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Abstract
This paper deals with Al-Salam fractional q-integral operator and its application to
certain q-analogues of Bessel functions and power series. Al-Salam fractional
q-integral operator has been applied to various types of q-Bessel functions and some
power series of special type. It has been obtained for basic q-generating series,
q-exponential and q-trigonometric functions as well. Various results and corollaries
are provided as an application to this theory.
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1 Introduction
The theory of q-calculus is an old subject centered on the idea of deriving q-analogous re-
sults without using limits. Jackson was the first to develop the q-calculus theory in system-
atic way [1]. He defined the concept of the q-integral and the concept of the q-difference
operator in a generic manner. In excellence, the theory of q-calculus allows to deal with
sets of non-differentiable functions, different classes of orthogonal polynomials, integral
operators, and various classes of special functions including q-hypergeometric functions,
q-Bessel functions, q-gamma and q-beta functions, and many others, to mention but a few.
It connects mathematics and physics and plays a significant role in various fields of physical
sciences such as cosmic strings [2], conformal quantum mechanics [3], and nuclear physics
of high energy [4]. It, further, applies to topics in number theory, combinatorics, orthog-
onal polynomials, basic hypergeometric functions, quantum theory, mechanics, and the
theory of relativity.

The q-integrals from 0 to ξ and from 0 to ∞ are, resp., defined by Jackson as [1]

∫ ξ

0
f (t) dqt = ξ (1 – q)

∞∑
j=0

qjf
(
ξqj) (1)
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and
∫ ∞/A

0
f (t) dqt = (1 – q)

∑
j∈Z

qj

A
f
(

qj

A

)
. (2)

The q-analogue of the Bessel function

Jμ(ξ ) =
∞∑
j=0

(–1)j( ξ

2 )μ+2j

j!�(μ + j + 1)
(3)

of the first type, which was studied later by Hahn [5] and Ismail [6], is defined by [7] as

J (1)
μ (ξ ; q) =

(
ξ

2

)μ ∞∑
j=0

( –ξ

4
2)j

(q, q)μ+j(q; q)j
, |ξ | < 2. (4)

Jackson defines the q-analogue of the Bessel function of the second type as [7]

J (2)
μ (ξ ; q) =

(
ξ

2

)μ ∞∑
j=0

qj(j+μ)( –ξ

4
2)j

(q; q)μ+j(q; q)j
, ξ ∈ C. (5)

Hahn [8] and Exton [9] introduced the third type q-Bessel function (called Hahn–Exton
q-Bessel function) as

J (3)
μ (ξ ; q) = ξμ

∞∑
j=0

(–1)jq
j(j–1)

2 (qξ 2)j

(q; q)μ+j(q; q)j
, ξ ∈ C. (6)

The q-shifted factorials are defined, in literature, by fixing ξ ∈C as

(ξ ; q)0 = 1; (ξ ; q)n =
n–1∏
j=0

(
1 – ξqk), n = 1, 2, . . . ; (ξ ; q)∞ = lim

n→∞(ξ ; q)n. (7)

This indeed gives

(ξ ; q)x =
(ξ ; q)∞

(ξqx; q)∞
, x ∈R. (8)

For ξ ∈C, we mean

[ξ ]q =
1 – qξ

1 – q
.

Hence, for n ∈N, we obtain

(
[n]q

)
! =

(q; q)n

(1 – q)n .

Due to [10, (1.5), (1.6)], we, resp., write
[

n
k

]

q

=
[n]q!

[k]q![n – k]q!
=

(q; q)n

(q; q)k(q; q)n–k
(9)
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and

[
α

k

]

q

=
(q–α ; q)k

(q; q)k
(–1)kqαk–(k

2) =
�q(α + 1)

�q(k + 1)�q(α – k)
. (10)

The q-analogue of the exponential function of the second type is given by

eq(ξ ) =
∞∑
j=0

ξ j

(q; q)j
=

1
(ξ ; q)∞

, |ξ | < 1, (11)

whereas the q-analogue of the exponential function of the first type is given by

Eq(ξ ) =
∞∑
j=0

(–1)jqj (j–1)
2 ξ j

(q; q)j
= (ξ ; q)∞, ξ ∈C.

