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Abstract
In this paper, we formulate an SVITR deterministic model and extend it to a stochastic
model by introducing intensity of stochastic factors and Brownian motion. Our basic
qualitative analysis of both models includes the positivity of the solution, invariant
region, disease-free equilibrium point, basic reproduction number, local and global
stability of disease-free equilibrium point, endemic equilibrium point, and sensitivity.
We obtain the stochastic reproduction number and local stability by using twice
differentiable Itô’s formula. We prove the global stability of the disease-free
equilibrium point by using a Lyapunov function. We determine the sensitivity of the
effect of each parameter on basic reproduction number of the model by using a
normalized sensitivity index formula. On the other hand, we demonstrate numerical
simulation results of deterministic and stochastic models of COVID-19 by using Maple
18 and MATLAB software. Our simulation results indicate that reducing the contact
between infected and susceptible individuals and improvement of treatment play a
vital role in COVID-19 pandemic control.
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1 Introduction
Mathematical modeling is useful in understanding and analyzing the behavior of infec-
tious disease transmission dynamics in humans and animals. Since the first discovery and
identification of coronavirus in 1965, three major outbreaks occurred, which were caused
by emerging and highly pathogenic coronavirus. In 2003, in Mainland China, the outbreak
of Sever Acute Respiratory Syndrome Coronavirus (SARS-CoV) occurred [5, 12]; in 2012
the outbreak of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Saudi
Arabia occurred [16], and the virus MERS-CoV in South Korea happened [3, 10]. Cur-
rently, Corona Virus Disease 2019 (COVID-19) is an infectious disease caused by Sever
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The infection was noticed
in Wuhan, China, where by the first case of infection was identified in December 2019
[2, 11, 13]. The outbreak was declared a public health emergency of international concern
on 30 January 2020 by World Health Organization (WHO).

The World Health Organization renamed COVID-19 as strain Severe Acute Respiratory
Syndrome Corona Virus 2 (SARS-CoV-2) on 11 February 2020 [4, 20]. As of 17 March
2021, more than 120 million cases of COVID-19 infections, with more than 2 million
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deaths, had been reported globally [20]. According to Center for Diseases Control (CDC)
[1], the major symptoms of COVID-19 are fever, cough or sneeze, and breath shortness,
which emerges 14 days after the infection occurred. Public health [18] and WHO [20]
claimed that the virus that causes COVID-19 spreads mainly when an infected person is
in close contact with another person. Small droplets and aerosols containing the virus can
spread from an infected person’s nose and mouth when they breathe, cough, sneeze, sing,
or speak [21]. The virus may also spread via contaminated surfaces. Based on the spread-
ing nature of COVID-19, WHO declared it as a global pandemic on 11 March 2020 [20].

It is known that there is no known medicine to combat the novel coronavirus pandemic
yet [14]. WHO made certain standardized recommendations to prevent the spread of
COVID-19. They include frequent washing of hands with soap and alcohol-base sanitizer,
using face mask, and avoiding close contact with anyone that has a fever and cough [21].
A COVID-19 vaccine is intended to provide acquired immunity against (SARS-CoV-2). In
phase III trials, several COVID-19 vaccines have demonstrated efficacy as high as 95% in
preventing symptomatic COVID-19 infections. So far, more than 20 million doses of the
AstraZeneca vaccine have been administered in Europe, and more than 27 million doses
of the Covishield vaccine (AstraZeneca vaccine by Serum Institute of India) have been ad-
ministered in India. As of 17 April 2021, 890.31 million doses of COVID-19 vaccine have
been administered worldwide by official reports from national health agencies [9].

Mathematical models are important tools to gain a big understanding of the ongoing
trends for COVID-19. They are also useful for obtaining a basic reproduction number,
determining sensitivities to change in parameter values, estimating key parameters from
the data that contribute to identifying trends, making general forecasts, and estimating
uncertainties [6]. Epidemiological models play a fundamental role in the study of the dy-
namics of COVID-19. With regard to the studies carried out so far, a few mathematical
modeling studies have been done about transmition of the pandemic. For instance, Wu et
al. [22] introduced a susceptible-exposed-infectious-recovered (SEIR) model to describe
the transmission dynamics and forecasted the national and global spread of the disease.
The model is considered simple and does not incorporate the relapse form recovered class
to susceptible class, which is very unrealistic. The author did not introduce any treatment
and vaccination classes. A similar study was done by Read et al. [15], but with no vac-
cination and treatment classes. As COVID-19 is a chronic disease, treatment should be
considered to make the work more realistic, which is missing in [15]. Tang et al. [17] pro-
posed a deterministic compartmental model incorporating the clinical progression of the
disease, the individual epidemiological status, and the intervention measures. They found
that the control reproductive number could be as high as 6.47, and those intervention
strategies such as intensive contact tracing followed by quarantine and isolation can ef-
fectively reduce the control reproduction number and the transmission risk. Imai et al. [8]
conducted computational modeling of potential epidemic trajectories to estimate the size
of the disease outbreak in Wuhan, with a focus on the human-to-human transmission.
Their findings showed that control measures need to block well over 60% of transmission
to be effective in containing the outbreak.

