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1 Introduction

The majority of the aforesaid analysis on the topic is based upon fractional differential
equations and Hadamard fractional derivatives involving many numerous applications in
a variety of fields such as control theory, electrical circuits, biology, physics, and finance
[1-10]. For example, Arafa et al. [8] proposed a fractional order into a model of HIV-1

infection of CD4* T-cells dynamics model:

D°\(T)=s—-KVT -dT + bl,
D?(I)= KVT — (b + 8)I,
D3 (V) = N8I —cV,

where D% (i = 1,2, 3) are fractional order derivatives. Jesus et al. [10] studied the fractional
electrical impedance of vegetables and fruits by using Bode and polar diagrams. In the
modern decades, the results of multiplicity of positive solutions for a system of fractional
differential equations which are subject to various levels of boundary conditions have been
analyzed extensively by numerous researchers using a variety of methods and techniques
[11-18]. Further analysis of positive solutions with p-Laplacian made an extensive con-
tribution to amalgamate the study [19-31]. In the recent past, Hadamard fractional order
problems under contrasting different boundary conditions were briefly discussed in the
literature [32—36]. Contrarily, many researchers studied the theory of Hadamard fractional
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order along with p-Laplacian operator [37—40]. Our results were combined to generalize
the study from the papers [30, 31]. In [31], Han et al. studied the boundary value problem
with fractional differential equation involving the p-Laplacian operator:

Do+ (DG (1)) + a(t)f(x) =0, O<t<l1,
x(0) = yx(£) + 4, ¢,(D§. x(0)) = ¢, (D, x(0))' = ¢,(D§.x(0))" =

where0 <« <1,2 < <3arerealnumbers,0 <y <1,0 <& <1, A >0isaparameter, and
Dg., Dg+ are the standard Caputo fractional derivatives. Under some assumptions, several
new existence and nonexistence results for positive solutions in terms of different values
of the parameter A are obtained.

Inspired by the aforementioned works, here we have amalgamated the system for non-
linear Hadamard fractional differential equations for the existence of multiple positive
solutions along with (p1, p2, p3)-Laplacian operators:

DU, ("DIIBE))) =/1(6,B(8), w (1), (2)), 1<t<e,
D (¢, ("D (1)) = fo(1,B(2), (1), 0(2), 1<i<e, (1)
D (¢, (DR (1)) = f5(6:B(0), (1), (1)), 1<t<e,

subject to the two-point boundary conditions

B(1)=B'(1)=0, HDIBA)=0,  AB(e) + 1 DN B(e) = vy,
w(l)=w'(1)=0, AD% e (1) = 0, A (€) + 1 D2 (e) = Yo, )

ol)=/'(1)=0, HDJEw()= rso(e) + us DR w(e) = ¥,

where o0, 0,,8; € R, 0, € (2,3], p; €(0,1],8; € (1,2],i=1,2,3, A, w4, i = 1,2, 3, are real pos-
itive constants, 1; > 0 is a parameter for i = 1,2,3, 7 DL denotes the Hadamard fractional
derivative of order T for ( = 0, 0,81, i = 1,2,3), p1,p2p3 > 1, @p,(s) = [s|Pi™?s, q);l,l = ¢y,
p_z +1=1,i=1,23,and f; € C([1,e] x R? - R,), i = 1,2,3. Sufficient conditions for
the ex1stence of single and multiple positive solutions are derived by imposing growth
conditions fi, f» and on f; by applying various fixed point theorems in a cone. By a
positive solution of problem (1)—(2), we mean a triplet of functions (B(¢), @ (¢), w(t)) €
(C([1,€],R,))3, (R, = [0, 00)) gratifying (1)—(2) with B(£), = (¢), w(£) > 0 forall £ € [1, e] and
B(8), @ (1), w(2)) # (0,0,0).
We assume the following hypotheses:
(H1) The function f;:[1,e] x R? — R, is continuous.
(H2) wiri>0,05p58€R,2<0,<3,0<p;<1,1<8 <2, ni(8i—1) > #f’,and
A;=AT(0;=8;) + w;IT'(0;) >0,Vi=1,2,3.
(H3) U1, Uy, U3, Ry, Ry, Ry are positive constants such that
St o ottty S L
The rest of this paper is organized as follows. In Sect. 2, we provide some preliminar-
ies and theorems to prove our main results. In Sect. 3, we construct the Green function
and also give some properties of the Green function which are needed later. Section 4 is

devoted to establishing the existence results of at least one or three positive solutions for
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system (1)—(2). In Sect. 5, as an application, two examples are presented to illustrate our
main results.

2 Preliminaries

First, we provide the definitions of Hadamard fractional derivative and Hadamard frac-
tional integral on a finite interval, the details of which can be found in the materials [41-
43].

Definition 2.1 The Hadamard derivative of fractional order o for a function u: [1, +00) —
R is defined as

U 1 a\" (tf, t\""  ds

where 0 >0, n=[0] + 1, and [o] denotes the largest integer which is less than or equal to
o and log(-) = log,(-).

