE(. ) dr, @2)
where
max(0,p+1-5) <a< 1. (4.3)
In addition,

2C, TP

llote ll Lo, Tymr (@) < A If s (4-4)

forl<p< i
Proof We look for the solution in the space X**°((0, T']; H”(2)). Let us define the function
t
B0 - Qu0) + [ (¢-nSe-nF(w0) dr
0
T
—eQ.(t) / (T —7r)S(T - r)F(l/f(r)) dr. (4.5)
0
If ¥ = 0, then by the assumption F(0) = 0 we have that
t ||B&‘w‘(t) HHI’(Q) =t || QE (t).f“Hp(Q) = CTta_u ”f’”HP*l’”(Q)‘ (46)
Sinces<p +1,weset v =p+1-s. Then it follows from (4.6) that
ta ||B$I//(t) HHP(Q) S C:TL‘SHZ_p_1 ”f”HS(Q)‘ (4'7)
Under the assumption p + 1 < s+ a4, if =0, then we find that forany0 <t <7,
£ Be (¥(8) = 0) | oy < Cr T f s, (4.8)

which allows us to derive that B, belongs to the space X**°((0, T]; H?(2)) if ¢ = 0.
Let ¢, ¥ € X#*°((0, T]; HP(2)). It is obvious that

Bs(lﬁ)(t)—Bs(fp)(t):/O (t=nS(t-r)(F(¥(r) - F(e(r)) dr
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T
_eQu(0) /0 (T = NS(T = N(E(W ) - E(p(r)) dr

=J1(8) + 2 (2). (4.9)

By the second part of Lemma 3.1 the term /; is bounded by

IAG] ”HP(Q) = /0 (t-n|s-r(F(w®) _F((p(r)))HHP(Q) dr
t
< [¢=ne=nT? | EW0) - Fo0) gy (4.10)
0
where we note that p > g. Since F is globally Lipschitz as in (4.1), we infer that
10 iy <55 [ (€= [0 = 000
' 1
_p)arila a -
<Ky (/0 (¢ — )T Py dr> ((élgaTr [ (r) = o(r) ||HP(Q))

=K(B(2+q - p,1 - a)t> " P ||y — @l|xaco (0, 110 (@), (4.11)

where we note that g + 2 > p and a < 1. This implies that

| 1(8) | () < KrB2 + g =p, 1 = @)t TP || Y = @l xasoo,r0(2)

KB +q-p 1= )T |1 = gllxex (o rime(@)- (4.12)
The right-hand side of this expression is independent of ¢, and we deduce that
1 lxae o, rmr (@) < KpB2 +q = p, 1 —a) T 7P|y — @llxacs o, 700(2)- (4.13)
Since g < p + 1 and a > 0, we can choose a real number s’ such that
max(p+1-a,q) <s' <p+1.

Then we find that

T
HQs(t) ]0 (T = NS(T = N(EW () - E(p()) dr

HP(Q)

T
<l /0 (T =7)S(T - r)(F(¥(r)) - E(e(r))) dr (4.14)

H# ()

Since s’ > g, we get that

T
/0 (T -r)S(T - r)(F(l/f(r)) - F((p(r))) dr

H# (%)

T
5/0 (T—V)q_S/H” (F(‘ﬁ(’")) _F(‘/’(r)))||Hq(Q) dr
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T
S R i VIO )
0
T J
=K / (T — p)2s+1ymape H ¥ (r) —o(r) HHp(Q) dr
0
<KiB(2+q-s,1-a) T4 — | xame (0, T80 () - (4.15)
Combining (4.14) and (4.15) and noting that s’ + a > p + 1, we obtain that

20| oy =< 8" PR B(2 4+ g =51 = a) Ty = gllxacc o, (@)

<eKsB(2+q-5,1-a)T"' 7P|y - ¢llxacc(o,r1m0(2)- (4.16)

The condition g + 1 > p ensures that the right-hand side is defined. Therefore we can de-
duce that

12 l|xao o, rymr()) < eKpB(2 + q =8, 1 —a) TT ' P||§r — @llxaco,rm0()- (4.17)
Combining (4.9), (4.13), and (4.17), we arrive at

|Be(¥) - B:()

X420 ((0, T;HP ()
< Wi llxeoo o, risme ) + allxac o, mymp ()
<KfBQ2+q-p,1-a)T* 7P|y - ¢l xaco(o,1100)
+eKiB(2+q—5,1-a)TT" ||y — ¢llxac(o,rmr(@)- (4.18)

Let K be small enough such that
My =KB2+q-p,1-a)T* " + eKsB(2+q—5,1-a)T™"7? <1/2.
It follows from (4.7) that
B (X*>((0, T HP())) € X*>((0, TT; H(R)),
and together with (4.18), we find that B, is a contraction mapping. By using the Ba-
nach fixed point theorem we deduce that roblem (1.1)—(1.2) has a unique solution u, €

X42°((0, TT; HP(£2)).
It follows from (4.8) that

l2te I xeo o, ryzp @) = | Be(146) | xaoo o, 710 00)

< Mr||ue || xamo om0 + Cr TP |f (0 (4.19)
Therefore we get that

CrT* P f s

< 2Cp TS+ Pl s(Q)- 4.20
Ty <2Cr If s (4.20)

Ilzee ||X“’°°((O,T];HP(Q)) =
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This estimate implies that
||u£(t)||Hp(m <2Cr T P77 f |lms (- (4.21)

