
Alamgir et al. Advances in Difference Equations        (2021) 2021:476 
https://doi.org/10.1186/s13662-021-03598-0

R E S E A R C H Open Access

Fuzzy fixed point results of generalized
almost F-contractions in controlled metric
spaces
Nayab Alamgir1, Quanita Kiran2, Hassen Aydi3,4,5* and Yaé Ulrich Gaba6*

*Correspondence:
hassen.aydi@isima.rnu.tn;
yaeulrich.gaba@gmail.com
3Institut Supérieur d’Informatique et
des Techniques de Communication,
Université de Sousse,
H. Sousse 4000, Sousse, Tunisia
6Quantum Leap Africa (QLA), AIMS
Rwanda Centre, Remera Sector KN
3, Kigali, Rwanda
Full list of author information is
available at the end of the article

Abstract
In this paper, we derive some common α-fuzzy fixed point results for fuzzy mappings
under generalized almost F-contractions in the context of a controlled metric space,
which generalize many preexisting results in the literature. As an application, we
establish some multivalued fixed point results. For justification of our results, we
provide a nontrivial example.
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1 Introduction
The Banach fixed point theorem (BFPT) [1] is an important tool in fixed point theory.
It guarantees the existence and uniqueness of a fixed point of certain self-mappings on
metric spaces. It has various applications in several branches of mathematics. There are
many extensions and generalizations of the BFPT in the literature; see [2–7]. Berinde [8, 9]
studied various contractive-type mappings and introduced the concept of almost contrac-
tions.

Definition 1.1 ([8]) A mapping T : W →W on a metric space (W , d) is called an almost
contraction if there exist 0 ≤ λ < 1 and Ł ≥ 0 such that

d(Tω1, Tω2) ≤ λd(ω1,ω2) + Łd(ω2, Tω1) (1)

for all ω1,ω2 ∈W .

Further, Berinde [9] generalized Definition 1.1 in the following way.
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Definition 1.2 ([9]) A mapping T : W →W on a metric space (W , d) is called a general-
ized almost contraction if there exist 0 ≤ λ < 1 and Ł ≥ 0 such that

d(Tω1, Tω2)) ≤ λd(ω1,ω2)

+ Ł min
{

d
(
ω1, T(ω1)

)
, d

(
ω2, T(ω2)

)
, d

(
ω1, T(ω2)

)
, d

(
ω2, T(ω1)

)}
(2)

for all ω1,ω2 ∈W .

Wardowski [10] introduced a new type of contractions, called F-contractions, and es-
tablished a related fixed point theorem in the context of complete metric spaces.

Definition 1.3 ([10]) A mapping T : W → W on a metric space (W , d) is called an F-
contraction if there exists � > 0 such that

d(Tω1, Tω2) > 0 �⇒ � + F
(
d(Tω1, Tω2)

) ≤ F
(
d(ω1,ω2)

)
(3)

for all ω1,ω2 ∈W , where F : (0,∞) →R is a function satisfying the following axioms:
(C1) F is strictly nondecreasing;
(C2) for each sequence {an} ⊂ (0,∞) of positive real numbers, limn→∞ an = 0 if and only

if limn→∞ F(an) = –∞;
(C3) for each sequence {an} ⊂ (0,∞) such that limn→∞ an = 0, there exists l ∈ (0, 1) such

that limn→∞(an)lF(an) = 0.

The following works deal with F-contractions: [11–16]. Afterward, Altun et al. [17]
modified Definition 1.3 by adding the following condition:

(C4) F(inf A) = inf F(A) for all A ⊂ (0,∞) with inf A > 0.
We denote by F the family of all functions F satisfying (C1)–(C4).
Nadler [18] derived the multivalued version of Banach fixed point theorem by using

the Hausdorff metric over the family of nonempty closed bounded subsets of a complete
metric space. We denote by CLB(W) the family of nonempty closed bounded subsets and
by CLD(W) the family of nonempty closed subsets of W . Recently, Kamran et al. [19]
introduced the concept of an extended b-metric space, which generalized the notion of
a b-metric space [20, 21] by replacing the constant with a function depending on two
variables.

