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Abstract
In the work (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019), the authors have used
the Krasnoselskii fixed point theorem for showing the existence of mild solutions of
an abstract class of conformable fractional differential equations of the form:
dα

dtα [
dαx(t)
dtα ] = Ax(t) + f (t, x(t)), t ∈ [0,τ ] subject to the nonlocal conditions x(0) = x0 + g(x)

and dαx(0)
dtα = x1 + h(x), where dα (·)

dtα is the conformable fractional derivative of order
α ∈ ]0, 1] and A is the infinitesimal generator of a cosine family ({C(t), S(t)})t∈R on a
Banach space X . The elements x0 and x1 are two fixed vectors in X , and f , g, h are
given functions. The present paper is a continuation of the work (Bouaouid et al. in
Adv. Differ. Equ. 2019:21, 2019) in order to use the Darbo–Sadovskii fixed point
theorem for proving the same existence result given in (Bouaouid et al. in Adv. Differ.
Equ. 2019:21, 2019) [Theorem 3.1] without assuming the compactness of the family
(S(t))t>0 and any Lipschitz conditions on the functions g and h.
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1 Introduction
Classical derivatives appear in several mathematical models in various areas of science
such as physics, engineering, biology, finance, and so on. However, there are many phe-
nomena that may not depend only on the time moment but also on the former time history,
which cannot be modeled utilizing the classical derivatives. For this reason, many authors
try to replace the classical derivatives with the so-called fractional derivatives in numerous
contributions [2–17], because it has been proven that this last kind of derivatives is a very
good way to describe processes with memory. According to the literature of fractional cal-
culus, it is remarkable that there are many approaches to defining fractional derivatives,
and each definition has advantages compared to others [18–22]. In consequence, many re-
searchers have paid attention to propose new fractional derivatives in order to deal better
with modeling of evolutionary phenomena [23, 24]. In the work [23], the authors proposed
the so-called fractional conformable derivative, which quickly became the subject of many
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research papers [1, 25–54]. For example, in [1] the authors proved the existence of mild
solutions for the following nonlocal conformable fractional Cauchy problem:

⎧
⎪⎪⎨

⎪⎪⎩

dα

dtα [ dαx(t)
dtα ] = Ax(t) + f (t, x(t)), t ∈ [0, τ ],

x(0) = x0 + g(x),
dαx(0)

dtα = x1 + h(x),

(1.1)

which is a natural extension of the works [55, 56] in the frame of the conformable fractional
derivative, where A is the infinitesimal generator of a cosine family {C(t), S(t)}t∈R on a
Banach space (X,‖ · ‖) and dα (·)

dtα presents the conformable fractional derivative of order
α ∈ ]0, 1]. The elements x0 and x1 are two fixed vectors in X, and f : [0, τ ] × X −→ X, g :
C −→ X, h : C −→ X are given functions, where (C, | ·|c) is the space of continuous functions
from [0, τ ] into X with | · |c being the uniform norm topology in C . The expressions x(0) =
x0 + g(x) and dαx(0)

dtα = x1 + h(x) mean the nonlocal conditions, which can be applied in
physics with better effects than the classical initial conditions [57–59]. We note that the
existence result given in [1, Theorem 3.1] for Cauchy problem (1.1) has been proved by
using the Krasnoselskii fixed point theorem, under the following assumptions:

(A1) There exists a constant L1 such that ‖g(y) – g(x)‖ ≤ L1|y – x|c for all y, x ∈ C .
(A2) There exists a constant L2 such that ‖h(y) – h(x)‖ ≤ L2|y – x|c for all y, x ∈ C .
(A3) The family (S(t))t∈R is compact for all t > 0.