Definition 2.2 The Hadamard fractional integral of order o for a function u : [1, +o0) —
R is defined by

t o-1
I"u(t)=%/i(log§> u(s)?, o >0,

provided the integral exists.

Definition 2.3 Let R be a real Banach space. A nonempty closed convex set M C R is
called a cone if it satisfies the following conditions:

(i) T € M, £>0implies £t € M;

(i) T € M, -t € M implies 7 = 0.
Every cone M C R induces an ordering in R given by t < ¢ ifand only if ¢ -t € M.

Definition 2.4 Let M be a cone in the real Banach space R. A map x : M — [0,00) is
said to be a nonnegative continuous concave functional on a cone M if x is continuous

and
x(lr+(1-07)=tx(x)+1-0x(Q), T,teM,0<<1l

Definition 2.5 Let M be a cone in the real Banach space R. A map = : M — [0,00) is
said to be a nonnegative continuous convex functional on a cone M if 7 is continuous

and
n(@r +(1 —Z);) <Ulr(t)+A-0n(), T,eM,0<L<1.

Property 2.1 ([44]) Let M be a cone in a real Banach space R, and let ® be a bounded
open subset of R with 0 € ®. Then continuous functional  : M — [0, 00) is said to satisfy
Property K; if one of the following conditions holds:

(i) nis convex, n(0) =0, n(b) #0 if b # 0 and inf,c p1nge n(b) > 0,
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(ii) 7 is sublinear, n(0) =0, n(b) # 0 if b # 0 and inf,c pqng0 n() > 0,
(iii) n is concave and unbounded.

Property 2.2 ([44]) Let M be a cone in a real Banach space R, and let ® be a bounded
open subset of R with 0 € ®. Then the continuous functional & : M — [0, 00) is said to
satisfy Property Kj if one of the following conditions holds:
(i) & is convex, £(0) =0, £(b) #0ifb #0,
(ii) & is sublinear, £(0) =0, £(b) #0ifb #0,
(iii) Eb+71)>&((0) +&(7) forallb,T € M, £(0) =0, E(b) #0 if b #O0.

In the proof of our existence results, we shall use the following fixed point theorems of
the cone expansion and compression of functional type due to Avery et al. [44] and five
functionals fixed point theorem [45].

Theorem 2.1 ([44]) Let ©, and ©, be two bounded open sets in a Banach space R such
that 0 € ®, and ©; C ©, in R. Suppose that L : M N (0,\01) — M is a completely
continuous operator, n and & are nonnegative continuous functionals on M and one of the
two conditions holds:
(i) n satisfies Property 2.1 with n(Lb) > n(b) for allb € M N3Oy, and & satisfies
Property 2.2 with §(Lb) < &(b) for allb € M N 3By;
(ii) & satisfies Property 2.2 with £(Lb) < &() for allb € M N 3O, and n satisfies
Property 2.1 with n(Lb) > n() for all b € M N 3O, is satisfied.
Then L has at least one fixed point in M N (0,\0).

Let p, 0, ¢ be nonnegative continuous convex functionals on P and «, 8 be nonnegative
continuous concave functionals on P, then for nonnegative real numbers #, a4, b, d, and c,
we define the following convex sets:

P(p,c)={beP:p(b)<c},

P(p,a,a,¢) = {peP:a<ab)pb) <c},
Qp,0,d,c)={peP: o) <d;p(b) <c},
P(p, s, a,a,b,c)={beP:ra<ab);cb) <bpb) <c},

Q(&O,Q,,B,h,d,c) = {b eP:h< ﬂ(b);Q(b) = d’@(b) = C}-

Theorem 2.2 ([45]) Let P be a cone in the real Banach space E. Suppose that o and f
are nonnegative continuous concave functionals on P and ¢, o0, and ¢ are nonnegative
continuous convex functions on P. Suppose that there exist positive numbers ¢ and M with

a(d) <o®) and |b]| <Mp®) forallbe P(p,c).

Suppose that A : P(p,c) — P(g, ¢) is a completely continuous operator, and there exist non-
negative numbers h, a, k, b with 0 < a < b such that:

(D1) {peP(p,s,a,bk,c):ad)>b}#0 and

a(Ab)>b forbe P(p,c,a,b,k,c);
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(D2) {beQ(g),Q,ﬂ,h,a,c):Q(b)<a} #0 and
o(Ab)<a forb e Q(p,0,B,h a,c);
(D3) a(Ab)>b forbe P(p,a,b,c) with ¢(Ab) > k;

(D4) o(Ab)<a forbe Qgp,0,a,c) with B(AD) < h.

Then A has at least three fixed points by,by,b3 € P(p, c) such that
o(by) <a, b<aby) and a<o(bs) witha(ds)<b.