Recently, Iboi et al. [7] developed a mathematical model to determine whether or not
a hypothetical imperfect vaccine can lead to the elimination of COVID-19 in the United
States. Their study indicated that such elimination is feasible, using the hypothetical vac-
cine with assumed efficacy of 80%, if the vaccine coverage is adequate enough to achieve
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herd immunity. In particular, the vaccine coverage needed to achieve herd immunity in
US is 90%, whereas the computed herd thresholds for the states of New York and the state
of Florida are 84% and 85%, respectively. Therefore from the above discussion we can
conclude that human-to-human contact is the potential cause of outbreaks of COVID-19.
Thus isolation of an infected human can reduce the risk of future spread of COVID-19.
Thus, to overcome those limitations, we conducted the current study to develop a stochas-
tic SVITR mathematical model for the transmission dynamics of COVID-19 pandemic by
introducing treated and vaccinated classes.

The paper is organized as follows. In Sect. 2, we formulate and describe the mathemat-
ical model. In Sect. 3, we qualitatively analyze the model by examining the equilibrium
points. Numerical simulations of the model by estimating the parameters are given in
Sect. 4, where the sensitivity of the basic reproduction number on the model parameters
is also discussed. Last but not least, conclusions and recommendations of the study are
given in Sect. 5.

2 Model description
The model we have already formulated consists of five compartments: susceptible S(t),
vaccinated V (t), infected I(t), treated T(t), and recovered R(t) individuals for all times
t > 0. The susceptible are those individuals that are not infected by COVID-19 but can
infect in future. Infected individuals include individuals that are couched by COVID-19
and are able to transmit the disease to a susceptible one. Treated individuals are those who
can be treated from the disease and cannot transmit to other individuals. After treatment
class, some individuals are recovered from the disease. The susceptible populations are
increased by recruitment rate ϕ, either by birth or immigration. Those individuals can be
vaccinated at rate θ and become infected by COVID-19 with contact rate α. The infected
individuals are decreased by disease causing death rate τ . The infected individuals can get
treatment at rate δ, and those individuals that are in treatment can recover from the disease
at rate ρ . The vaccinated and recovered individuals can lose their temporary immunity at
rates σ2 and σ1, respectively, becoming susceptible again. We have natural causing death
rate μ for the whole population.

Our model is governed by the following assumptions: All parameters are nonnegative,
the total population size is constant, vaccination is introduced to the susceptible individ-
uals, susceptible individuals are recruited by birth or immigration, the treated individuals
cannot transmit COVID-19 disease to the susceptible population, and by losing tempo-
rary immunity the recovered individuals become susceptible again. The compartments
and parameters of the model are described in Table 1.

The model is shown diagrammatically in Fig. 1.
The deterministic SVITR model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = ϕ + σ1R(t) + σ2V (t) – (αI(t) + θ + μ)S(t),

dV
dt = θS(t) – (μ + σ2)V (t),
dI(t)

dt = αS(t)I(t) – (μ + δ + τ )I(t),
dT(t)

dt = δI(t) – (μ + ρ + ω)T(t),
dR(t)

dt = ρT(t) – (μ + σ1)R(t),

(2.1)

with initial conditions S(0) = S0, V (0) = V0, I(0) = I0, T(0) = T0, R(0) = R0.
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Table 1 Description of state variables and parameters

Notations Description

S(t) Number of susceptible individuals at time t
V(t) Number of vaccinated individuals at time t
I(t) Number of infected individuals at time t
T (t) Number of treated individuals at time t
R(t) Number of recovered individuals at time t
ϕ Recruitment rate of susceptible individuals due to migration or birth
α The rate at which susceptible individuals tend to infected individuals
δ Treatment rate
μ Natural causing death rate of all individuals
θ Vaccination rate
τ Rate of death due to COVID-19
ρ Recovery rate of treated individuals
σ1 Lose rate of immunity by recovered individuals
σ2 Lose rate of immunity by vaccinated individuals
ω COVID-19 causing death rate associated with the individuals that are on treatment
B(t) Standard Brownian motions
βi Intensity of white noise

Figure 1 Schematic diagram of COVID-19 model

Incorporating the intensity of stochastic environmental factors βI and Brownian motion
BI(t) into the SVITR deterministic model Eq. (2.1), we get the corresponding stochastic
model of COVID-19:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = (ϕ + σ1R(t) + σ2V (t) – (αI(t) + θ + μ)S(t)) dt + β1S(t) dB1(t),

dV (t) = (θS(t) – (μ + σ2)V (t)) dt + β2V (t) dB2(t),

dI(t) = (αS(t)I(t) – (μ + δ + τ )I(t)) dt + β3I(t) dB3(t),

dT(t) = (δI(t) – (μ + ρ + ω)T(t)) dt + β4T(t) dB4(t),

dR(t) = (ρT(t) – (μ + σ1)R(t)) dt + β5R(t) dB5(t),

(2.2)

where β1,β2,β3,β4,β5 ≥ 0 (intensities of Brownian motions), and B1, B2, B, B4, B5 are
independent Brownian motions.
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3 Qualitative analysis
In this section, we discuss the qualitative behavior of the model.

3.1 Positivity of the solution
Theorem 3.1 Let S0 ≥ 0, V0 ≥ 0, I0 ≥ 0, T0 ≥ 0, R0 ≥ 0. Then {S(t), V (t), I(t), T(t), R(t)}
are positive for all times t.