However, there are many concrete applications in which the above assumptions are diffi-
cult to realize. Indeed, for X = L2(�,R) with � is a bounded domain in R

n (n ≥ 1), many
authors [60–62] have considered the following nonlocal condition:

g(x) =
∫

�

∫ T

0
K

(
t, ·,σ , x(t)(σ )

)
dt dσ , (1.2)

which does not satisfy Lipschitz condition (A1), where K is a kernel with the following
conditions:

(C1) K(t, ξ ,σ , ·) is a continuous function for almost every (t, ξ ,σ ) ∈ [0, T] × � × �.
(C2) K(·, ·, ·, r) is a measurable function for each fixed r ∈R.
(C3) |K(t, ξ1,σ , r) – K(t, ξ2,σ , r)| ≤ mk(t, ξ1, ξ2,σ ) for all (t, ξ1,σ , r), (t, ξ2,σ , r) ∈

[0, T] × � × � × R with |r| ≤ k, where mk ∈ L1([0, T] × � × � × R,R+) and
lim

ξ1−→ξ2

∫

�

∫ T
0 mk(t, ξ1, ξ2,σ ) dt dσ = 0, uniformly in ξ2 ∈ �.

(C4) |K(t, ξ ,σ , r)| ≤ δ
Tm(�) |r| + η(t, ξ ,σ ) for all r ∈R and δ > 0, where

η ∈ L2([0, T] × � × �,R+).
Motivated by this discussion, in the present work we use the Darbo–Sadovskii fixed point
theorem in order to prove the existence of mild solutions for Cauchy problem (1.1) without
assuming the Lipschitz conditions imposed in (A1), (A2) and the compactness of the family
(S(t))t>0.

The rest of this paper is organized as follows. In Sect. 2, we briefly recall some tools re-
lated to the conformable fractional calculus, the cosine family of linear operators, and the
Hausdorff measure of noncompactness. Section 3 is devoted to proving the main result.

2 Preliminaries
We recall some preliminary facts on the conformable fractional calculus.
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Definition 2.1 ([23]) For α ∈ ]0, 1], the conformable fractional derivative of order α of a
function x(·) : [0, +∞[−→R is defined as

dαx(t)
dtα

= lim
ε−→0

x(t + εt1–α) – x(t)
ε

for t > 0 and
dαx(0)

dtα
= lim

t−→0+

dαx(t)
dtα

,

provided that the limits exist.

The conformable fractional integral Iα(·) of a function x(·) is defined by

Iα(x)(t) =
∫ t

0
sα–1x(s) ds for t > 0.

Theorem 2.1 ([23]) If x(·) is a continuous function in the domain of Iα(·), then we have

dα(Iα(x)(t))
dtα

= x(t).

Theorem 2.2 ([25]) If x(·) is a differentiable function, then we have

Iα

(
dαx(·)

dtα

)

(t) = x(t) – x(0).

Now, we present some definitions concerning the cosine family of linear operators.

Definition 2.2 ([55]) A one parameter family (C(t))t∈R of bounded linear operators on a
Banach space X is called a strongly continuous cosine family if and only if:

1. C(0) = I , where I is the identity operator in the space X .
2. C(s + t) + C(s – t) = 2C(s)C(t) for all t, s ∈R.
3. The function t �−→ C(t)x is strongly continuous for each x ∈ X .

We also define the sine family (S(t))t∈R associated with the cosine family (C(t))t∈R as
follows:

S(t)x =
∫ t

0
C(s)x ds, x ∈ X.

The infinitesimal generator A of a strongly continuous cosine family ((C(t)), (S(t)))t∈R on
X is defined by

D(A) =
{

x ∈ X, t �−→ C(t)x is a twice continuously differentiable function
}

and

Ax =
d2C(0)x

dt2 , x ∈ D(A).

We end these preliminaries by some concepts on the Hausdorff measure of noncompact-
ness.
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Definition 2.3 ([63, 64]) The Hausdorff measure of noncompactness σ of a bounded set
B in a Banach space X is defined as follows:

σ (B) = inf

{

ε > 0 : B =
n⋃

i=1

Bi, with diam(Bi) ≤ ε for i = 1, . . . , n

}

.

The following lemma presents some basic properties of the Hausdorff measure of non-
compactness.