Since a < 1, we can find that 0 < < % Thus we arrive at

T 1/
ll2te [l 20,750 () = (/o e (2) Hﬁp(m dt)
T U/
<2Cr T 77| s (/ e d’f) ) (4.22)
0
which allows us to get that

20, TP

llete [l 10, 7P (02)) < 1 —ap)in I (o) (4.23)

The proof is completed. O

Theorem 4.2 Let F be as in (4.1). Let f € H¥(Q2) for p <s < p + 1. Let Ky be small enough
such that Ky T4977 < % Then

T(s—p—l)/u—l 1/p
llzee — well o, e () < 2C(p, S)8|lf||Hsl(Q)( >

(s=p-Du+1
T(s—p—l)/J.+1 1/
4eK;TTP s T —— , 4.24
+4eKy |V||H(Q)((s_p_1)u+1) (4.24)
where 1 < pu < p+1H.
Proof Let us recall that
_ t
u(t)=St)f + / (t-r)S(t- r)F(u(r)) dr, (4.25)
0

where we recall that
S =3 et (1 mn)( [ 7600 dx) U 0).
n=1

By (4.2) we immediately have the result on the difference between u,(¢) and u(t) which is

split as the sum of three terms

us(t) — u(t) = Qu(t)f - SQ)f + /0 (t = r)S(t — r)(F (ue(r)) — F(ulr))) dr

T
- Qg (t) / (T —r)S(T - r)F(ug(r)) dr
0

= H,(t) + Hy(¢) + H3(¢). (4.26)
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Let us first treat the first term H;(£). By applying (3.24) we find that

T 1/
1Qc =S| o, 00y = CO 92 llzsr ) ( fo AR dt)

T(s—p—l)u+1 1/p
) , (4.27)

= C(p,S)E|Lf||HS—1(Q)<m

1
p+l-s’

where we recall thatp+ 1 >s>pand 1 < u <

The second term H,(t) by the second part of Lemma 3.1 is bounded by

[0y = [ 6= D= (Ee ) = F0)) gy

< ‘/0 t-r)(t-r)T? ||F(u€(r)) - F(u(r)) ”Hq(sz) dr, (4.28)

where we note that p > g. Since F is globally Lipschitz as in (4.1), we infer that

/0 t-rE-r? ”F(us(r)) - F(u(r)) ”qu) dr
< Kf./o (¢ —r)ar+! || ue(r) — u(r) ||Hp(9) dr.

This implies that

t
[E @) iy < K5 | 6= 1t ) = ) |
© ©)
0
t
=517 [ ) =)y
0
¢ 1/
§I<qu7p+2 (/ “ME(V) — u(r)”&pm) di”)
0
< KeTTP" g — ual| 1o, 7:30(<2)- (4.29)

Thus we obtain that

T 1/
1 H2ll w0, 15mp (2)) < ( / (K TTP* s — u”Ll‘(O,T;]HIP(Q)))M)
0

1

= Ky TP 5 g — ull o, 10 (@)- (4.30)

For the third term H3(¢), we apply Lemma 3.1 (noting that s < p + 1) to get that

T
H Q. (2) /0 (T -r)S(T - r)F(ug(r)) dr

HP(Q)

T
< gl / (T = r)S(T - r)F (u.(r)) dr (4.31)
0

H# ()

Page 13 0of 16
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Since s > g, it follows from this estimate that

T T
/0 (T = r)S(T = r)F(us(r)) dr < /0 (T = )| F (s (r)) HHq(Q) dr

T
=K /0 (T =) e () |y 4 (432)

where in the last line, we have used that F is globally Lipschitz. Recalling (4.21), we find
that the right-hand side of (4.32) is bounded by

T
K [ = )|
0
T
< 2I(fCTTS+a7p71 ”f”]HIS(Q) / (T - V)qiﬁlria dr
0
= 2K Cr TP s T *B(q — s + 2,1 — a) = 2K, TP | f ||ws .- (4.33)
Combining (4.31), (4.32), and (4.33), we arrive at

T
f (T - r)S(T = r)F (ue(r)) dr
0

HH3(t) ”HP(Q) =&

He ()

< 26Ky TIPEP7H|f |l gs(g- (4.34)

This leads to
T 1/
I Hs |0, ripmr (e < 26K TP |f llmse (f fls=p=Dn dt)
0

T(s—p—l);LJrl 1/
= 26K, TTP|f |l (( > (4.35)

s—p-Lu+1

where we recall thatp + 1 >s>pand 1< u < . Combining (4.26), (4.27), (4.30), and

(4.35), we deduce that

p+1 =

3
l2£e — wll Lo, 7imP (2 Z | Hj Il L 0,717 (22))
j=1

T(s—p—l);ﬁl 1/p
< C(p,s)e ”f”]HIS—l(Q)( )

(s=p-Du+1
Ts-p-Dp+l 1/
+ 26K, TP s _
(r |lf||u-n(sz)((s_p_1)“+1)
+ Kqu—p+2 et — vl L0, 5P (92)) - (4.36)

Let Ky be small enough such that K TiP+? < % Then from (4.36) the desired result fol-
lows. The proof is completed. d

5 Conclusion
In this paper, we considered a biparabolic equation under temporal nonlocal conditions
with linear and nonlinear source terms. We derived the regularity of the mild solution
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for the linear source term and applied the Banach fixed point theorem to study the exis-
tence and uniqueness of a mild solution for the nonlinear source term. In both cases, we
demonstrated that the mild solution of our problem converges to the solution of an initial
value problem as the parameter ¢ — 0. The most compelling findings of our study can be
considered as one of the first results on biparabolic equations with nonlocal conditions.
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