Proof First, let us compute dS
dt from model Eq. (2.1):

dS(t)
dt

= ϕ + σ1R(t) + σ2V (t) –
(
αI(t) + θ + μ

)
S(t)

⇒ dS(t)
dt

≥ –
(
αI(t) + θ + μ

)
S(t)

⇒ dS(t)
(αI(t) + θ + μ)S(t)

≥ –dt. (3.1)

Then applying the initial conditions and solving by using separation of variables, we get

S(t) ≥ ece(αI(t)+θ+μ)t ,

S(t) ≥ S(0)e(αI(t)+θ+μ)t . (3.2)

Next, from the second equation of (2.1) we get

dV (t)
dt

= θS(t) – (μ + σ2)V (t)

⇒ dV (t)
dt

≥ –(μ + σ2)V (t) (3.3)

⇒ dV (t)
(μ + σ2)V (t)

≥ –dt. (3.4)

Therefore V (t) ≥ V (0)e(μ+σ2)t .
Finally, in a similar way, from the third, fourth, and fifth equations of model (2.1) we get

I(t) ≥ I(0)e(μ+δ+τ )t ,

T(t) ≥ T(0)e(μ+ρ+ω)t ,

R(t) ≥ R(0)e(μ+σ1)t .

Therefore our model is positive for all t ≥ 0. �

3.2 Invariant region
To get the region at which the model is bounded, let us take the total population N(t) for
all t,

N(t) = S(t) + V (t) + I(t) + T(t) + R(t). (3.5)
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By differentiating Eq. (3.5) with respect to t we have

dN(t)
dt

=
dS(t)

dt
+

dV (t)
dt

+
dI(t)

dt
+

dT(t)
dt

+
dR(t)

dt
, (3.6)

dN(t)
dt

= ϕ – μ
(
S(t) + V (t) + I(t) + T(t) + R(t)

)
– τ I(t) – ωT(t). (3.7)

In the absence of death due to COVID-19 (τ = 0 and ω = 0), Eq. (3.7) becomes

dN(t)
dt

= ϕ – μN(t). (3.8)

Then solving Eq. (3.8) and applying the initial conditions, we get

N(t) ≤ ϕ

μ
–

N(0)
μ

e–μt . (3.9)

As t −→ ∞ in Eq. (3.9), we obtain

lim
t−→∞ N(t) =

ϕ

μ
, (3.10)

0 ≤ N(t) ≤ ϕ

μ
.

Thus our model is positively invariant in the region

� =
{

(S, V , I, T , R) ∈R
5
+ : 0 ≤ N(t) ≤ ϕ

μ

}

.

3.3 Disease-free equilibrium point
In this section, we start with no COVID-19 present in the population of human, so that to
obtain COVID-19-free equilibrium point, let us take I = T = R = 0. Now we have left with
susceptible and vaccinated individuals from model Eq. (2.1):

⎧
⎨

⎩

dS(t)
dt = ϕ + σ1R(t) + σ2V (t) – (αI(t) + θ + μ)S(t),

dV (t)
dt = θS(t) – (μ + σ2)V (t).

(3.11)

Finally, we get the following points

S0 =
ϕ(μ + σ2)

μ(μ + σ2 + θ )
, V0 =

ϕθ

μ(μ + σ2 + θ )

since I = 0, T = 0, and R = 0.
Thus the disease-free equilibrium lies at the point E0 = ( ϕ(μ+σ2)

μ(μ+σ2+θ ) , ϕθ

μ(μ+σ2+θ ) , 0, 0, 0).

3.4 Basic reproduction number
In this section, we obtain both deterministic and stochastic reproduction numbers.
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3.4.1 Basic reproduction number in the deterministic model
To get basic reproduction number, consider the newly infectious class of model Eq. (2.1):

dI(t)
dt

= αS(t)I(t) – (μ + δ + τ )I(t).

Let f be the rate of appearance of new infection, and let v be the rate of transfer of new
infection into and out of the compartment. Then

f = αS(t)I(t),

v = (μ + δ + τ )I(t).

Then we obtain the Jacobian matrices of f and v (represented by F and V ) with respect
to I :

F =
∂f
∂I

= αS(t), (3.12)

V =
∂v
∂I

= (μ + δ + τ ). (3.13)

Then F and V at E0 = ( ϕ(μ+σ2)
μ(μ+σ2+θ ) , ϕθ

μ(μ+σ2+θ ) , 0, 0, 0) become

F =
αϕ(μ + σ2)

μ(μ + σ2 + θ )
,

v = (μ + δ + τ ), v–1 =
1

(μ + δ + τ )
.

Then spectral radius (FV –1) of our model becomes

FV –1 =
αϕ(μ + σ2)

μ(μ + σ2 + θ )(μ + δ + τ )
.