Lemma 2.1 ([63, 64]) Let X be a Banach space and B, C ⊆ X be bounded sets. Then the
following properties hold:

(1) B is pre-compact if and only if σ (B) = 0.
(2) σ (B) = σ (B) = σ (conv(B)), where B and conv(B) mean the closure and convex hull of

B, respectively.
(3) σ (B) ≤ σ (C), where B ⊆ C.
(4) σ (B + C) ≤ σ (B) + σ (C), where B + C = {x + y : x ∈ B, y ∈ C}.
(5) σ (B ∪ C) ≤ max{σ (B),σ (C)}.
(6) σ (λB) = |λ|σ (B) for any λ ∈R, when X is a real Banach space.
(7) If the operator Q : D(Q) ⊆ X −→ Y is Lipschitz continuous with constant k, then we

have ρ(Q(B)) ≤ kσ (B) for any bounded subset B ⊆ D(Q), where Y is another Banach
space and ρ represents the Hausdorff measure of noncompactness in Y .

Definition 2.4 ([64]) The operator Q : D(Q) ⊆ X −→ X is said to be an σ -contraction if
there exists a positive constant k < 1 such that σ (Q(B)) ≤ kσ (B) for any bounded closed
subset B ⊆ D(Q).

Lemma 2.2 (Darbo–Sadovskii theorem, [63, 64]) Let B ⊂ X be a bounded, closed, and
convex set. If Q : B −→ B is a continuous and σ -contraction operator, then Q has at least
one fixed point in B.

Lemma 2.3 ([65, 66]) Let D ⊂ X be a bounded set, then there exists a countable set D0 ⊂ D
such that σ (D) ≤ 2σ (D0).

In the sequel, we denote by σc the Hausdorff measure of noncompactness in the space
C of continuous functions x(·) defined from [0, τ ] into X equipped with the norm |x|c =
sup

t∈[0,τ ]
‖x(t)‖. It is well known that the space (C, | · |c) is a Banach space.

Lemma 2.4 ([67]) Let D0 := {xn} ⊂ C be a countable set, then we have
(1) σ (D0(t)) := σ ({xn(t)}) is Lebesgue integrable on [0, τ ].
(2) σ (

∫ τ

0 D0(s) ds) ≤ 2
∫ τ

0 σ (D0(s)) ds, where σ (
∫ τ

0 D0(s) ds) := σ ({∫ τ

0 xn(s) ds}).

Lemma 2.5 ([63]) Let D ⊂ C be bounded and equicontinuous, then we have
(1) σ (D(t)) is continuous on [0, τ ].
(2) σc(D) = max

t∈[0,τ ]
(σ (D(t))).
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3 Main result
According to [1], we have the following definition.

Definition 3.1 A function x ∈ C is called a mild solution of Cauchy problem (1.1) if

x(t) = C
(

tα

α

)
[
x0 + g(x)

]
+ S

(
tα

α

)
[
x1 + h(x)

]
+

∫ t

0
sα–1S

(
tα – sα

α

)

f
(
s, x(s)

)
ds.

To obtain the existence of mild solutions, we will need the following assumptions:
(H1) The function f (t, ·) : X −→ X is continuous, and for all r > 0, there exists a function

ϕr ∈ L∞([0, τ ],R+) such that sup
‖x‖≤r

‖f (t, x)‖ ≤ ϕr(t) for all t ∈ [0, τ ].

(H2) The function f (·, x) : [0, τ ] −→ X is continuous for all x ∈ X .
(H3) The function g : C −→ X is continuous and compact.
(H4) The function h : C −→ X is continuous and compact.
(H5) There exist positive constants a and b such that ‖g(x)‖ ≤ a|x|c + b for all x ∈ C .
(H6) There exist positive constants c and d such that ‖h(x)‖ ≤ c|x|c + d for all x ∈ C .
(H7) There exists a positive constant L such that σ (f (t, D0)) ≤ Lσ (D0) for any countable

set D0 ⊂ X and t ∈ [0, τ ].
(H8) The family (C(t))t∈R is uniformly continuous, that is, lim

t−→s
|C(s) – C(t)| = 0, where | · |

represents the norm in the space of bounded operators defined from X into itself.