Consequently, the following formula holds:

(
qξ+m; q

)
∞ =

(qξ ; q)∞
(qξ ; q)m

, m ∈N. (12)

For real arguments t, the q-analogues of the gamma function are given by [11]

�q(t) =
∫ 1

1–q

0
xt–1Eq(–qx) dqx and �̂q(t) =

∫ ∞

0
xt–1eq(–x) dqx. (13)

Henceforth, for t ∈R and n ∈N, the following auxiliary results hold:

�q(t + 1) = [t]q�q(t), �q(n + 1) = [n]q! and �q(t + 1) =
1 – qt

1 – q
�q(t). (14)

The theory of fractional calculus was born in early 1695 due to a very deep question raised
in a letter of L’Hospital to Leibniz [12–16]. During a long period of time (300 years), the
fractional calculus has kept the attention of top level mathematicians. It has become a very
useful tool for tackling dynamics of complex systems from various branches of science and
engineering. The fractional q-calculus is the q-extension of the ordinary fractional calcu-
lus. Integral operators have attained their popularity due to their wide range of applica-
tions in various fields of science and engineering [17–22] and [23–34]. In [35, 36] Al-Salam
and Agarwal studied certain q-fractional integrals and derivatives. Recently, perhaps due
to explosion in research within the fractional calculus setting, new developments in the
theory of fractional q-difference calculus, specifically, the q-analogues of the integral and
the differential fractional operator properties were made, see, e.g., [37–39]. In [36, p. 966],
Al-Salam defines a fractional q-integral operator in the form of the basic integral

Kη
q f (x) =

q–ηxη

�q(α)

∫ ∞

x
(y – x)α–1y–η–αf

(
yq1–α

)
d(y; q), (15)
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provided α �= 0, –1, –2, . . . . With the aid of series definition (1), the above equation can be
expressed as

Kη
q f (x) = (1 – q)α

α∑
k=0

(–1)kqk(η+α)+ 1
2 k(k+1)

[
–α

k

]
f
(
xq–α–k). (16)

Consequently, by applying (9), (2) can be expressed as

Kη,α
q f (x) = (1 – q)α

∞∑
k=0

(–1)kqk(η+α)+ 1
2 k(k+1)

(
(q; q)–α

(q; q)k(q; q)–α–k

)
f
(
xq–α–k).

Therefore, it follows that

Kη,α
q f (x) =

(q; q)–α

(1 – q)–α

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k(k+1)

(q; q)k(q; q)–α–k
f
(
xq–α–k). (17)

In what follows, we discuss the Al-Salam fractional q-integral (15) on some special func-
tions. We apply it to various types of q-Bessel functions and some power series of special
type. In Sect. 1, we already recalled some definitions and notations from the fractional q-
calculus theory. In Sect. 2, we apply the Al-Salam fractional q-integral to a finite product
of q-Bessel functions. In Sect. 3, we apply the Al-Salam fractional q-integral to a power
series. We also include some new applications. In Sect. 4, we apply the Al-Salam q-integral
operator to some q-generating series.

2 Main results
Theorem 1 Let {J (1)

2μ1 (2
√

δ1t; q), . . . , J (1)
2μn (2

√
δnt; q)} be a set of first kind q-Bessel functions

and

f (t) = t�–1
n∏

j=1

J (1)
2μj

(2
√

δjt; q). (18)

Then, for some B = q–α(�–1) (q;q)–α

(1–q)–α x�–1, we have

Kη,α
q f (x) = B

n∏
j=1

(
δjxq–α

)μj
∞∑

m=0

δjxmq–αm (q2μj+m+1; q)∞
�q(m + 1)

×
∞∑

k=0

(–1)k qk(–m+η+α+ 1
2 k+ 3

2 –�)

�q(k + 1)�q(1 – α – k)
.

Proof By employing (18), the fractional q-integral (17) reveals

Kη,α
q f (x) =

(q; q)–α

(1 – q)–α

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k(k+1)

(q; q)k(q; q)–α–k
f
(
xq–α–k)

=
(q; q)–α

(1 – q)–α

∞∑
k=0

(–1)kqk(η+α)+ 1
2 k(k+1)

(q; q)k(q; q)–α–k

(
xq–α–k)�–1

×
n∏

j=1

J (1)
2μj

(
2
√

δjxq–α–k ; q
)
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=
(q; q)–α

(1 – q)–α
x�–1

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k(k+1)–(α+k)(�–1)

(q; q)k(q; q)–α–k

×
n∏

j=1

J (1)
2μj

(
2
√

δjxq–α–k ; q
)
.