Therefore our basic reproduction number in the deterministic model is

RD
0 =

αϕ(μ + σ2)
μ(μ + σ2 + θ )(μ + δ + τ )

. (3.14)

3.4.2 Basic reproduction number in the stochastic model
To obtain the stochastic basic reproduction number, we consider the infected class of
stochastic model Eq. (2.2):

dI(t) =
[
αS(t) – (μ + δ + τ )I(t)

]
dt + β3I(t) dB3(t). (3.15)

Now by using Itô’s formula we derive our basic reproduction number in the stochastic
approach. Let as consider the Taylor series expression of g(t, I(t)) = ln(I(t)):

dg
(
t, I(t)

)
=

∂g
∂t

dt +
∂g

∂I(t)
dI(t) +

1
2

∂2g
∂I2 (dI)2

+
∂2g
∂t ∂I

dt dI(t) +
1
2

∂2g
∂t2 (dt)2, (3.16)
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where ∂g
∂t = 0, ∂g

∂I(t) = 1
I(t) , ∂2g

∂I2 = 1
I2(t) , ∂2g

∂t ∂I = 0, ∂2g
∂t2 = 0,

dg
(
t, I(t)

)
=

1
I(t)

dI(t) –
1

2I2(t)
dI2(t)

=
1

I(t)
[(

αS(t) – (μ + δ + τ )I(t)
)

dt + β3I(t) dB3(t)
]

–
1

2I2(t)
[(

αS(t) – (μ + δ + τ )I(t)
)

dt + β3I(t) dB3(t)
]2.

Let e = αS(t)I(t) – (μ + δ + τ )I(t) and f = β3I(t). Then

dg
(
t, I(t)

)
=

[
αS(t) – (μ + δ + τ )

]
dt + β3 dB3(t)

–
1

2I2(t)
[
e dt + f dB3(t)

]2

=
[
αS(t) – (μ + δ + τ )

]
dt + β3 dB3(t)

–
1

2I2(t)
[
e2d2t + 2ef dt dB3(t) + f 2 d2B3(t)

]

=
[
αS(t) – (μ + δ + τ )

]
dt + β3 dB3(t) –

1
2I2(t)

[
f 2 d2B3(t)

]
.

Then by applying the chain rule we get

dg
(
t, I(t)

)
=

[
αS(t) – (μ + δ + τ )

]
dt + β3 dB3(t) –

1
2I2(t)

[
β2

3 I2(t) d2B3(t)
]

=
[
αS(t) – (μ + δ + τ )

]
dt + β3 dB3(t) –

1
2
[
β2

3 dt
]

=
[

αS(t) –
1
2
β2

3 – (μ + δ + τ )
]

dt + β3 dB3(t).

Let f be the rate of introduction of new infection, and let v be the rate of transfer of new
infection. Then f and v at disease-free equilibrium point become

f =
[

αϕ(μ + σ2)
μ(μ + σ2 + θ )

–
1
2
β2

3

]

,

v = (μ + δ + τ ),

v–1 =
1

(μ + δ + τ )
.

Then the product of f and v–1 equals

fv–1 =
αϕ(μ + σ2)

μ(μ + σ2 + θ )(μ + δ + τ )
–

β2
3

2(μ + δ + τ )
, (3.17)

where RD
0 = αϕ(μ+σ2)

μ(μ+σ2+θ )(μ+δ+τ ) .
Therefore our basic reproduction number in the stochastic model is

RS
0 = RD

0 –
β2

3
2(μ + δ + τ )

. (3.18)
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3.5 Local stability of disease-free equilibrium point
3.5.1 Local stability of disease-free equilibrium point for deterministic
Theorem 3.2 The disease-free equilibrium point is locally asymptotically stable if and
only if R0 < 1 and unstable otherwise.

Proof To prove this theorem, we use the Jacobian matrix of model Eq. (2.1),

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(μ + θ ) σ2 –αS(t) 0 σ1

θ –(μ + σ2) 0 0 0
0 0 αS(t) – (μ + δ + τ ) 0 0
0 0 δ –(μ + ρ + ω) 0
0 0 0 ρ –(μ + σ2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.19)

Then solving Eq. (3.19) at the disease-free equilibrium point E0 = ( ϕ(μ+σ2)
μ(μ+σ2+θ ) , ϕθ

μ(μ+σ2+θ ) , 0,
0, 0), we obtain

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(μ + θ ) σ2 – αϕ(μ+σ2)
μ(μ+σ2+θ ) 0 σ1

θ –(μ + σ2) 0 0 0
0 0 αϕ(μ+σ2)

μ(μ+σ2+θ ) – (μ + δ + τ ) 0 0
0 0 δ –(μ + ρ + ω) 0
0 0 0 ρ –(μ + σ2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.20)

The roots of Eq. (3.20) can be obtained from

J =

⎛

⎜
⎜
⎜
⎜
⎝

–(μ + θ ) – λ σ2 – αϕ(μ+σ2)
μ(μ+σ2+θ ) 0 σ1

θ –(μ + σ2) – λ 0 0 0
0 0 αϕ(μ+σ2)

μ(μ+σ2+θ ) – (μ + δ + τ ) – λ 0 0
0 0 δ –(μ + ρ + ω) – λ 0
0 0 0 ρ –(μ + σ2) – λ

⎞

⎟
⎟
⎟
⎟
⎠

.