Remark 3.1 The nonlocal condition given in (1.2) satisfies assumption (H3).

Indeed, the continuity and compactness of the function g are guaranteed by using [68,
Theorem 4.2] in view of conditions (C1) – (C4) assumed for the kernel K . Moreover, by
using condition (C4), we get a = δ√

m(�) and b =
√

Tm(�)‖η‖L2([0,T]×�×�,R+).

Theorem 3.1 Assume that (H1)–(H8) hold, then Cauchy problem (1.1) has at least one
mild solution provided that

max

(

a sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣ + c sup

t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣,

4Lτα

α
sup

t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

)

< 1.

Proof In order to use the Darbo–Sadovskii fixed point theorem, we define the operator
 : C −→ C by

(x)(t) = C
(

tα

α

)
[
x0 + g(x)

]
+ S

(
tα

α

)
[
x1 + h(x)

]
+

∫ t

0
sα–1S

(
tα – sα

α

)

f
(
s, x(s)

)
ds.

We also consider the ball Br := {x ∈ C, |x|c ≤ r}, where

r ≥
sup

t∈[0,τ ]
|C( tα

α
)|[‖x0‖ + b] + sup

t∈[0,τ ]
|S( tα

α
)|[‖x1‖ + d + τα

α
|ϕr|L∞([0,τ ],R+)]

1 – a sup
t∈[0,τ ]

|C( tα
α

)| – c sup
t∈[0,τ ]

|S( tα
α

)| .

The proof will be given in four steps.
Step 1: Prove that (Br) ⊂ Br .
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For x ∈ C , we have

∥
∥(x)(t)

∥
∥ ≤

∥
∥
∥
∥C

(
tα

α

)
[
x0 + g(x)

]
∥
∥
∥
∥ +

∥
∥
∥
∥S

(
tα

α

)
[
x1 + h(x)

]
∥
∥
∥
∥

+
∫ t

0
sα–1

∥
∥
∥
∥S

(
tα – sα

α

)

f
(
s, x(s)

)
∥
∥
∥
∥ds.

Using assumptions (H1), (H5), and (H6), we get

∥
∥(x)(t)

∥
∥ ≤ sup

t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣

[‖x0‖ + a|x|c + b
]

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

[

‖x1‖ + c|x|c + d +
τα

α
|ϕr|L∞([0,τ ],R+)

]

≤ sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣

[‖x0‖ + ar + b
]

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

[

‖x1‖ + cr + d +
τα

α
|ϕr|L∞([0,τ ],R+)

]

≤ r.

Taking the supremum, we obtain |(x)|c ≤ r, and this shows that (Br) ⊂ Br .
Step 2: Prove that  : Br −→ Br is continuous.
Let (xn) ⊂ Br such that xn −→ x in Br . We have

(xn)(t) – (x)(t) = C
(

tα

α

)
[
g(xn) – g(x)

]
+ S

(
tα

α

)
[
h(xn) – h(x)

]

+
∫ t

0
sα–1S

(
tα – sα

α

)
[
f
(
s, xn(s)

)
– f

(
s, x(s)

)]
ds.

Using a simple computation, we obtain

∣
∣(xn) – (x)

∣
∣
c ≤ sup

t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣

∥
∥g(xn) – g(x)

∥
∥ + sup

t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

∥
∥h(xn) – h(x)

∥
∥

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

∫ τ

0
sα–1∥∥f

(
s, xn(s)

)
– f

(
s, x(s)

)∥
∥ds.

In view of assumption (H1), we get ‖sα–1[f (s, xn(s)) – f (s, x(s))]‖ ≤ 2sα–1ϕr(s) and
f (s, xn(s)) −→ f (s, x(s)) as n −→ +∞. Then the Lebesgue dominated convergence theorem
proves that

∫ τ

0
sα–1∥∥f

(
s, xn(s)

)
– f

(
s, x(s)

)∥
∥ds −→ 0 as n −→ +∞.