3 Green function and bounds
In this section, we construct the Green function for the homogeneous two-point boundary

value problem

HADUB(E) =0, l<t<e, 3)

B(1)=B(1)=0,  AiB(e) + 11" DiB(e) = Y. (4)

Lemma 3.1 Let A; = MI'(01 —81) + u1l'(o1) > 0. If x € [1, €], then the Hadamard frac-
tional differential order BVP

ADOIB(t) +x(t) =0, l<t<e, (5)

subject to the two-point boundary conditions (4), has a unique solution

ds  ynl (o1 —&;)(logt)1™
—+
S A1

)

B(z) - /1 G (1,9)x(s)

where

gl (t) S) = (6)

Gults), 1<t<s=<e

Gua(t,s), 1

AT (o1 - 61)
I'(01)

MT (o1 —81)
I'(01)

1
Gul(ts) = ™ |:M1(1 —logs)™ + :I(IOg )71 (1 - logs)™ ™,
1

1
Gia(t,s) = ™~ |:,u1(1 - log.s)“s1 + ](log £)171(1 —logs)”1 ™!
1

1 £\!
- log - .
I'(o1) ( o8 S)

Proof As argued in [43] the solution of Hadamard fractional order BVPs (5) and (4) can
be written as the following equivalent integral equation:

1 ¢ A\ d
B(t) = c1(log )1 + cp(log 1) 7% + c3(log )™ 3 - —— / log - x(s)—s.
I'lo1) 1 s s

From (1) = '(1) = 0, we have ¢, = ¢3 = 0. Furthermore, we can get

I'(01) s 1 t £\ g
HDO1 () = ¢, ———2 (1 t”l‘sll—i‘/ log - =,
1B(2) CIF(O_I_(Sl)(Og) For =81 . 0g ¢ x(S)s

Page 5 of 21
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From the boundary condition, A;B(e) + 1, Dfiﬁ(e) =11, we obtain

MI (o1 - 61)

o1-1 é
o) i|(1—10gs) x(s) . +

1 el: (1 1 )—51
Cl=— M1l —10gs +
Al 1 Al

Hence, the unique solution of (5), (4) is

B(¢) 1 /e[ul(l —logs)™! + M}(l —logs)” " !(log t)”l_lx(s)?
1

T A I'(01)
L (1052 a9 , Yallor=én)llog !
‘r(m)/l("gs> T A
[Ty s, MmIT(01-81) o1-1 o1-1
—/1 |:A1 <u1(1—logs) +7F(01) )(logt) (1-1logs)

1 £\t ds
_r(al)(10g5> ]x(s)?

¢ 1 M (o -
+ / — <M1(1 —logs)™ + M)(log 11— logs)”l’lx(s)é
¢ M1 I'(01) s

N Y1 (o1 - 81)(log )1 !

Ay
¢ o1-1
= f 91(7«‘,S)ac(s)é + Y1l(o1 —é1)(log?) ’
1 S Al

YnI'(o1 - 61)

d

Lemma 3.2 Let2 <01 <3,0< p1 <1,andy e C[1,e]. Then the Hadamard fractional

order BVP

"Dy, ('DIIB@)) +3(0) =0, te(Le),
B(1)=B(1)=0,  HDUB1)=0,  xB(e)+ i/ DILB(e) = Y,

has a unique solution

e s 1-1 01—
” 2'/1 616,516, </1« bl(log E)ﬂ y(K)d—K>§ . Y1 (o7 — 81)(log?) 1'

K S A1

For convenience, let by = T'(p;) L.

Proof In fact, let ¢ = "DJ1B, Y = ¢,, (¢). Then the solution of the IVP

HDIIY () +y(5) =0, te(le),
(1) =0.

By the Lemma 3.1, we can reduce IVP (9) to an equivalent integral equation
Y(t) = ci(logt)” ™ — ITty@), te(lLe).
From the relation Y(1) = 0, we get ¢; = 0; and consequently

Y(t)=-Ityt), te(lLe).

)

(10)

Page 6 of 21
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Noting that "D]i1B = ¢, ¢ = ¢, (), we have from (10) that the solution of (7) satisfies

HDIIB = ¢, (-I11y(t), te(Le),

; (1)
B =BL)=0,  niBe)+ "D} = .

By Lemma 3.1, the solution of (11) can be obtained as

ds Y1l (o1 = 8)(logt)

B(6) = - /1 G160, (1£16) ¢ = . te(Le)

since y(s) > 0, s € [1,e], we have

b, (<171 H(9)) = —¢g (IT9(5)), s € [Loel,
which implies that boundary value problem (7) has a unique solution

e s p1-1 d d
B(6) - f gﬂm)%( / bl(logg) y(x){)f

. Y1 (o1 - 81)(log )1t
Aq

, te[le]. O

Lemma 3.3 ([40]) Assume that (H2) holds. Then the function G (t,s) given by (6) satisfies
the following inequalities:
(i) Gi(t,s)=>0forallt,se[1,e],
(i) Gi(t,s) <Gil(es) forallt,s e [1,¢],
(iii) Gi(t,s) = (3)717'Gu(e,s) forall t € I, s € (1,€), where I = [e"*,e%/4].