Definition 1.4 ([19]) Let W be a nonempty set, and let σ : W × W → [1,∞). Then a
function dσ : W ×W → [0,∞) is called an extended b-metric if for all ω1,ω2,ω3 ∈ W , it
satisfies the following axioms:

(i) dσ (ω1,ω2) = 0 iff ω1 = ω2,
(ii) dσ (ω1,ω2) = dσ (ω2,ω1),

(iii) dσ (ω1,ω3) ≤ σ (ω1,ω3)[dσ (ω1,ω2) + dσ (ω2,ω3)].
The pair (W , dσ ) is called an extended b-metric space.

Later on, several researchers worked on fixed point results in the context of extended
b-metric spaces; see [22–25]. In the same direction, Mlaiki et al. [26] gave the idea of
a controlled-type metric space (for further extensions, see [27]), which generalizes the
notion of a b-metric space.
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Definition 1.5 ([26]) Let W be a nonempty set, and let σ : W × W → [1,∞). Then a
function dσ : W × W → [0,∞) is called a controlled metric if for all ω1,ω2,ω3 ∈ W , it
satisfies the following axioms:

(i) dσ (ω1,ω2) = 0 iff ω1 = ω2,
(ii) dσ (ω1,ω2) = dσ (ω2,ω1),

(iii) dσ (ω1,ω3) ≤ σ (ω1,ω2)dσ (ω1,ω2) + σ (ω2,ω3)dσ (ω2,ω3).
The pair (W , dσ ) is called a controlled metric space.

Remark 1.1 Every controlled metric space is a generalization of a b-metric space and is
different from an extended b-metric space.

Example 1.1 Let W = [0,∞). Define dσ : W ×W → [0,∞) as

dσ (ω1,ω2) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if ω1 = ω2,
1
ω1

if ω1 ≥ 1 and ω2 ∈ [0, 1),
1
ω2

if ω2 ≥ 1 and ω1 ∈ [0, 1),

1 otherwise.

Hence (W , dσ ) is a controlled metric space, where σ : W ×W → [1,∞) is defined by

σ (ω1,ω2) =

⎧
⎨

⎩
1 if ω1,ω2 ∈ [0, 1),

max{ω1,ω2} otherwise.

For other definitions and information on the topology induced by dσ , see [26]. In [28],
Alamgir et al. established a Pompieu–Hausdorff metric over the family of nonempty
closed subsets of a controlled metric space W as follows.

Definition 1.6 ([28]) Let A, B be nonempty closed subsets of a controlled metric space
(W , dσ ). Define Hσ : CLD(W) × CLD(W) → [0,∞] by

Hσ (A, B) =

⎧
⎨

⎩
max{supa∈A dσ (a, B), supb∈B dσ (b, A)} if the maximum exists;

∞ otherwise.

Theorem 1.1 ([28]) Let (W , dσ ) be a controlled metric space. Then the mapping Hσ :
CLD(W) × CLD(W) → [0,∞] is a Pompieu–Hausdorff controlled metric on CLD(W).

On the other hand, in 1981, Heilpern [29] used fuzzy sets [30] to introduce a class of
fuzzy mappings, which is a generalization of multivalued mappings and proved a fixed
point theorem for fuzzy contraction mappings in metric spaces. The result introduced
by Heilpern is a fuzzy generalization of the Banach fixed point theorem. Consequently,
several authors studied and generalized fuzzy fixed point theorems in many directions;
see [31–38]. In this paper, we prove some common α-fuzzy fixed point results for fuzzy
mappings under generalized almost F-contractions in the context of controlled metric
spaces, which generalize many preexisting results in the literature. At the end, we give an
example for the justification of our main result.
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2 Main results
In this section, we define fuzzy sets, fuzzy mappings, and α-fuzzy fixed points and prove
some common α fuzzy fixed point results in the context of controlled metric spaces.

Definition 2.1 Let (W , dσ ) be a controlled metric space with σ : W ×W → [1,∞). Then
a fuzzy set Aσ in W is characterized by a membership function

FAσ : W → [0, 1],

which assigns to every member of W a membership grade in Aσ .