By using the continuity of the functions g and h, we deduce that lim
n−→+∞‖g(xn) – g(x)‖ = 0

and lim
n−→+∞‖h(xn) – h(x)‖ = 0. Hence the operator  is continuous.

Step 3: Prove that (Br) is equicontinuous.
For x ∈ Br and μ,ν ∈ [0, τ ] such that μ < ν , we have

(x)(ν) – (x)(μ) =
[

C
(

να

α

)

– C
(

μα

α

)]
(
x0 + g(x)

)
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+
[

S
(

να

α

)

– S
(

μα

α

)]
(
x1 + h(x)

)

+
∫ μ

0
sα–1

[

S
(

να – sα

α

)

– S
(

μα – sα

α

)]

f
(
s, x(s)

)
ds

+
∫ ν

μ

sα–1S
(

να – sα

α

)

f
(
s, x(s)

)
ds.

Since S(t) =
∫ t

0 C(θ ) dθ , then the above equation can be rewritten as follows:

(x)(ν) – (x)(μ) =
[

C
(

να

α

)

– C
(

μα

α

)]
(
x0 + g(x)

)
+

[∫ να

α

μα

α

C(θ )
(
x1 + h(x)

)
dθ

]

+
∫ μ

0
sα–1

[∫ να–sα
α

μα–sα
α

C(θ )f
(
s, x(s)

)
dθ

]

ds

+
∫ ν

μ

sα–1S
(

να – sα

α

)

f
(
s, x(s)

)
ds.

Therefore, we obtain

∥
∥(x)(ν) – (x)(μ)

∥
∥ ≤

∣
∣
∣
∣C

(
να

α

)

– C
(

μα

α

)∣
∣
∣
∣

∥
∥x0 + g(x)

∥
∥

+ sup
t∈[0, τα

α ]

∣
∣C(t)

∣
∣

[∫ να

α

μα

α

∥
∥x1 + h(x)

∥
∥dθ

]

+ sup
t∈[0, τα

α ]

∣
∣C(t)

∣
∣
∫ μ

0
sα–1

[∫ να–sα
α

μα–sα
α

∥
∥f

(
s, x(s)

)∥
∥dθ

]

ds

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

∫ ν

μ

sα–1∥∥f
(
s, x(s)

)∥
∥ds.

By using assumptions (H1), (H5), and (H6), we get

∥
∥(x)(ν) – (x)(μ)

∥
∥ ≤

∣
∣
∣
∣C

(
να

α

)

– C
(

μα

α

)∣
∣
∣
∣

(‖x0‖ + a|x|c + b
)

+ sup
t∈[0, τα

α ]

∣
∣C(t)

∣
∣
(‖x1‖ + c|x|c + d

)
[∫ να

α

μα

α

1 dθ

]

+ sup
t∈[0, τα

α ]

∣
∣C(t)

∣
∣|ϕr|L∞([0,τ ],R+)

∫ μ

0
sα–1

[∫ να–sα
α

μα–sα
α

1 dθ

]

ds

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣|ϕr|L∞([0,τ ],R+)

∫ ν

μ

sα–1 ds.

An easy computation now shows that

∥
∥(x)(ν) – (x)(μ)

∥
∥ ≤ (‖x0‖ + ar + b

)
∣
∣
∣
∣C

(
να

α

)

– C
(

μα

α

)∣
∣
∣
∣

+ sup
t∈[0, τα

α ]

∣
∣C(t)

∣
∣
(‖x1‖ + cr + d

)
[

να – μα

α

]
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+ sup
t∈[0, τα

α ]

∣
∣C(t)

∣
∣|ϕr|L∞([0,τ ],R+)

[
τα

α

][
να – μα

α

]

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣|ϕr|L∞([0,τ ],R+)

[
να – μα

α

]

.

The above inequality combined with assumption (H8) shows that (Br) is equicontinuous
on [0, τ ].