We can also formulate similar results to Lemmas 3.1-3.3 for the Hadamard fractional
boundary value problems

DY (@, ("D (1)) +2(8) =0, 1<t<e, (12)

o()=o'(1)=0, "D2w1)=0, rw(e)+u " D2w(e) =1, (13)
and

D% (¢, ("D (1)) + () =0, 1<t<e, (14)

o1)='1)=0, "DBw1)=0,  iswle)+us"DPwle) = v, (15)

where 0}, 0;,8; € R, 0j € (2,3], p; € (0,1], §; € (1,2], Aj, ; > 0, ¥ is a parameter for j = 2,3.

We denote by Az, G, Go1, Gz and Az, Gs, Gs1, Gsa the corresponding constants and
Green functions for problem (12)—(13) and problem (14)—(15), respectively, defined in a
similar manner as A1, G1, G11, G12. More precisely, we have

Ag = AT (02 — 82) + ol (02),

G (t,s),

1
gzz(t,S), 1 sztfeﬁ

gZ(tv S) =
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1 M -4
Goi(t,8) = — [Mz(l —logs)™ M](log )27 (1 - logs)™™,
Ay I'(02)
1 A0 -5
On(t;s) = — [Mz(l —logs)™ M]aog £)771(1 ~ logs)™ ™!
Ay I'(02)
t op—1
_ log - ,
I'(02) ( o8 5)
and
Ag =231 (03 — 83) + usl'(o3),
t,s), 1<t<s<e,
Galtos) = Gsi1(t,s)
g32(t!5)1 1 sztfer
3T (o3 —

Ga1(t,5) = [Ms(l —logs)™ + 83)](1054 )77 (1 - logs)™ ™,

I'(03)

Agr(o'g —

Ga(t,s) = |:M3(1 —logs)™ + 63)](10g £)7(1 - logs)™™
'(o3)

1 £\=!
log - .
I'(03) ( o8 5)

The inequalities from Lemma 3.3 for the functions G,, G; are the following: Gs(t,s) <

Gale,s), Gs(t,s) < Ga(e,s) for all £,s € [1,¢] and Gy(£,5) = ()27 Gale,s), Galt,8) = (1) x
Gsle,s) forallt eI, s e (1,e).

Remark Consider the following condition:
Gi(t,s) > mG;(t,s) foralltel,sc(l,e),i=1,2,3,
where m = min{(%)"l’l, (i)”’l, (i)”fl}.

By using Green’s functions G;, G, and Gs our problem (1)—(2) can be written equiva-

lently as the following nonlinear system of integral equations:

B(¢) = fle Gi(t, )og, (fls b, (log %)Prlﬁ(;c,ﬁ(/(), w(K),a)(K))dTK)%
WM’
w(t) = fl Ga(t, )Py, (fl by (log %)ﬂz—lfz(l(,ﬁ(K), w‘(/(),a)(,())d?’()%
Yo (09-682)(log £)o2-1

TN

o(t) = [} Ga(t,9)¢4; (J; ba(log £)77fi ke, B(k), @ (i), (k) %) %

Y3l (03-83)(log £)73~1
+ A—.
3

We consider the Banach space R =7 x 7 x T, where T = {B:8 € C[1,e]} equipped

with the norm ||(B, @, )|z = |I1B]| + |z || + ||w|| for (B, ,w) € R, and the norm is defined
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as ||B]| = maxe,¢ [B(¢)]. We define a cone W C R by

- [(B,zzr,a)) e R,B() > 0, (£) > 0,w(t) > 0,Vz € [1,¢] and

min[B(2) + @ (1) + ()] = m| 8 27,0 |

where I = [61/4,63/4], m= min{(i)m—l, (i)oz—l, (i)og—l}’

We define now the operators £, Ly, L3: W — T and L: W — R by
£(B1 w, (,()) = (EI(B; w, a))l £2(81 w, (,()), £3(B) w, C())),
with

Li(B,a,0)(t) = [{ Gi(t,8)g, (] br(log £)717f; (ic, B(xc), (i), (i) 4% ) &

o1-1
¢ DHOBREI™ e (Lel, B, @,0) € W,

LB, @, 0)(2) = [1 Galt, $)¢g, (f} ballog £)727fy (e, Blic), (i), ao(c)) %) %

o9—1
4 Lallo=lloel® -y e [1,e], (B, 7, 0) € W,

L3(B, a7, 0)(t) = [{ G3(t,8)dgs (] balog £)77 £k, Bxc), (i), (i) %) %

o3-1
4 LalloalQoel®— - p e [1,e], (B, w0, 0) € W.

(16)

Lemma 3.4 If (H1)-(H2) hold, then L : W — W is a completely continuous operator.