We denote by Fσ (W) the collection of all fuzzy sets inW . Let Aσ ∈ Fσ (W) and α ∈ [0, 1].
Then the α-level set of Aσ is denoted by [Aσ ]α and is defined as

[Aσ ]α =
{
μ ∈W : Aσ (μ) ≥ α

}
, α ∈ (0, 1],

[Aσ ]0 =
{
μ ∈W : Aσ (μ) > 0

}
,

where B denotes the closure of B. Clearly, [Aσ ]α and [Aσ ]0 are subsets of the controlled
metric space W . For Aσ , Bσ ∈ Fσ (W), a fuzzy set Aσ is said to be more accurate than a
fuzzy set Bσ , denoted by Aσ ⊂ Bσ , if fAσ (μ) ≤ fBσ (μ) for each μ ∈ W . Now, for μ ∈ W ,
Aσ , Bσ ∈ Fσ (W), α ∈ [0, 1], and [Aσ ]α , [Bσ ]α ∈ CLB(W), define

ρα

(
μ, [Aσ ]α

)
= inf

{
d(μ, a) : a ∈ [Aσ ]α

}
,

ρα

(
[Aσ ]α , [Bσ ]α

)
= inf

{
d(a, b) : a ∈ [Aσ ]α , b ∈ [Bσ ]α

}
,

ρ
(
[Aσ ]α , [Bσ ]α

)
= sup

α

ρα

(
[Aσ ]α , [Bσ ]α

)
.

Remark 2.1 By Theorem 1.1 the function Hσ : CLB(W) × CLB(W) → [0,∞] defined by

Hσ

(
[Aσ ]α , [Bσ ]α

)

=

⎧
⎨

⎩
max{supa∈[Aσ ]α d(a, [Bσ ]α), supb∈[Bσ ]α d(b, [Aσ ]α)} if the maximum exists,

∞ otherwise,

is a generalized Hausdorff controlled fuzzy metric on CLB(W).

Definition 2.2 Let S, T be fuzzy mappings from W into �(W). Then
(i) An element μ ∈W is called an α-fuzzy fixed point of T if there exists αT(μ) ∈ (0, 1]

such that μ ∈ [Tμ]αT(μ).
(ii) An element μ ∈ W is called a common α-fuzzy fixed point of S and T if there exist

αS(μ),αT(μ) ∈ (0, 1] such that μ ∈ [Sμ]αS(μ) ∩ [Tμ]αT(μ).
(iii) For α = 1, μ is called a common fixed point of fuzzy mappings.

Lemma 2.1 Let (W , dσ ) be a controlled metric space, and let A, B ∈ CLB(W). Then for
each a ∈ A,

dσ (a, B) ≤ Hσ (A, B).
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Proof Let us suppose on the contrary that for each a ∈ A,

dσ (a, B) > Hσ (A, B). (4)

From Definition 1.6 we have that for each a ∈ A,

dσ (a, B) ≤ Hσ (A, B). (5)

Hence from equations (4) and (5) we get

Hσ (A, B) < dσ (a, B) ≤ Hσ (A, B),

a contradiction. �

Theorem 2.1 Let (W , dσ ) be a complete controlled metric space, and let S, T be fuzzy
mappings from W into �(W). Suppose for each ω1 ∈ W , there exist αS(ω1),αT(ω2) ∈ (0, 1]
such that [Sω1]αS(ω1), [Tω2]αT(ω2) are nonempty closed subsets of W . Suppose that there
exist some F ∈F , � > 0, and Ł ≥ 0 such that

� + F(Hσ

(
[Sω1]αS(ω1), [Tω2]αT(ω2)

) ≤ F
(
dσ (ω1,ω2)

)
+ Ł

(
M(ω1,ω2)

)
(6)

for all ω1,ω2 ∈W with Hσ ([Sω1]αS(ω1), [Tω2]αT(ω2)) > 0, where

M(ω1,ω2) = min
{

dσ

(
ω1, [Sω1]αS(ω1)

)
, dσ

(
ω2, [Tω2]αT(ω2)

)
,

dσ

(
ω1, [Tω2]αT(ω2)

)
, dσ

(
ω2, [Sω1]αS(ω1)

)}
.

Then there exists a common α-fuzzy fixed point of S and T.

Proof Let us take an arbitrary ω0 ∈W . Then by the hypothesis there exists αS(ω0) ∈ (0, 1]
such that [Sω0]αS(ω0) is a nonempty closed subset of W . Let ω1 ∈ [Sω0]αS(ω0). For such ω1,
there exists αT(ω1) ∈ (0, 1] such that [Tω1]αT(ω1) is a nonempty closed subset of W . From
Lemma 2.1, condition (C1) of Definition 1.3, and (6) we can write

� + F(dσ

(
ω1, [Tω1]αT(ω1)

) ≤ � + F(Hσ

(
[Sω0]αS(ω0), [Tω1]αT(ω1)

)

≤ F
(
dσ (ω0,ω1)

)
+ Ł

(
M(ω0,ω1)

)
, (7)

where

M(ω0,ω1) = min
{

dσ

(
ω0, [Sω0]αS(ω0)

)
, dσ

(
ω1, [Tω1]αT(ω1)

)
,

dσ

(
ω0, [Tω1]αT(ω1)

)
, dσ

(
ω1, [Sω0]αS(ω0)

)}
.