(3.21)

From (3.21) we obtain the characteristic equation

[

–(μ + θ ) – λ
[
–(μ + σ2) – λ

]
[

αϕ(μ + σ2)
μ(μ + σ2 + θ )

– (μ + δ + τ ) – λ

]

× [
–(μ + ρ + ω) – λ

][
–(μ + σ2) – λ

]
]

= 0. (3.22)

Obviously, λ1, λ2, λ3, and λ4 are negative. For stability, all the real parts of the eigenvalues
must be negative, which means

αϕ(μ + σ2)
μ(μ + σ2 + θ )

– (μ + δ + τ ) < 0. (3.23)

After rearranging Eq. (3.23), we get

αϕ(μ + σ2)
μ(μ + σ2 + θ )(μ + δ + τ )

< 1. (3.24)
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Now from Eq. (3.24) we observe that

RD
0 =

αϕ(μ + σ2)
μ(μ + σ2 + θ )(μ + δ + τ )

< 1.

Therefore our disease-free equilibrium point is locally asymptotically stable if RD
0 < 1. �

3.5.2 Local stability of disease-free equilibrium point in the stochastic model
Theorem 3.3 If RS

0 < 1, then for any initial values of (S0, V0, I0, T0, R0) ∈ R5
+, I(t) obeys

limt→∞ sup 1
t ln I(t) ≤ (μ + δ + τ )(RS

0 – 1) < 0.

Proof Let as take the Taylor series expansion of F(t, I(t)) = ln I(t). By Itô’s formula

dF
(
t, I(t)

)
=

[

αS(t) –
1
2
β2

3 – (μ + δ + τ )
]

dt + β3 dB3(t),

d ln I(t) =
[

αS(t) –
1
2
β2

3 – (μ + δ + τ )
]

dt + β3 dB3(t). (3.25)

Now integrating both sides of Eq. (3.25), we get

ln I(t) – ln I(0) =
∫ t

0

[

αS(t) –
1
2
β2

3 – (μ + δ + τ )
]

dt +
∫ t

0
β3 dB3(t). (3.26)

Then solving Eq. (3.26) at disease-free equilibrium point, we have

ln I(t) = ln I(0) +
∫ t

0

[
αϕ(μ + σ2)

μ(μ + σ2 + θ )
–

1
2
β2

3 – (μ + δ + τ )
]

dt +
∫ t

0
β3 dB3(t)

⇒ ln I(t) ≤ ln I(0) +
(

αϕ(μ + σ2)
μ(μ + σ2 + θ )

–
1
2
β2

3 – (μ + δ + τ )
)

t + G(t), (3.27)

where G(t) =
∫ t

0 β3 dB3(t) is a martingale.
By using the strong law of martingales we have limt→∞ sup G(t)

t = 0 almost surely.
Then divide both sides of Eq. (3.27) by t:

⇒ ln I(t)
t

≤ ln I(0)
t

+
(

αϕ(μ + σ2)
μ(μ + σ2 + θ )

–
1
2
β2

3 – (μ + δ + τ )
)

+
G(t)

t
. (3.28)

Now taking limt→∞ sup of (3.28), we obtain

lim
t→∞ sup

ln I(t)
t

≤ lim
t→∞ sup

ln I(0)
t

+
(

αϕ(μ + σ2)
μ(μ + σ2 + θ )

–
1
2
β2

3 – (μ + δ + τ )
)

+ lim
t→∞ sup

G(t)
t

,

lim
t→∞ sup

ln I(t)
t

≤
(

αϕ(μ + σ2)
μ(μ + σ2 + θ )

–
1
2
β2

3 – (μ + δ + τ )
)

< 0
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= (μ + δ + τ )
(

αϕ(μ + σ2)
μ(μ + σ2 + θ )(μ + δ + τ )

–
1

2(μ + δ + τ )
β2

3 – 1
)

< 0

= (μ + δ + τ )
(
RS

0 – 1
)
. (3.29)

Obviously, (μ + δ + τ ) > 0, and therefore

RS
0 – 1 < 0

⇒ RS
0 < 1. (3.30)

Therefore our disease free-equilibrium point is locally asymptotically stable if and only
if

RS
0 < 1. �

3.6 Global stability of disease-free equilibrium point
Theorem 3.4 If RD

0 < 1, then E0 is globally asymptotically stable in �.

Proof Consider a Lyaponuv function

L(t) =
[

ϕ + αδ +
ϕθ

(μ + δ)

]

I(t). (3.31)

Then differentiating Eq. (3.31), we get

dL
dt

=
[

ϕ + αδ +
ϕθ

(μ + δ)

]
dI
dt

=
[

ϕ + αδ +
ϕθ

(μ + δ)

]
(
αS(t)I(t) – (μ + δ + τ )I(t)

)

=
[

ϕ + αδ +
ϕθ

(μ + δ)

]
(
αS(t) – (μ + δ + τ )

)
I(t)

=
[

ϕ + αδ +
ϕθ

(μ + δ)

]

(μ + δ + τ )
(

αS(t)
(μ + δ + τ )

– 1
)

I(t). (3.32)

Solving Eq. (3.32) at S0 = ϕ(μ+σ2)
μ(μ+σ2+θ ) , we get

dL
dt

=
[

ϕ + αδ +
ϕθ

(μ + δ)

]

(μ + δ + τ )
(

αϕ(μ + σ2

μ(μ + σ2 + θ )(μ + δ + τ )
– 1

)

I(t)

=
[

ϕ + αδ +
ϕθ

(μ + δ)

]

(μ + δ + τ )
(
RD

0 – 1
)
I(t). (3.33)

Clearly, [ϕ + αδ + ϕθ

(μ+δ) ](μ + δ + τ ) > 0. Then for dL
dt ≤ 0, we must have RD

0 – 1 < 0.
Thus every solution of equation system (2.1) with initial conditions in the domain �

approaches disease-free equilibrium point E0 as t goes to infinity whenever RD
0 < 1.