Proof Let (B, @, ) € W be an arbitrary element. Clearly, £,(8, @, w) > 0, L,(B, @, w) >0

and L3(B,w,w) > 0 for t € [1,e]. Also, for (B, w,w) € W,

|18, @, 0)]

p1-1
/ Gile,s %( / bl(log ) (2 B0), (1), o(x)) 2% )ds

Y101 - 61)
+ 77
Ay

||£2(B’ wrw) ||

e s p2-1 d
S/l gz(e,s)%z(/] bz(long) Salre, Blie), @ (i), (k) — ) SS

. Yo' (09 — 82)
Ay

[ £2(8, @)

e K p3-1 d
5/1 Gs(e,8)gys </1 bs<logi> Sa(ie, Bie), @ (i), (k) — ) SS

.\ Y3l (o3 — 83)
As ’

’

Page 9 of 21
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and
min £ (B, @, w)(t)
tel

p1-1
_m1n|:/ Ggi(t, s)(,bql( bl(log ) fl K, B(k), @ (k), a)(/c)) )dS
1

s
N Y1 (o1 - 81)(log £)™1~ 1:|
" o ds
Z( ) [/ Gi(e, )y, (/1 (log ) Si(ie,B(k), @ (), (k) — ) ;
A

p1-1
[/ Gi(es ¢q1(/ b1<log ) ﬁ(K,B(K),m(K),m(K))%)?

1ﬁ11ﬂ(0"1—51)]
Jton—oy
Ay

zm”El(B,w,w)”.

Similarly, min;e; Lo(B, @, w)(t) > m||Lo(B, @, )| and min, L3(8, @, w)(t) > m| L3(B,
w,w)||. Therefore
I?iIn{El(B, w,w)(t) + LB, w, w)(t) + L3(B, w,a))(t)}
€.
> m||£1(ﬁ,w,a)) || + m||/.32(B,zzr,a)) || + m||/33(ﬁ,zzr,a)) ||
:m”El(Bx w:w))ﬁz(Byw’w);ﬁ?)(Br wrw) ||

=m||£(B,w,a))||.

Hence, we get L(W) C W. By the Arzela—Ascoli theorem, we see that £ is a completely

continuous operator from W to W. g

4 Main results
For computational convenience, we denote

Giles Gal(e, S)

(C(py + 1)1t Jigg S (TC(pg + 1)1 Jiy

(1/4)P3tas=1)
(r(p3+1)q31/ Gles) }

4 { (1/4)Pr@-1) ds (1/4)P2 22-1)
=m

B= min{ / Gi (e, s)(log s)P1@1-D d

(F(p1 e

ds
(T(or + 1))42-1 m(g-1)4°
(T'(p2 + 1))q2 1 / G (e, s)(logs) =

ds
(T'(0a + 1))43-1 ,5) (1 p3(q3-1)
(T(ps + 1))q3 1 / Gs(e,s)(logs) }

Page 10 of 21
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Let us define two continuous functionals 1 and & on the cone W by

n(B,@,w) =min{|B| + || + ||} and
tel

£B,w,w) =gl[zlu§]{|ﬁ| +@|+|ol} = |8, @, 0)| .

It is clear that n(B, @, w) < £(B, w, w) for all (B, w,w) € W.

Theorem 4.1 Assume that (H,)—(H3) hold suppose that there exist positive real numbers

q and Q with g <mQ and 0 < ¥; < F(U 5 = N-I‘Q(é\-is-) such that f;, i = 1,2,3, satisfy the

following conditions:

(F1) fit,B,@,0) = ¢, (5L5) forall t € I, (B, , w) € [q,Q],

(F) fit,B,m,w) < q’)pi(&)for allt € [1,e], (B, w,w) € [1,Q].
Then the system of Hadamard fractional order boundary value problem (1)—(2) has at least
one positive solution and nondecreasing solution (8*, w*, w*) satisfying q < n(3*, @*, w*)
with E(B*, o*, w*) < Q.

Proof Let Q1 ={(B,@,w) : n(B,w,w) < q} and 2y = {(B, o, w) : £(B, @, w) < Q}. It is easy to
see that 0 € Q; and Q;, ©; are bounded open subsets of 7. Let (B, @, w) € 2, we have

q>n(B,,0) = min{8(0) + = (0) + (O} = m{IBl + ||| + o]} = mE B, 0).

Thus Q> L > (B, @, w) ie. (B, @,w) € 2,50 21 S Q.

Claim 1: If B,w,w) € W N 3L, then n(L(B, w,w)) > n(B,w,w). To see this, let
B, @, w) e WNIQ, then Q=EB, @, w) > (B(s) + @ (s) + w(s)) > nB,@,w) =q fors 1.
It follows from (F;) and Lemma 3.3 that

(LB, @, a))(t))

s pi—1
= min )" [ / Gilt, s)¢q,( /1 b,-(log£> (e, B), @ (), w(K))”f(">?

. VT (0; — 8;)(log )it
A

1

> s s\7~ di\ ds
ZE[/ mG;(e, s)gy, </ (log ;) Si(k, B, @ (), (k) — p >?