From condition (C4) we can write

F(dσ

(
ω1, [Tω1]αT(ω1)

)
= inf

y∈[Tω1]αT(ω1)
F
(
dσ (ω1, y)

)
.
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Thus we have

� + inf
y∈[Tω1]αT(ω1)

F(dσ (ω1, y)

≤ F
(
dσ (ω0,ω1)

)
+ Ł min

{
dσ

(
ω0, [Sω0]αS(ω0)

)
, dσ

(
ω1, [Tω1]αT(ω1)

)
,

dσ

(
ω0, [Tω1]αT(ω1)

)
, dσ

(
ω1, [Sω0]αS(ω0)

)}
.

Then there exists ω2 ∈ [Tω1]αT(ω1) such that

� + F(dσ (ω1,ω2)

≤ F
(
dσ (ω0,ω1)

)
+ Ł min

{
dσ (ω0,ω1), dσ (ω1,ω2), dσ (ω0,ω2), dσ (ω1,ω1)

}

= F
(
dσ (ω0,ω1)

)
.

For this ω2, there exists αS(ω2) ∈ (0, 1] such that [Sω2]αS(ω2) is a nonempty closed subset
of W . From Lemma 2.1, condition (C1) of Definition 1.3, and (6) we have

� + F(dσ

(
ω2, [Sω2]αS(ω2)

) ≤ � + F(Hσ

(
[Tω1]αT(ω1), [Sω2]αS(ω2)

)

≤ � + F(Hσ

(
[Sω2]αS(ω2), [Tω1]αT(ω1)

)

≤ F
(
dσ (ω2,ω1)

)
+ Ł

(
M(ω2,ω1)

)
,

where

M(ω2,ω1) = min
{

dσ

(
ω2, [Sω2]αS(ω2)

)
, dσ

(
ω1, [Tω1]αT(ω1)

)
,

dσ

(
ω2, [Tω1]αT(ω1)

)
, dσ

(
ω1, [Sω2]αS(ω2)

)}
.

From condition (C4), we can write

F
(
dσ

(
ω2, [Sω2]αS (ω2)

))
= inf

y′∈[Sω2]αS(ω2)
F
(
dσ

(
ω2, y′)).

Then we have

� + inf
y′∈[Sω2]αS(ω2)

F
(
dσ

(
ω2, y′))

≤ F
(
dσ (ω2,ω1)

)
+ Ł min

{
dσ

(
ω2, [Sω2]αS(ω2)

)
, dσ

(
ω1, [Tω1]αT(ω1)

)
,

dσ

(
ω2, [Tω1]αT(ω1)

)
, dσ

(
ω1, [Sω2]αS(ω2)

)}
.

Thus there exists ω3 ∈ [Sω2]αS(ω2) such that

� + F
(
dσ (ω2,ω3)

)

≤ F
(
dσ (ω1,ω2)

)
+ Ł min

{
dσ (ω2,ω3), dσ (ω1,ω2), dσ (ω2,ω2), dσ (ω1,ω3)

}
.

This implies that

� + F
(
dσ (ω2,ω3)

) ≤ F
(
dσ (ω1,ω2)

)
.
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By continuing the same procedure recursively we obtain a sequence {ωn}∞n=0 in W such
that ω2n+1 ∈ [Sω2n]αS(ω2n), ω2n+2 ∈ [Tω2n+1]αT(ω2n+1). Also,

� + F
(
dσ (ω2n+1,ω2n+2)

) ≤ F
(
dσ (ω2n,ω2n+1)

)
, (8)

and

� + F
(
dσ (ω2n+2,ω2n+3)

) ≤ F
(
dσ (ω2n+1,ω2n+2)

)
(9)

for all n ∈N. From equations (8) and (9) we have

� + F
(
dσ (ωn,ωn+1)

) ≤ F
(
dσ (ωn–1,ωn)

)
.