By taking into account the definition of the Bessel function J (1)
v given in (4), jointly with

simple computations, the above equation reduces to yield

Kη,α
q f (x) =

(q; q)–αx�–1

(1 – q)–α

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k(k+1)–(α+k)(�–1)

(q; q)k(q; q)–α–k

n∏
j=1

(
ajxq–α–k)μj

×
∞∑

m=0

(δjxq–α–k)m

(q, q)2μj+m(q, q)m

= q–α(�–1) (q; q)–αx�–1

(1 – q)–α

n∏
j=1

(
δjxq–α

)μj
∞∑

m=0

(δjxq–α)mq–km

(q; q)2μj+m(q; q)m

×
∞∑

k=0

(–1)k q–km+k(η+α)+ 1
2 k(k+1)–k(�–1)

(q; q)k(q; q)–α–k
.

Hence, by the fact [40, Equ. (8)]

(ζ ; q)x =
(ζ ; q)∞

(ζqx; q)∞
, (19)

we obtain

Kη,α
q f (x) = q–α(�–1) (q; q)–α

(1 – q)–α
x�–1

n∏
j=1

δ
μj
j μjxqαμj–αqμj

×
∞∑

m=0

δm
j xmq–αm(q2μj+m+1; q)∞

(q; q)m

∞∑
k=0

(–1)kqk(–m+η+α+ 1
2 k+ 3

2 –�)

�q(k + 1)�q(1 – α – k)
. (20)

This completes the proof of the theorem. �

Now the identity

(q; q)α = �q(α + 1) (21)

leads to the following useful remark.

Remark 2 Let {J (1)
2μ1 (2

√
δ1t; q), . . . , J (1)

2μn (2
√

δnt; q)} be a set of first kind q-Bessel functions
and f (t) = t�–1 ∏n

j=1 J (1)
2μj

(2
√

δjt; q). Then, for some B = q–α(�–1) (q;q)–α

(1–q)–α x�–1, we have

Kη,α
q f (x) = B

n∏
j=1

(
δjxq–α

)μj
∞∑

m=0

δjxmq–αm (q2μj+m+1; q)∞
�q(m + 1)

×
∞∑

k=0

(–1)k qk(–m+η+α+ 1
2 k+ 3

2 –�)

�q(k + 1)�q(1 – α – k)
.
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Proof Indeed, from Theorem 1 and (21), we have

Kη,α
q f (x) =

q–α(�–1)x�–1

(q; q)∞(1 – q)–α
�q(1 – α)

n∏
j=1

(
δjxq–αμj–α

)μj

×
∞∑

m=0

(δjxq–α)m(qμj+m+1; q)∞
�q(m + 1)

∞∑
k=0

(–1)kqk(–m+η+α+ 1
2 k+ 3

2 –�)

�q(k + 1)�q(1 – α – k)

= B
n∏

j=1

(
δjxq–α

)μj
∞∑

m=0

δjxmq–αm (q2μj+m+1; q)∞
�q(m + 1)

×
∞∑

k=0

(–1)k qk(–m+η+α+ 1
2 k+ 3

2 –�)

�q(k + 1)�q(1 – α – k)
.

This completes the proof of the remark. �

Theorem 3 Let J (2)
2μ1 (2

√
δ1t; q), . . . , J (2)

2μn (2
√

δnt; q) and f (t) = t�–1 ∏n
j=1 J (2)

2μj
(2

√
δjt; q). Then,

for some A = (q;q)–α

(1–q)–α x�–1q–α(�–1), we have

Kη,α
q f (x) = A

n∏
j=1

δ
μj
j xμj q–αμj

∞∑
m=0

qm(m+μj) (–δjxq–α–k)m(qμi+m+1; q∞)
(q; q)∞�q(m + k)

×
∞∑

k=0

(–1)k qk(η+α+k+μj+ 3
2 –�)

�q(1 + k)�q(1 – α – k)
.