Iﬁtr(di—5i)]
g 2T 0
A;

Gy (e, s)¢q1( (logs)r )é

(o1 +1)
(logs)” >_
['(py+1)

- (1ogs)"3 ds

1q (1/4)@-b / ds lq (1/4)P2(a2-1) /
> (e,s) (s
“3AT (o1 +1)nn! Gi( s (T(py + 1))22-1 G )

1
mA sel
1

t37 - mgz(e,S)%(
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1 q (1/4)03(113 1) /‘ Golers
34T et ), P

q

+§ g—q nB, @, w).

[SSEEN
»Q

Claim2:1f (B, w,w) € WN 9y, then E(L(B, w,w)) < &(B, w,w). To see this, let (B, w,w) €
W N 3Ry, then (B(s) + w (s) + w(s)) > EB,w,w) = Q for s € [1,e]. It follows from (F,) and
Lemma 3.3 that

E(LB, m,w)(1))

pi—1 d
—;;1‘;‘;‘2[/ glts)¢ql</1 b(log ) i, B(6), (i), (i) = ):

, Yil(oi = ) (log )" ]

A
3 e s s pi-1 dS
SZ[/I Qi(e,s)fﬁq,-(/; bi(log ;) filk, B(k), @ (k), (k) — ) .
i-1
IﬁiF(Ui—(Si)]
+ T
1Q (logs)”t \ ds (log s)P?
“5.B / gl(e’s)‘z’ql(F(ml)) 53 ], s ‘f’”(w +1))
(logs)* \ds Q Q Q
/ Galens ¢q3( (,03+1)) +R_1 Ny Rs
Lq1-D) ds
SG_IEW(ml»m 1/ Gile9)logs)" 11
10Q 1 "
B BT T ), el
LQ; 3(q3— l)d g g g
* U3 B (I'(p3 + 1))4371 / Ga(e,5)(10g )™ * Ry * Ny * N3

1 1 1 1 1 1
Q[ N T RJ<Q £(8, 77, 0).
Clearly, n satisfies Property 2.1(iii) and § satisfies Property 2.2(i). Therefore condition (i)
of Theorem 2.1 is satisfied and hence L has at least one fixed point (B*,@*, w*) € W N
(2,\£)) i.e. the system of Hadamard fractional order boundary value problems (1)—(2)
has at least one positive solution and nondecreasing solution (B*, @ *, w*) satisfying g <
n(B*, @™, w*) with £(B*, @*, w*) < Q. O

Theorem 4.2 Assume that (Hy)—(Hs) hold, suppose that there exist positive real numbers
q and Q with q < Q and 0 < i < qu:tl 55 =< Nil"%iti&) such that f;, i = 1,2,3, satisfy the
following conditions:

(F3) fi(t,B, @, w) < ¢p,( UB ) forallt € [1,¢], (B, w,w) € [1,4],

(Fy) filt,B,m,0) > ¢pl(3mA)forall tel, B,o,w)€ (g, %].
Then the system of Hadamard fractional order boundary value problems (1)—(2) has
at least one positive solution and nondecreasing solution (B*,w*,w*) satisfying q <
EB, o*, w*) with n(B*, @*, w*) < Q.
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Proof Let Q3 = {(B,m,w) : §(B,@,w) < q} and Q4 = {(B, @, w) : n(B, @, w) < Q}. We have
0 € Q3 and Q3 C Q4 with Q3 and Q4 are bounded open subsets of 7.

Claim 1: If B,w,w) € W N 3Q3, then (LB, w,w)) < B, w,w). To see this, let
(B,,w) € W N 3Q3, then (B(s) + @ (s) + w(s)) < EB,w,w) = q for s € [1,e]. It follows
from (F3) and Lemma 3.3 that

£(LB, m,w)(1))

dk\ d
= max Z[[ Gilt,s)py; </1 b; <log ) fi(k,B(k), @ (k), (k) K") ss

yil’(oi = &i )(10gt)‘” ]
+

3 e s pi-1 d d
ggiﬁg@mg(ﬁmﬁ%g) ﬁmmawwmw»l)i

K )s
(ANC/A 5i)]
+ —_—
A;

- ‘ ds
U1 B (D(py + 1)1  s)(logs)P1@1-D 22
Y (T(py + 1)1 / Gi(e s)(logs) :

1gqg ds
-7 - ,)(1 p2(q2-1) 2

+UBW@N1W1ng WogsV*H5
1gq

ds q q ¢q
,9)(1 r3(q3-1) 2 .1
mbwﬁDWIfg“”°“) SR TR TR

1 1 1 1 1 1 B )
=q Ul+UZ UB+N1+N2+83 <q=£(B,w,w).
Claim 2:1If (B, w,w) € WN 0Ly, then n(L(B, w,w)) > n(B, w, w). To see this, let (B, w,w) €

W N oy, then (Bw"’ >EB, o, w) > B(s) +w(s) +w(s) >nB,w,w)=Qforsel. It
follows from (F4) and Lemma 3.3 that

(LB, w, a))(t))

:1?61111 |:/ Gi(t,s)gy, (/ b; (log ) (K B(k), @ (), w(k ))%)%

I/fl —4i )(ln %" }

E de\ d
21:[/ mG(e, s)¢y, </1 b; (log ) fi(k,B(k), @ (), (k) :)f

Wir(ai—tsi)]
+—
A
1Q (logs)r \ds 1 Q (logs)”? \ ds
> S L9 (a5 ) 5 5 Lo ()
1Q (logs)”3 \ ds
* 3o ), ") (F(ps + 1)> s

Page 13 of 21
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>19<E¥12L/’ 9%, 12 m@mﬂlt/g
T 3A ([ (p + 1))t 1es 3A (I'(py +1))22-1 e

1Q (1/4)rstas=V)
3AW@HDW1/‘%w”

= % +§+ % =Q=nBo,w).