Therefore

F
(
dσ (ωn,ωn+1)

) ≤ F
(
dσ (ωn–1,ωn)

)
– � ≤ F

(
dσ (ωn–2,ωn–1)

)
– 2� ≤ · · ·

≤ F
(
dσ (ω0,ω1)

)
– n�. (10)

By taking the limit as n → ∞ in equation (10) we get limn→∞ F(dσ (ωn,ωn+1)) = –∞.
Next, from condition (C2) of Definition 1.3 we have

lim
n→∞ dσ (ωn,ωn+1) = 0.

Also, by condition (C3) of Definition 1.3 there exists l ∈ (0, 1) such that

lim
n→∞

(
dσ (ωn,ωn+1)

)lF
(
dσ (ωn,ωn+1)

)
= 0.

From equation (10) we have that for all n ∈N,

(
dσ (ωn,ωn+1)

)lF
(
dσ (ωn,ωn+1)

)
–

(
dσ (ωn,ωn+1)

)lF
(
dσ (ω0,ω1)

)

≤ –
(
dσ (ωn,ωn+1)

)ln� ≤ 0. (11)

By letting n → ∞ in (11) we obtain

lim
n→∞ n

(
dσ (ωn,ωn+1)

)l = 0. (12)

By equation (12) there exists n1 ∈N such that n(F(dσ (ωn,ωn+1)))l ≤ 1 for all n ≥ n1. Thus,
for all n ≥ n1, we have

dσ (ωn,ωn+1) ≤ 1

n
1
l

. (13)

From the triangle inequality and equation (13) for m > n ≥ n1, we have

dσ (ωn,ωm) ≤ σ (ωn,ωn+1)dσ (ωn,ωn+1) + σ (ωn+1,ωm)dσ (ωn+1,ωm)

≤ σ (ωn,ωn+1)dσ (ωn,ωn+1) + σ (ωn,ωm)σ (ωn+1,ωn+2)dσ (ωn+1,ωn+2)
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+ σ (ωn,ωm)σ (ωn+2,ωm)dσ (ωn+2,ωm)

...

≤ σ (ωn,ωn+1)dσ (ωn,ωn+1) +
m–2∑

i=1

( i∏

j=1

σ (ωj,ωm)

)

σ (ωi,ωi+1)dσ (ωi,ωi+1)

+
m–1∏

j=1

σ (ωj,ωm)σ (ωm–1,ωm)dσ (ωm–1,ωm)

≤ σ (ωn,ωn+1)dσ (ωn,ωn+1) +
m–1∑

i=1

( i∏

j=1

σ (ωj,ωm)

)

σ (ωi,ωi+1)dσ (ωi,ωi+1)

≤ σ (ωn,ωn+1)
1

n
1
l

+
∞∑

i=1

( i∏

j=1

σ (ωj,ωm)

)

σ (ωi,ωi+1)
1

i
1
l

.

Since limn,m→∞ σ (ωn+1,ωm)l < 1 for all ωn,ωm ∈W , the series
∑∞

i=1(
∏i

j=1 σ (ωj,ωm))σ (ωi,
ωi+1) 1

i
1
l

converges by the ratio test for each m ∈ N. Therefore, by taking the limit as n → ∞
in the above inequality we get dσ (ωn,ωm) → 0. Since W is complete, there exists ρ ∈ W
such that limn→∞ ωn = ρ . Next, we prove that ρ is a fixed point of T. Suppose on the
contrary that ρ is not a fixed point of T. Then there exist N0 ∈N and a subsequence {ωnr }
of {ωn} such that dσ (ω2nr , [Tρ]αT(ρ)) > 0 for all nr ≥ N0. As dσ (ω2nr , [Tρ]αT(ρ)) > 0 for all
nr ≥ N0, from Lemma 2.1, condition (1) of Definition 1.3, and (6) we have

� + F
(
dσ

(
ω2nr , [Tρ]αT(ρ)

))

≤ � + F
(
Hσ

(
[Sω2nr–1]αS(ω2nr–1), [Tρ]αT(ρ)

))

≤ F
(
dσ (ω2nr–1,ρ)

)
+ Ł min

{
dσ

(
ω2nr–1, [Sω2nr–1]αS(ω2nr–1)

)
,

dσ

(
ρ, [Tρ]αT(ρ)

)
, dσ

(
ω2nr–1, [Tρ]αT(ρ)

)
, dσ

(
ρ, [Sω2nr–1]αS(ω2nr–1)

)}

≤ F(dσ (ω2nr–1,ρ) + Ł min
{

dσ (ω2nr–1,ω2nr ), dσ

(
ρ, [Tρ]αT(ρ)

)
,

dσ

(
ω2nr–1, [Tρ]αT(ρ)

)
, dσ (ρ,ω2nr )

}
.