Step 4: Prove that  : Br −→ Br is a σc-contraction operator.
Let D ⊂ Br , then by Lemma 2.3, there exists a countable set D0 such that D0 = {xn} ⊂

D. Hence, (D0) becomes a countable subset of (D). Thus, Lemma 2.3 proves that
σc((D)) ≤ 2σc((D0)). Since (D0) is bounded and equicontinuous, then by using the
second point of Lemma 2.5, we obtain

σc
(
(D0)

)
= max

t∈[0,τ ]

(
σ
(
(D0)(t)

))
.

Accordingly, we deduce that

σc
(
(D)

) ≤ 2σc
(
(D0)

)

= 2 max
t∈[0,τ ]

(
σ
(
(D0)(t)

))

= 2 max
t∈[0,τ ]

(

σ

(

C
(

tα

α

)
[
x0 + g(D0)

]
+ S

(
tα

α

)
[
x1 + h(D0)

]

+
∫ t

0
sα–1S

(
tα – sα

α

)

f
(
s, D0(s)

)
ds

))

.

By using point (4) of Lemma 2.1, we get

σc
(
(D)

) ≤ 2 max
t∈[0,τ ]

(

σ

(

C
(

tα

α

)
[
x0 + g(D0)

]
)

+ σ

(

S
(

tα

α

)
[
x1 + h(D0)

]
)

+ σ

(∫ t

0
sα–1S

(
tα – sα

α

)

f
(
s, D0(s)

)
ds

))

.

Since g and h are compact, then the sets C( tα
α

)[x0 + g(D0)] and S( tα
α

)[x1 + h(D0)] are rel-
atively compact. According to the above equation and the first point of Lemma 2.1, we
obtain

σc
(
(D)

) ≤ 2 max
t∈[0,τ ]

(

σ

(∫ t

0
sα–1S

(
tα – sα

α

)

f
(
s, D0(s)

)
ds

))

.

In view of Lemma 2.4, we get

σc
(
(D)

) ≤ 4 max
t∈[0,τ ]

(∫ t

0
sα–1σ

(

S
(

tα – sα

α

)

f
(
s, D0(s)

)
ds

))

.

Next, point (7) of Lemma 2.1 shows that

σc
(
(D)

) ≤ 4 sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣ max

t∈[0,τ ]

(∫ t

0
sα–1σ

(
f
(
s, D0(s)

))
ds

)

.
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According to assumption (H7), we get

σc
(
(D)

) ≤ 4L sup
t∈[0,τ ]

(∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

)

max
t∈[0,τ ]

(∫ t

0
sα–1σ

(
D0(s)

)
ds

)

.

Hence, by using a simple computation combined with point (2) of Lemma 2.5, we obtain

σc
(
(D)

) ≤ 4L sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣σc(D)

∫ τ

0
sα–1 ds

= 4L sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣σc(D)

τα

α
.

Then, we have

σc
(
(D)

) ≤ 4Lτα

α
sup

t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣σc(D).

Since 4Lτα

α
sup

t∈[0,τ ]
|S( tα

α
)| < 1, then  is a σc-contraction operator.

In conclusion, Lemma 2.2 shows that the operator  has at least one fixed point, which
is a mild solution of Cauchy problem (1.1). �

4 Conclusion
Without assuming the Lipschitz condition on the nonlocal conditions and the compact-
ness of the cosine family generated by the linear part, we have proved the existence of
mild solutions for a class of nonlocal differential equations of the second order with
conformable fractional derivative. The main result is obtained by means of the Darbo–
Sadovskii fixed point theorem combined with theory of cosine family of linear operators.
The equation studied in the present work can be viewed as an abstract version of the non-
local conformable fractional telegraph equation considered in the work [31]. As a future
work, we will be interested in studying Cauchy problem (1.1) with the non-sequential op-
erator d2αx(t)

dt2α instead of the sequential one dα

dtα [ dαx(t)
dtα ]. This purpose is not easy! Indeed, in

this case the cosine family ((C(t)), (S(t)))t∈R must be extended to the complex space C, for
more details about this point we refer to the work [1].
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