Clearly, n satisfies Property 2.1(iii) and & satisfies Property 2.2(i). Therefore condition (ii)
of Theorem 2.1 is satisfied, and hence £ has at least one fixed point (8*,@*,w*) € W N
(R4\23) i.e. the system of Hadamard fractional order boundary value problems (1)—(2)
has at least one positive solution and nondecreasing solution (8*, w*, w*) satisfying g <

E(B*, @, w*) with n(B*, @*, 0*) < Q. -

Theorem 4.3 Assume that (H 1)—(H3) hold, suppose that there exist nonnegative numbers

cAj P
a, b, and ¢ such that 0 <a<b< 2 <cand 0< ;< a, 81) < S5 such that f;, i =

1,2, 3, satisfy the following conditions

(Fs) filt,B,m,w) < qbpl.(UiiB)for allt € [1,e] and B, w,w) € [ma,al,

(Fe) fi(t,B,m,w) > qbpi(ﬁ)for allt €I and B, w,w) € b, %],

(Fy) fit,B,o,w) < q)pl.(ULiB)for all t € [1,e] and B, w,w) € [0,c].
Then the Hadamard fractional order BVP (1)—(2) has at least three positive solutions
By, @y, w1), (Ba, @a, o), and (B3, ws, ws) such that 0By, w1, w1) < a, b < a(By, wo, wy) and
a < (B3, w3, ws) with a(B3, w3, w3) < b.

Proof Define the nonnegative continuous concave functionals «, 8 and the nonnegative
continuous convex functionals g, 0, ¢ on W:

a(B, @, w) =min{|B| + |&| + |w|}; BB, @, w) =min{[B| + || + |w|};
tel tely

B, w,w)= max{|B| + || + |a)|}; oB,w,w) = max{IBI + || + |w|};
te[l,e] tely

cB,w,w) = max{|B| + || + |a)|}; where I = [e”?’,em],
tel

For any (8, w,w) € W, we have
aB, o, w) = min{|B| + || + |w|} < max{|B| + || + |a)|} =08, w,w),
tel tel

1 1 1
|8, ), < —mln{|B| +|o|+ o} < = max{[B] + || + 0|} = —pB,7,0).
M te(l,e] m
Thus, for each (B, w,w) e W, a(B, w,w) < o(B, w,w) and ||(B, @, w)||r < %p(ﬁ,w,a)).\xfe
show that £ : W(p,c) - W(g,c). Let B, w,w) € W(g,c), then 0 < [B] + || + |o] < c.
From condition (F;) we obtain

(LB, @, 0)(¢)

3 i
Ié]?l:l 21:[/ gz t, S)(z)q, </1 b (10g )p f(K B(K) ZZT(K) CU(K)) )is

.\ ¥;T(0; — 8;)(log )i~
A;

Page 14 of 21
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3 e s pi—1 d d
< ;[/1 Gi(e, )og, </1 bi(log£> Sk, Bk), @ (), () — p > SS

l/fiF(Ui—fSi)]
+ e ———
A;
c ds
UlBW/ Gu(e:)logs)™ D
c_ p2(g2-1) d
UzB (C(po2 + 1))‘72 1 / G:(e:)(logs) s
c ds ¢ c c
,s)(1 p3(g3-1) =2 .=
y: <r(p3+1))qs 1/ Galers)liogs) s TRTR, TR

1 1 1 1 1 1 -
=C|l——+—+ =+ —+—+— C.
Ul Uz U3 Nl Nz N3 N

Therefore £ : W (g, c) — W(g, ¢). Now conditions (Fs) and (Fs) of Theorem 2.2 are to be

verified. It is obvious that

mb+b
3m

{(wa)eW(p,g,ab ,c),a(Bzzr a))>b} #@ and

ma+a
3

€ {(B,w,w) € Q(gp,0,a, B,ma,a,c); 0B, w,w) <a} Z0.

Next, let (B,w,w) € W(p,g,a b, b,c) (or) B,w,w) € Q(p,0,a,B,ma,a,c). Then b <
1B(2)] + | (8)] + |w(t)] < £ and ma < |B(2)| + | (¢)| + |w(t)| < a. Now, we apply condition

(Fg) to get
ot(E(B, w,w)(t))

3 e s pi—1 d d
= min [/1 Gi(t, $)g, </1 bi(log£> Si(k, Bk), @ (), (k) — p > SS
i=1

, Yil(oi = 8)(log t)7i!