This implies that

F
(
dσ

(
ω2nr , [Tρ]αT(ρ)

)) ≤ F
(
dσ (ω2nr–1,ρ)

)
+ Ł min

{
dσ (ω2nr–1,ω2nr ), dσ

(
ρ, [Tρ]αT(ρ)

)
,

dσ

(
ω2nr–1, [Tρ]αT(ρ)

)
, dσ (ρ,ω2nr )

}
– �

< F(dσ (ω2nr–1,ρ) + Ł min
{

dσ (ω2nr–1,ω2nr ), dσ

(
ρ, [Tρ]αT(ρ)

)
,

dσ

(
ω2nr–1, [Tρ]αT(ρ)

)
, dσ (ρ,ω2nr )

}
.

As F is strictly increasing, we have

dσ

(
ω2nr , [Tρ]αT(ρ)

)
< dσ (ω2nr–1,ρ) + Ł min

{
dσ (ω2nr–1,ω2nr ), dσ

(
ρ, [Tρ]αT(ρ)

)
,

dσ

(
ω2nr–1, [Tρ]αT(ρ)

)
, dσ (ρ,ω2nr )

}
.
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By taking the limit as n → ∞ we get

dσ

(
ρ, [Tρ]αT(ρ)

) ≤ 0.

Thus ρ ∈ [Tρ]αT(ρ). By a similar procedure we can prove that ρ ∈ [Sρ]αS(ρ). Hence ρ ∈
[Tρ]αT(ρ) ∩ [Sρ]αS(ρ). �

Theorem 2.2 Let (W , dσ ) be a complete controlled metric space, and let S, T be fuzzy
mappings from W into �(W). Suppose that for each ω1 ∈ W , there exist αS(ω1),αT(y) ∈
(0, 1] such that [Sω1]αS(ω1), [Ty]αT(y) are nonempty closed subsets of W . If there exist F ∈F
and � > 0 such that

� + F(Hσ

(
[Sω1]αS(ω1), [Tω2]αT(ω2)

) ≤ F
(
dσ (ω1,ω2)

)
(14)

for all ω1,ω2 ∈W with Hσ ([Sω1]αS(ω1), [Tω2]αT(ω2)) > 0, then there exists a common α-fuzzy
fixed point of S and T.

Proof By taking Ł = 0 in Theorem 2.1 we get the proof. �

Corollary 2.1 Let (W , dσ ) be a complete controlled metric space, and let T be a fuzzy
mapping from W into �(W). Suppose that for each ω1 ∈ W , there exist αT(ω1),αT(ω2) ∈
(0, 1] such that [Tω1]αT(ω1), [Tω2]αT(ω2) are nonempty closed subsets of W . If there exist
F ∈F , � > 0, and Ł ≥ 0 such that

� + F(Hσ

(
[Tω1]αT(ω1), [Tω2]αT(ω2)

) ≤ F
(
dσ (ω1,ω2)

)
+ Ł

(
M(ω1,ω2)

)
(15)

for all ω1,ω2 ∈W with Hσ ([Tω1]αT(ω1), [Tω2]αT(ω2)) > 0, where

M(ω1,ω2) = min
{

dσ

(
ω1, [Tω1]αT(ω1)

)
, dσ

(
ω2, [Tω2]αT(ω2)

)
,

dσ

(
ω1, [Tω2]αT(ω2)

)
, dσ

(
ω2, [Tω1]αT(ω1)

)}
,

then there exists an α-fuzzy fixed point of T.

Proof By taking S = T in Theorem 2.1 we get the proof. �

Corollary 2.2 Let (W , dσ ) be a complete controlled metric space, and let T be a fuzzy
mapping from W into �(W). Suppose that for each ω1 ∈ W , there exist αT(ω1),αT(ω2) ∈
(0, 1] such that [Tω1]αT(ω1), [Tω2]αT(ω2) are nonempty closed subsets of W . Assume there
exist F ∈F and � > 0 such that

� + F(Hσ

(
[Tω1]αT(ω1), [Tω2]αT(ω2)

) ≤ F
(
dσ (ω1,ω2)

)
(16)

for all ω1,ω2 ∈W with Hσ ([Tω1]αT(ω1), [Tω2]αT(ω2)) > 0. Then there exists an α-fuzzy fixed
point of T.