Hence E0 is globally asymptotically stable in the domain �. �
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3.7 Endemic equilibrium point
An endemic equilibrium point is a point in which the disease persists in the population,
and we denote it as E1 = S∗, V ∗, I∗, T∗, R∗ different from zero. Now E1 can be obtained by
equating all system of model Eq. (2.1) to zero:

dS
dt

=
dV
dt

=
dI
dt

=
dT
dt

=
dR
dt

= 0. (3.34)

Then after certain steps, we get

S∗ =
(ϕ(μ + ρ + ω) + σ1ρδ)(μ + θ )

α(μ + ρ + ω)
,

V ∗ =
θ ((ϕ(μ + ρ + ω) + σ1ρδ)(μ + θ ))

α(μ + ρ + ω)(μ + σ2)
,

I∗ =
(μ + ρ + ω)

(ϕ(μ + ρ + ω) + σ1ρδ)(μ + θ ) – (μ + ρ + ω)(μ + δ + τ )
,

T∗ =
δ

(ϕ(μ + ρ + ω) + σ1ρδ)(μ + θ ) – (μ + ρ + ω)(μ + δ + τ )
,

R∗ =
ρδ

(μ + σ1)(ϕ(μ + ρ + ω) + σ1ρδ)(μ + θ ) – (μ + ρ + ω)(μ + δ + τ )
.

Therefore the endemic equilibrium point of equation system (2.1) is

E1 =

⎛

⎜
⎜
⎜
⎜
⎝

(ϕ(μ+ρ+ω)+σ1ρδ)(μ+θ )
α(μ+ρ+ω) , θ ((ϕ(μ+ρ+ω)+σ1ρδ)(μ+θ ))

α(μ+ρ+ω)(μ+σ2)
(μ+ρ+ω)

(ϕ(μ+ρ+ω)+σ1ρδ)(μ+θ )–(μ+ρ+ω)(μ+δ+τ )
δ

(ϕ(μ+ρ+ω)+σ1ρδ)(μ+θ )–(μ+ρ+ω)(μ+δ+τ )
ρδ

(μ+σ1)(ϕ(μ+ρ+ω)+σ1ρδ)(μ+θ )–(μ+ρ+ω)(μ+δ+τ )

⎞

⎟
⎟
⎟
⎟
⎠

.

3.8 Stability analysis of endemic equilibrium point
In this section, we study the stability of model (2.1) at the endemic equilibrium point.

Theorem 3.5 When RD
0 > 1, the endemic equilibrium point (E1) of equation system (2.1) is

locally asymptotically stable at E1 = {S∗, V ∗, I∗, T∗, R∗}.

Proof Consider the Jacobian matrix at the endemic equilibrium point:

J(E1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(αI∗ + μ + θ ) σ2 –αS∗ 0 σ1

θ –(μ + σ2) 0 0 0
αI∗ 0 αS∗ – (μ + δ + τ ) 0 0
0 0 δ –(μ + ρ + ω) 0
0 0 0 ρ –(μ + σ2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.35)

The characteristic polynomial equation of J(E1) is

P(λ) = λ5 + M1λ
4 + M2λ

3 + M3λ
2 + M4λ + M5, (3.36)
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where

M1 = K3 + K4 + K5 + K3(K4 + K5) + K4K5 + θσ2,

M2 = (K3 + K4 + K5)(1 + K1 + K2) + K1K2,

M3 = K3K4K5 + K3θσ2 + (K1 + K2)
(
K3(K4 + K5) + K4K5 + θσ2

)
+ K1K2(K3 + K4 + K5),

M4 = (K1 + K2)(K3K4K5 + K3θσ2) + K1K2
(
K3(K4 + K5) + K4K5 + θσ2

)
,

M5 = (K1K2(K3K4K5 + K3θσ2) – σ1δρK5

with

K1 = (μ + σ1),

K2 = (μ + ρ + ω),

K3 = αS∗ – (μ + δ + τ ),

K4 =
(
αI∗ + μ + θ

)
,

K5 = (μ + σ2).

Hence by the Routh-Hurwitz stability criterion the endemic equilibrium point is locally
asymptotically stable if

M1 > 0, M2 > 0, M3 > 0, M4 > 0, M5 > 0,

M1M2M3 > M2
3 + M2

1M4,

M1M4 – M5
(
M1M2M3 – M2

3 – M2
1M4

)
> M5(M1M2 – M3)2 + M1M2

5.

This completes the proof. �

Theorem 3.6 When RD
0 > 1, the endemic equilibrium E1 is globally asymptotically stable.