Proof Let the hypothesis of the theorem be satisfied. Then we have

Kη,α
q f (x) = (1 – q)α

∞∑
k=0

(–1)kqk(η+α)+ 1
2 k(k+1)

[
–α

k

]
f
(
xq–α–k).

Therefore, in view of (18) and (3), we write

Kη,α
q f (x) = (1 – q)α

∞∑
k=0

(–1)kqk(η+α)+ 1
2 k(k+1) (q; q)–α

(q; q)k(q; q)–α–k
f
(
xq–α–k)

=
(q; q)–α

(1 – q)–α

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k(k+1)

(q; q)k(q; q)–α–k

(
xq–α–k)�–1

×
n∏

j=1

J (2)
2μj

( 2
√

δjxq–α–k ; q
)

=
(q; q)–α

(1 – q)–α

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k(k+1)

(q; q)k(q; q)–α–k

(
xq–α–k)�–1

×
n∏

j=1

(
δjxq–α–k)μj

∞∑
m=0

qm(m+μj)(–δjxq–α–k)m

(q; q)μj+m(q; q)m
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=
(q; q)–α

(1 – q)–α
x�–1q–α(�–1)

∞∑
k=0

(–1)q qk(η+α)+ 1
2 k(k+1)–k(�–1)

(q; q)k(q; q)–α–k

×
n∏

j=1

δ
μj
j xμj q–(α+k)μj

∞∑
m=0

qm(m+μj)(–δjxq–α–k)m

(q; q)μj+m(q, q)m
.

Hence, it yields

Kη,α
q f (x) =

(q; q)–α

(1 – q)–α
x�–1q–α(�–1)

n∏
j=1

aμj
j xμj q–(α+k)μj

×
∞∑

m=0

qm(m+μj)(–ajxq–α–k)m

(q; q)μj+m(q; q)m

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k(k+1)–k(�–1)+μjk

(q; q)k(q; q)–α–k
. (22)

By the fact (q; q)k = �q(1 + k) and the identity

(ζ ; q)x =
(q; q)∞

(ζqx; q)∞
, (23)

we write

Kη,α
q f (x) = A

n∏
j=1

δ
μj
j xμj q–αμj

∞∑
m=0

qm(m+μj)(δjxq–α–k)m

(q; q)∞(q; q)m

(
qμi+m+1; q

)
∞

×
∞∑

k=0

(–1)k qk(η+α)+ 1
2 k(k+1)–k(�–1)+μjk

(q; q)k(q; q)–α–k

= A
n∏

j=1

δ
μj
j xμj q–αμj

∞∑
m=0

qm(m+μj) (–δjxq–α–k)m(qμi+m+1; q)∞
(q; q)∞�q(m + k)

×
∞∑

k=0

(–1)k qk(η+α+k+μj+ 3
2 –�)

�q(1 + k)�q(1 – α – k)
.

This completes the proof of the theorem. �

Theorem 4 Let J (3)
2μ1 (2

√
q–1δ1t; q), . . . , J (3)

2μn (2
√

q–1δnt; q) be n q-Bessel functions and

f (t) = t�–1
n∏

j=1

δμj J (3)
2μj

(
2
√

q–1δnt; q
)
.

Then we have

Kη,α
q f (x) =

x�–1�q(1 – α)(1 – q)α

(q; q)∞

n∏
j=1

δ
μj
j xμj q(–α–k)μj

×
∞∑

m=0

(–1)m qm (m–1)
2 +m(–α)xmδm

j (q2μj+m+1; q)∞
(q; q)m

×
∞∑

k=0

(–1)k qk(η+α)+ 1
2 k(k+1)+(�–1)(–α–k)–mk

�q(k + 1)�q(–α – k)
.
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Proof By (2) and (6), we obtain

Kη,α
q f (x) = (1 – q)α

∞∑
k=0

(–1)kqk(η+α)+ 1
2 k(k+1)

[
–α

k

]
f
(
xq–α–k)

= (1 – q)α
∞∑

k=0

(–1)kqk(η+α)+ 1
2 k(k+1)

[
–α

k

](
xq–α–k)�–1

×
n∏

j=1

qμjJ (3)
2μj

(√
q–1δjxq–α–k ; q

)

= (1 – q)α
∞∑

k=0

(–1)kqk(η+α)+ 1
2 k(k+1)

[
–α

k

](
xq–α–k)�–1

×
n∏

j=1

qμj(q–1δjxq–α–k)μj
∞∑

m=0

(–1)m qm (m–1)
2 (qq–1δjq–α–k)m

(q; q)2μj+m(q; q)m
.