Proof By taking S = T and Ł = 0 in Theorem 2.1 we get the proof. �
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Remark 2.2
(i) Theorem 2.1 generalizes Theorem 2.1 of [39].

(ii) Theorem 2.2 generalizes Theorem 6 of [40].
(iii) Corollary 2.1 (resp., Corollary 2.2) generalizes Corollary 2.3 (resp., Corollary 2.4) of

[39].

Corollary 2.3 Let (W , dσ ) be a complete controlled metric space, and let A, B : W →
CLB(W) be multivalued mappings. Assume that there exist F ∈ F , � > 0, and Ł ≥ 0 such
that

� + F(Hσ (Aω1, Bω2) ≤ F
(
dσ (ω1,ω2)

)
+ Ł

(
M(ω1,ω2)

)
(17)

for all ω1,ω2 ∈W with Hσ (Aω1, Bω2) > 0, where

M(ω1,ω2) = min
{

dσ

(
ω1, A(ω1)

)
, dσ

(
ω2, B(ω2)

)
, dσ

(
ω1, B(ω2)

)
, dσ

(
ω2, A(ω1)

)}
.

Then there is a common fixed point of A and B.

Proof Let α : W → (0, 1] be an arbitrary mapping and define the mappings S, T : W →
F(W) by

S(ω1)(T) =

⎧
⎨

⎩
α if T ∈ Aω1,

0 if T /∈ Aω1,

and

T(ω1)(T) =

⎧
⎨

⎩
α if T ∈ Bω1,

0 if T /∈ Bω1.

Then we obtain

[Sω1]α(ω1) =
{

T : S(ω1)(T) ≥ α
}

= Aω1 and

[Tω1]α(ω1) =
{

T : T(ω1)(T) ≥ α
}

= Bω1.

Therefore we can apply Theorem 2.1 to get a fixed point ρ ∈W such that

ρ ∈ [Sρ]αS(ρ) ∩ [Tρ]αT(ρ) = Aρ ∩ Bρ. �

Corollary 2.4 Let (W , dσ ) be a complete controlled metric space, and let A, B : W →
CLB(W) be multivalued mappings. Assume there exist F ∈F and � > 0 such that

� + F(Hσ (Aω1, Bω2) ≤ F
(
dσ (ω1,ω2)

)
(18)

for all ω1,ω2 ∈ W with Hσ (Aω1, Bω2) > 0. Then there exists a common fixed point of A
and B.

Proof It suffices to take Ł = 0 in Corollary 2.3. �
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Corollary 2.5 Let (W , dσ ) be a complete controlled metric space, and let A : W →
CLB(W) be a multivalued mapping. Assume there exist F ∈F , � > 0, and Ł ≥ 0 such that

� + F(Hσ (Aω1, Aω2) ≤ F
(
dσ (ω1,ω2)

)
+ Ł

(
M(ω1,ω2)

)
(19)

for all ω1,ω2 ∈W with Hσ (Aω1, Aω2) > 0, where

M(ω1,ω2) = min
{

dσ

(
ω1, A(ω1)

)
, dσ

(
ω2, A(ω2)

)
, dσ

(
ω1, A(ω2)

)
, dσ

(
ω2, A(ω1)

)}
.

Then there exists a fixed point of A.

Proof Take A = B in Corollary 2.3. �

Corollary 2.6 Let (W , dσ ) be a complete controlled metric space, and let A : W →
CLB(W) be a multivalued mapping. Assume there exist F ∈F and � > 0 such that

� + F(Hσ (Aω1, Aω2) ≤ F
(
dσ (ω1,ω2)

)
(20)

for all ω1,ω2 ∈W with Hσ (Aω1, Aω2) > 0. Then there exists a fixed point of A.

Proof Take A = B and Ł = 0 in Corollary 2.3. �

Remark 2.3
(i) Corollary 2.3 generalizes Corollary 2.5 of [39].

(ii) Corollary 2.4 generalizes Corollary 2.6.
(iii) Corollary 2.5 (resp., Corollary 2.6) generalizes Corollary 2.7 (resp., Corollary 2.8) of

[39].

We further suppose that T̂ is a multivalued mapping induced by the fuzzy mapping
T : W → �(W), that is,

T̂(ω1)(T) =
{
μ ∈W : T(ω1)(μ) = max

t∈W
T(ω1)(t)

}
.