Proof To show the global asymptotic stability at endemic equilibrium point, we define the
following Lyapunov function:

L
(
S∗, V ∗, I∗, T∗, R∗) =

(

S – S∗ – S∗ ln
S∗

S

)

+
(

V – V ∗ – V ∗ ln
V ∗

V

)

+
(

I – I∗ – I∗ ln
I∗

I

)

+
(

T – T∗ – T∗ ln
T∗

T

)

+
(

R – R∗ – R∗ ln
R∗

R

)

. (3.37)

By calculating the derivatives of L(S∗, V ∗, I∗, T∗, R∗) with respect to t we get

dL
dt

=
(

S – S∗

S

)
dS
dt

+
(

V – V ∗

V

)
dV
dt

+
(

I – I∗

I

)
dI
dI

+
(

T – T∗

T

)
dT
dt

+
(

R – R∗

R

)
dR
dt

, (3.38)
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dL
dt

=
(

S – S∗

S

)
(
ϕ + σ1R + σ2V –

(
αI(t) + θ + μ

)
S
)

+
(

V – V ∗

V

)
(
θS – (μ + σ2)V

)
+

(
I – I∗

I

)
(
αIS – (μ + δ + τ )I

)

+
(

T – T∗

T

)
(
δI – (μ + ρ + ω)T

)
+

(
R – R∗

R

)
(
ρT – (μ + σ1)R

)
. (3.39)

Then simplifying Eq. (3.39), we have

dL
dt

= ϕ – μS – σ1R
S∗

S
– σ2V

S∗

S
+ (αI + θ + μ)S∗ – μV – θS

V ∗

V

+ (μ + σ2)V ∗ – (μ + τ )I – αSI∗ + (μ + δ + τ )I∗ – (μ + ω)T – αI
T∗

T

+ (μ + ρ + ω)T∗ – μR – ρT
R∗

R
+ (μ + σ1)R∗, (3.40)

dL
dt

=
(
(ϕ + αI + θ + μ)S∗ + (μ + σ2)V ∗ + (μ + δ + τ )I∗ + (μ + ρ + ω)T∗ + (μ + σ1)R∗)

–
(

μS + σ1R
S∗

S
+ σ2V

S∗

S
+ μV + θS

V ∗

V
+ (μ + τ )I + αSI∗

+ (μ + ω)T + αI
T∗

T
+ μR + ρT

R∗

R

)

. (3.41)

Now let us take the parameters of positive coefficients as U and the negative ones as V .
Then Eq. (3.41) becomes

dL
dt

= U – V .

For U < V , we have S = S∗, V = V ∗, I = I∗, T = T∗, R = R∗ if and only if dL
dt < 0 and also

dL
dt = 0. The largest solution of compact set in E1{(S∗, V ∗, I∗, T∗, R∗) ∈ � : dL

dt = 0} is the
singleton of E1.

Therefore by Lasalle’s invariant principle this indicates that the endemic equilibrium E1

is globally asymptotically stable if U < V . �

3.9 Sensitivity analysis and its interpretations
We determine the sensitivity of each parameter on the basic reproduction number of the
model. We apply the following sensitivity index formula:

PR0
mi

=
∂R0

∂mi
x

mi

R0
,

where mi are the parameters of the basic reproduction number. Here

PR0
ϕ =

∂R0

∂ϕ
x

ϕ

R0
= 1 > 0,

PR0
α =

∂R0

∂α
x

α

R0
= 1 > 0,

PR0
σ2 =

∂R0

∂σ2
x
σ2

R0
=

αϕθ

(μ + σ2 + θ )
> 0,
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PR0
δ =

∂R0

∂δ
x

δ

R0
= –

αϕ(μ + σ2)
(μ + δτ )

< 0,

PR0
θ =

∂R0

∂θ
x

θ

R0
= –

αϕ(μ + σ2)
(μ + σ2 + θ )

< 0,

PR0
τ =

∂R0

∂τ
x

τ

R0
= –

αϕ(μ + σ2)
(μ + δτ )

< 0.

The sensitivity analysis interpretation of our basic reproduction number is described as
follows. The parameters that have negative sensitivity indices (δ, τ , θ ) have the effect of re-
ducing the burden of COVID-19 from the community if the values of the two parameters
are decreasing (which means that the basic reproduction number of the disease decreases
as their parameter values decrease). Also, those parameters with positive sensitivity in-
dices (σ2, ϕ, α) have an important role in the expansion of COVID-19 in the community
if their values increase (this means that if their parameter values increase, then the sec-
ondary infection in the community increases). Therefore, so as to minimize the disease
from the community, it is vital to decrease the positive indices and increase the negative
indices. In the study of sensitivity, increasing the human mortality rate to control disease
epidemic is not ethically acceptable, and hence we do not consider it. See Table 2 for more
information.

4 Numerical simulation results and discussions
In this section, we obtain the numerical simulation results of the deterministic and
stochastic models of COVID-19. To display the results, we used Maple 18 and MATLAB-
software. Now the graphs listed below demonstrate the results using the parameter values
and initial conditions of the developed model. Here we have taken the parameter and vari-
able values by assumption, estimation, and from recently published papers; they are listed
in Table 3. Moreover, S(0) = 50, V (0) = 35, I(0) = 20, T(0) = 15, and R(0) = 10 are the initial
values.