Equations (10), (21), and simple simplifications reveal

Kη,α
q f (x) = x�–1(1 – q)α

∞∑
k=0

(–1)kqk(η+α)+ 1
2 k(k+1)+(�–1)(–α–k) �q(1 – α)

�q(k + 1)�q(–α – k)

×
n∏

j=1

δ
μj
j xμj q(–α–k)μj

∞∑
m=0

(–1)m qm (m–1)
2 +m(–α–k)xmδm

j (q2μj+m+1; q)∞
(q; q)∞(q; q)m

=
x�–1�q(1 – α)(1 – q)α

(q; q)∞

n∏
j=1

δ
μj
j xμj q(–α–k)μj

×
∞∑

m=0

(–1)m qm (m–1)
2 +m(–α)xmδm

j (q2μj+m+1; q)∞
(q; q)m

×
∞∑

k=0

(–1)k qk(η+α)+ 1
2 k(k+1)+(�–1)(–α–k)–mk

�q(k + 1)�q(–α – k)
.

This completes the proof of the theorem. �

3 The fractional q-integral of the power series
This section is briefly devoted to the application of the fractional q-integral to functions
of a power series form. Some corollaries associated with polynomials and unit functions
are also deduced.

Theorem 5 Let g(x) =
∑∞

i=0 rixi be a power series and β be a positive real number. If f (x) =
(xβ–1g)(x), then we have

Kη,α
q f (x) =

q–αβ+αxβ–1(q; q)–α

(1 – q)–α

∞∑
i=0

riq–αixi
∞∑

k=0

(–1)k qk(η+α)+ 1
2 k+ 1

2 –i

�q(k)�q(–α – k)
.
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Proof Let g(x) =
∑∞

i=0 rixi be a power series and β be a positive real number. From (26) it
follows

Kη,α
q f (x) =

(q; q)–α

(1 – q)–α

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k(k+1)

(q; q)k(q; q)–α–k
f
(
xq–α–k)

=
(q; q)–α

(1 – q)–α

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k(k+1)

(q; q)k(q; q)–α–k

(
xq–α–k)β–1

∞∑
i=0

ri
(
xq–α–k)i. (24)

Interchanging the order of summation in (24) leads to

Kη,α
q f (x) =

q–αβ+αxβ–1(q; q)–α

(1 – q)–α
riq–αixi

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k(k+1)–ki

(q; q)k(q; q)–α–k
.

Employing (21) indeed gives

Kη,α
q f (x) =

q–αβ+αxβ–1(q; q)–α

(1 – q)–α

∞∑
i=0

riq–αixi
∞∑

k=0

(–1)k qk(η+α)+ 1
2 k+ 1

2 –i

�q(k)�q(–α – k)
.

Hence, the proof of the theorem is completed. �

Corollary 6 Let β > 0 be a real number. Then we have

Kη,α
q

(
xβ–1) =

q–αβ+αxβ–1

(1 – q)–α

∞∑
k=0

(–1)k qk((η+α)+ 1
2 k+ 1

2 )

�q(k)�q(–α – k)
.

This result follows from setting r0 = 1 and ri = 0 for i = 1, 2, 3, . . . .