Lemma 2.2 Let (W , dσ ) be a complete controlled metric space, μ ∈W , and let T be a fuzzy
mapping from W into �(W) such that T̂(ω1) is a nonempty compact set for all ω1 ∈ W .
Then μ ∈ T̂(μ) if and only if

T(μ)(μ) ≥ T(μ)(ω1)

for all ω1 ∈W .

Proof Suppose that μ ∈ T̂(μ). Then

T̂(μ)(μ) = max
ω1∈W

T(μ)(ω1).

This implies that

T̂(μ)(μ) ≥ T(μ)(ω1) for all ω1 ∈W .
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Conversely, suppose that

T̂(μ)(μ) ≥ T(μ)(ω1) for all ω1 ∈W .

Then by the same steps we can show that μ ∈ T̂(μ). �

Corollary 2.7 Let (W , dσ ) be a complete controlled metric space, and let Ŝ, T̂ : W → �(W)
be fuzzy mappings such that for each ω1 ∈W , Ŝ(ω1) and T̂(ω1) are nonempty closed subsets
of W . Assume there exist F ∈F , � > 0, and Ł ≥ 0 such that

� + F(Hσ

(
Ŝ(ω1), T̂(ω2)

) ≤ F
(
dσ (ω1,ω2)

)
+ Ł

(
M(ω1,ω2)

)
(21)

for all ω1,ω2 ∈W with Hσ (Ŝ(ω1), T̂(ω2)) > 0, where

M(ω1,ω2) = min
{

dσ

(
ω1, Ŝ(ω1)

)
, dσ

(
ω2, T̂(ω2)

)
, dσ

(
ω1, T̂(ω2)

)
, dσ

(
ω2, Ŝ(ω1)

)}
.

Then there exists μ ∈ W such that S(μ)(μ) ≥ S(μ)(ω1) and T(μ)(μ) ≥ T(μ)(ω1) for all
ω1 ∈W .

Proof By Corollary 2.3 there exists μ ∈ W such that μ ∈ Ŝ(μ) ∩ T̂(μ). Then from
Lemma 2.2 we get

S(μ)(μ) ≥ S(μ)(ω1) and T(μ)(μ) ≥ T(μ)(ω1)

for all ω1 ∈W . �

Example 2.1 Let W = [0, 1]. Define dσ : W ×W → [0,∞) by

dσ (ω1,ω2) = |ω1 – ω2|.

Then (W , dσ ) is a complete controlled metric space, where σ : W ×W → [1,∞) is de-
fined by

σ (ω1,ω2) =

⎧
⎨

⎩
1 if ω1,ω2 ∈ [0, 0.5),

ω1 + ω2 + 2 otherwise.

For α ∈ [0, 1) and ω1 ∈W , define the mappings S, T : W → �(W) by

S(ω1)(T) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α if 0 ≤ T ≤ ω1
50 ,

α
2 if ω1

50 < T ≤ ω1
40 ,

α
3 if ω1

40 < T ≤ ω1
30 ,

α
4 if ω1

30 < T ≤ 1,
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and

T(ω1)(T) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α if 0 ≤ T ≤ ω1
20 ,

α
4 if ω1

20 < T ≤ ω1
10 ,

α
5 if ω1

10 < T ≤ ω1
5 ,

α
7 if ω1

5 < T ≤ 1,

so that

[Sω1]αS(ω1) =
[

0,
ω1

50

]
and [Tω1]αT(ω1) =

[
0,

ω1

20

]
.

Let F(T) = ln(T). Then there exists � ∈ (0, ln |ω2–ω1|
|ω2– ω1

2 | 1
50

) such that

� + F(Hσ

(
[Sω1]αS(ω1), [Tω2]αT(ω2)

) ≤ F
(
dσ (ω1,ω2)

)

for all ω1,ω2 ∈ W with Hσ ([Sω1]αS(ω1), [Tω2]αT(ω2)) > 0. Hence all the axioms of Theo-
rem 2.1 are satisfied, and therefore 0 ∈ [S0]α ∩ [T0]α .

3 Conclusion
In this work, we introduced the concept of fuzzy mappings in a more general space, called
a controlled metric space. Further, we derived the existence of common α-fuzzy fixed
points for two fuzzy mappings under generalized almost F-contractions in the setting of
controlled metric spaces. Our results generalize many well-known results in the literature.
For justification of the obtained results, we gave an illustrative example.
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Math. 24, 10–19 (2008)
10. Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory

Appl. 2012, 94 (2012)
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