Table 2 Sensitivity indices

Parameter symbol Description Sensitivity indices

ϕ recruitment rate +ve
α contact rate +ve
σ2 lose rate of immunity by vaccination +ve
δ treatment rate –ve
τ death causing death rate –ve
θ vaccination rate –ve

Table 3 Values of parameters, state variables, and their sources for numerical simulation

Parameters and variables Values Sources

ϕ 0.008 [23]
α 0.0143 [19]
ρ 0.0012 [23]
μ 0.016 [19]
δ 0.004 assumed
θ 0.01 estimated
σ1 0.15 [19]
σ2 0.0005 estimated
ω 0.002 assumed
τ 0.017 estimated
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Figure 2 Graphs of deterministic and stochastic Covid-19 models

4.1 Deterministic and stochastic trends of the model
From the parameter values in Table 3 we obtained our basic reproduction numbers
RD

0 = 0.0195522 and RS
0 = –1.19667. We see that RD

0 < 1 and RS
0 < 1, which means that only

susceptible population and vaccinated individuals are present and that infected, treated,
and recovered populations are reduced to zero. This indicates that the model is asymptot-
ically stable at R0 < 1 for both deterministic and stochastic approaches, and this satisfies
our theorem. This is verified numerically in Fig. 2.

Figure 2 is plotted using combination of all compartments and by taking fixed values
of all parameters. From Fig. 2 we observe that in both deterministic and stochastic ap-
proaches the number of infectious population will increase and susceptible population
will decrease after a long period of time when the susceptible individuals contact with in-
fected individuals. In addition, in the deterministic case the graph shows a smooth curve,
and in the stochastic case, we see the zigzagging properties (which imply that there is a
probability for susceptible individuals to be infected by COVID-19 when infected individ-
uals contact with susceptible one). Therefore from this we can conclude that the stochastic
approach is more advisable for such kinds of disease.
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Figure 3 Effect of contact rate on COVID-19 expansion

4.2 Effects of contact rate on infected individuals
As shown in Fig. 3, the simulation results of the effect of contact rate on infectious individ-
uals I(t) are illustrated. This figure is displayed by varying the values of contact rate α and
keeping the remaining parameter values unchanged. When the values of contact rate is
large (α = 0.5), there is high possibility for the population to be infected by COVID-19, and
for small values (α = 0.000001), there is low probability for the individual to be infected by
COVID-19. Moreover, the amount of infectious individuals increases as the contact rate
increases in both deterministic and stochastic approaches. Therefore we strongly advise
for the concerned body that by decreasing contact with COVID-19 infected individuals it
is possible to reduce the disease in the community.

4.3 Effects of treatment rate on infected individuals
We investigate the experimental results of impacts of treatment rate on infectious pop-
ulation I(t). As we see in Fig. 4, running numerical simulation results for deterministic
approach is faster than for the stochastic approach, which clearly implies that the deter-
ministic approach does not consider any probability (random properties) as the stochastic
approach does. Besides, the infectious individuals become reduced by increasing treat-
ment rate δ in both approaches. From this we can conclude that by treating the infectious
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Figure 4 Effect of treatment rate on Covid-19 expansion

individuals the infected population goes to treated one and COVID-19 will be eliminated
from the community.

4.4 Effects of recovery rate on recovered individuals
In this subsection, we get the numerical simulation results of recovery rate δ on the
amount of recovered individuals R(t). In Fig. 5 we display the simulation results by keeping
different values of recovery rate (ρ = 0.00000035, ρ = 0.012, ρ = 0.03) and constant values
of the other parameters. The figure clearly indicates that in the deterministic and stochas-
tic approaches the increments of recovered individuals are obtained as the recovery rate
in the individuals increase. Hence the greater the recovery rates, the more the individuals
recover from COVID-19 in the community.

5 Discussions and conclusions
In this investigation, we presented both deterministic and stochastic models for a novel
coronavirus COVID-19 disease dynamics. Since COVID-19 by nature has a rapid trans-
mission and variation of spreading ratio in different environments, in this study the
stochastic approach performed better and provided more accurate results. This study is
devoted to implement coronavirus mathematical model by containing vaccination class.
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Figure 5 Effect of recovery rate on recovered individuals

Vaccination is the best pharmaceutical controlling strategy for COVID-19 disease. The ba-
sic reproduction number is calculated for both deterministic and stochastic approaches
by using the next generation matrix method. We analyzed the existence and stability of
a disease-free equilibrium point. The disease-free equilibrium points are locally asymp-
totically stable when RD

0 < 1 and RS
0 < 1. Simulation results and analysis of the model are

performed using combinations of all compartments by varying the contact and treatment
rates of infected individuals and the recovery rate on recovered individuals.

From our numerical results we found that in both deterministic and stochastic ap-
proaches when susceptible population contacts with infected individuals, there is high
probability to increase the number of infectious population and to decrease the number
of uninfected (susceptible) population. Moreover, increasing the contact rate on popu-
lation has an impact on the rate of spread of COVID-19 in the community. This means
that when the values of contact rate α are large enough, there is high probability for the
individuals to be infected by novel coronavirus COVID-19. In addition to this, infectious
individuals are reduced by increasing the treatment rate δ. Hence vaccination strategies
are regarded as the most effective measures to prevent and control rapid transmission of
novel coronavirus COVID-19 in the community. Thus every citizen can take vaccine to
minimize the spread of the disease. Therefore we strongly recommend other potential re-
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searchers to study different vaccination phases, like first and second doses of vaccinations
(V1 and V2), and extensions by using optimal control strategies to modify our model.
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