Corollary 7 We have

Kη,α
q (1) =

(q; q)–α

(1 – q)–α

∞∑
k=0

(–1)k qk(η+α+ 1
2 k+ 1

2 )

�q(k)�q(–α – k)
. (25)

4 Kη,α
q of q-generating Heines series

The basic q-generating series of the first type is defined by [41] as

rφs(δ1, . . . , δr ; b1, . . . , bs, q, ζ ) =
∑
i≥0

(δ1; q)1, . . . , (δr ; q)i

(q; q)i, (b1; q)i, . . . , (bs; q)i

(
(–1)iq(2i))1+s–r

ζ i,

where

(
2i) =

i(i – 1)
2

, r > s + 1, q > 0. (26)

The basic q-generating series of the second type is given as

rψs(δ1, . . . , δr ; δ̀1, . . . , δ̀s, q, ζ ) =
∞∑

i≥0

(δ1; q)1, . . . , (δr ; q)i

(q; q)i, (δ̀1; q)i, . . . , (δ̀s; q)i

(
(–1)iq(2i))s–r

ζ i. (27)
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The parameters b1, . . . , bs are given so that the denominator factors in terms of the series
are never zero, and the basic series terminates when one of its numerator parameters is of
type q–n, n = 0, 1, 2, . . . .

Theorem 8 Let β and γ be real numbers. Then, provided β > 0, we have

Kη,α
q

(
xβ–1)

rφs(δ1, . . . , δr ; δ̀1, . . . , δ̀s; q,γ x)

=
q–αβ+αxβ–1(q; q)–α

(1 – q)–α

×
∞∑
i=0

riq–αixi
∞∑

k=0

(–1)k qk(η+α+ 1
2 k+ 1

2 –i)

�q(k)�q(–α–k)
.

Proof Let β and γ be real numbers. Then, by (17), we write

Kη,α
q

(
xβ–1)

rφs(δ1, . . . , δr ; δ̀1, . . . , δ̀s; q,γ x)

=
(q; q)–α

(1 – q)–α

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k(k+1)

(q; q)k(q; q)–α–k

× f
(
xq–α–k)(xq–α–k)β–1

rφs
(
δ1, . . . , δr ; δ̀1, . . . , δ̀s; q,γ xq–α–k).

On the other hand, we have

rφs
(
δ1, . . . , δr ; δ̀1, . . . , δ̀s; q,γ xq–α–k) ∞∑

i≥0

(δ1; q)i, . . . , (δr ; q)i

(q; q)i, (δ̀1; q)i, . . . , (δ̀s; q)i

(
(–1)iq(2i))s–r

× (
γ xq–α–k)i =

∞∑
i≥0

rixi,

where

ri =
(δ1; q)i, . . . , (δr ; q)i

(q; q)i, (δ̀1; q)i, . . . , (δ̀s; q)i

(
(–1)iq(2i))s–r

γ iq(–α–k)i. (28)

Therefore, by Theorem 5 we get

Kη,α
q

(
xβ–1)

rφs(δ1, . . . , δr ; δ̀1, . . . , δ̀s; q,γ x) =
q–αβ+αxβ–1(q; q)–α

(1 – q)–α

∞∑
i=0

riq–αixi

×
∞∑

k=0

(–1)k qk(η+α+ 1
2 k+ 1

2 –i)

�q(k)�q(–α–k)
. (29)

This completes the proof of the theorem. �
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Theorem 9 Let β > 0 and r be real numbers. Then we have

Kη,α
q

(
xβ–1

r ψs(δ1, . . . , δr ; δ̀1, . . . , δ̀s; q,γ x)
)

=
q–αβ+αxβ–1(q; q)–α

(1 – q)–α

∞∑
i=0

riq–αixi

×
∞∑

k=0

(–1)k qk(η+α+ 1
2 k+ 1

2 –i)

�q(k)�q(–α–k)
.

Proof By taking into account (20), we write

Kη,α
q

(
xβ–1

rψs
)

=
(q; q)–α

(1 – q)–α

∞∑
k=0

(–1)k qk(η+α)+ 1
2 k+ 1

2

(q; q)k(q; q)–α,k
f
(
xq–α–k)β–1

× f
(
xq–α–k)β–1

rψs
(
δ1, . . . , δr ; δ̀1, . . . , δ̀s; q–α–k). (30)

However,

rψs
(
δ1, . . . , δr ; δ̀1, . . . , δ̀s; q–α–k) =

∞∑
i≥0

(δ1; q)i, . . . , (δr ; q)i

(q; q)i, (δ̀1; q)i, . . . , (δ̀s; q)i

(
(–1)iq(2i))s–r

× (
γ xq–α–k)i

=
∞∑

i≥0

rixi,

where

ri =
(δ1; q)i, . . . , (δr ; q)i

(q; q)i, (δ̀1; q)i, . . . , (δ̀s; q)i

(
(–1)iq(2i))s–r

γ iq(–α–k)i. (31)

Hence, by Theorem 5 it follows

Kη,α
q

(
xβ–1

rψs
)

=
q–αβ+αxβ–1(q; q)–α

(1 – q)–α

∞∑
i=0

riq–αixi
∞∑

k=0

(–1)k qk(η+α+ 1
2 k+ 1

2 –i)

�q(k)�q(–α–k)
.

This completes the proof of the theorem. �

Corollary 10 Let γ be a real number. Then we have

Kη,α
q

(
Eq(γ x)

)
=

(q; q)–α

(1 – q)–α

∞∑
i=0

riq–αixi
∞∑

k=0

(–1)k qk(η+α+ 1
2 k–i)

�q(k)�q(–α–k)
.

Proof By setting β = 0, r = 0, and s = 0, the result easily follows from Theorem 8. The proof
is completed. �

Corollary 11 Let γ be a real number. Then we have

(
Kη,α

q eq(γ x)
)

=
(q; q)–α

(1 – q)–α

∞∑
i=0

riq–αixi
∞∑

k=0

(–1)k qk(η+α+ 1
2 k+ 1

2 –i)

�q(k)�q(–α–k)
.
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Proof By setting β = 1, r = 0, and s = 0, Theorem 8 completes the proof of the corollary. �

The proof of the following corollary is straightforward. Details are therefore deleted.

Corollary 12 Let γ be a real number. Then we have

(i)Kη,α
q

(
sinhq(γ x)

)
= Kη,α

q

(
Eq(γ x) – Eq(–γ x)

2

)

=
(q; q)–α

(1 – q)–α

∞∑
i=0

riq–αi
∞∑

k=0

(–1)k qk(η+α+ 1
2 k–i)

�q(k)�q(–α–k)
xi (1 + (–1)i+1)

2
.

(ii)Kη,α
q

(
coshq(γ x)

)
= Kη,α

q

(
Eq(γ x) – Eq(–γ x)

2

)

=
(q; q)–α

(1 – q)–α

∞∑
i=0

riq–αi
∞∑

k=0

(–1)k qk(η+α+ 1
2 –i)

�q(k)�q(–α–k)
xi (1 + (–1)i)

2
.

Acknowledgements
Authors would like to thank Springer Nature for their support.

Funding
No funding sources to be declared.

Availability of data and materials
Please contact the author for data requests.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally and significantly in writing this paper. All authors read and approved the final
manuscript.

Author details
1Department of Physics and Basic Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman,
Jordan. 2Department of Department of Mathematics, Wollo University, P.O. Box: 1145, Dessie, Ethiopia. 3Department of
Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, TR-27410, Gaziantep,
Turkey.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 August 2021 Accepted: 20 September 2021

References
1. Jackson, F.H.: On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)
2. Strominger, A.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743–3746 (1993)
3. Youm, D.: q-Deformed conformal quantum mechanics. Phys. Rev. D 62, 095009 (2000)
4. Lavagno, A., Swamy, P.N.: q-Deformed structures and nonextensive statistics: a comparative study. Physica A

305(1–2), 310–315 (2002)
5. Hahn, W.: Beitrage Zur Theorie Der Heineschen Reihen, die 24 Integrale der hypergeometrischen

q-diferenzengleichung, das q-Analog on der Laplace transformation. Math. Nachr. 2, 340–379 (1949)
6. IsmailM, E.H.: The zeros of basic Bessel functions, the functions Jv+ax (x), and associated orthogonal polynomials.

J. Math. Anal. Appl. 86(1), 1–19 (1982)
7. Jackson, F.H.: The application of basic numbers to Bessel’s and Legendre’s functions. Proc. Lond. Math. Soc. 2(1),

192–220 (1905)
8. Hahn, W.: Die mechanische deutung einer geometrischen differenzengleichung. Z. Angew. Math. Mech. 33, 270–272

(1953)
9. Exton, H.: A basic analogue of the Bessel-Clifford equation. Jñānābha 8, 49–56 (1978)
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