8:)(
A

3 s pi-1 di\ d.
Z[/ mG;(e, s)¢y, (/ (10g %) f(/c B(k), w (k), a)(K)) K") ss
i=1

(418 (Ui—5i)]
+ e
A
1 b (logs)’r \ds 1 b (logs)”? \ ds
> 3 mA selmgl(e’swa <m>? * 3 A Selm92(6,5)¢q2<m) —
1 b (logs)”
" 3md J " )4’43( Flps + 1))
15 (1/4)r@-D) s 1 b (1/4,)02 42-1)
3A (F(p1+l )q1 1/ g1(e,s) S p2+1))q2 1/ gz(e,s)
1 b (1/4)r3las-1)
0 Gs(e,s)

T3A [ (ps + 1)t sel

b b b
=—+-+=-=b
3 3

w

Page 15 of 21
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Clearly, by condition (D1), we have

o(L®B,w, a))(t))

1
—trgalue( |:/ Gi(t,9)¢y, </1 b; (log )p Si(k, B, @ (k), (k) — )is

wl (0; — 8;)(log )i~
A

3 e s pi—1 d
S;[/l Gi(e, s)y, (/1 bi(log E) Jilie, Blc), @ (i), (i) — > SS

Iﬂir(m‘—&‘)]
+ —_—
A;

1 a

UlB( (,01+1)”11
1l a

+__7
Oy B(I (/Oz+1))‘f2 !
1 a
U3B(F(P3+1))q3 !

1 1 1 1 1 1
=ad|l —+—+—+—+—+—|=Za.
|:Ul Ug Ug Nl Nz R3i|

f Gu(e,s)(log sy @D E
S

d
/ Go(e, s)( logs)m(@ 1)
S

a a a

yds
e,s)(logs)3 @Dy — 4 — 4 —
/Q3 )(logs) s TR TN, TR

To see that (D2) is satisfied, let (B, @, w) € W(p, a, b, c) with ¢(L(B, @, w)(¢)) > —, we have

a (L8, w,a))(t))

A1 drk\ d
= I?eljn |:/ Gi(t,s)gy, (/ b; (log ) ﬂ(K,B(K),ZD‘(K),a)(K))%);

i=1

. VT (0; — 8;)(log )i~ ]

A;

3 e Pi—
221:[ /1 mgi(e,s)qsqi( /1 bi(log£>

, Yl ‘—3‘)(10gt)""1]

—1
> m max [/ Gi(t, )¢y, (/ (log )p fi(k,Bi), @ (k), w("))ik>dss

te(l, e]

1

dk\ d
(68060, 6),000) ) “

lﬁl (0 —8;)(log 2)?i~ ]
A

0i-1 d
> mmaxZ[/ Gi(t,8),; (/ i(logi) Si(ke,Bk), @ (i), (k) KK>?

Vil (0; - 8;)(log )7 !
R 2 ]

=mgs (LB, @, w))(t) > b.
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Finally, it is shown that (D4) holds. Let (B, @, w) € L(p,0,4a,c) with B(L(B, @, w)) < ma.

Then we have

Q(L(B,w,a»(t))

Pi— d d
_ Iga}lx [/ Gi(t, )y, (/ <log %) f(/c B(x), @ (k), a)(/c)) KK)?S

lﬁz (0 — 8;)(log £)°i~ ]
A;

-1
< }2[?’2] |:/ Gile, )y, (/ (log )p Si(k, k), @ (), (k) ‘ix)?

l/fz (0 = 8;)(log )71~ :|
A

1Q ¢ s s\ di\ ds
= ;[m/l Gile, s)dq; (./1 bi(log ;) fi(k,Bk), @ (), (k) — p >?

. Y.L (0; - 8;)(log2)”™! ]

Ai
s pi—1 d d
< [/ 61,90, ( [ 0106 ) A6 00, 00) 5 )

VT (0; — 8;)(log )i~ ]
+

A;

< Z rtlélllll a2 [/ Gi(t,$)¢q, (/ <log £>m Si(ke,Bk), @ (i), (k) iK)%
, Yil(oi - 8i)(log £)7~ ]

A

= lﬁ(ﬁ(B, w,a)))(t) <a
m

It has been proved that all the conditions of Theorem 2.2 are fulfilled. Therefore, the
Hadamard fractional order BVP (1)—(2) has at least three positive solutions (81, @1, w;),
(Bo, @y, 2), and (B3, @3, w3) such that o(By, @1, 1) < @, b < a(By, @, ;) and a < o(B3, w3,

w3) with a (B3, @3, w3) < b. O

5 Examples

1, 03=3, M=% p=3%p3=5 81 =8=08=3 11 =py=ps =8 and

)\.1 2)\2 :)\.3 =3. Letpl =pr=p3 :2, q1 =492 =q3 =2, q’)pl.(s) =S, d)ql.(S) :S,i: 1,2,3.
Consider the following system of Hadamard fractional differential equations:

Let 07 = %, 0y =

“HDI2(¢,, (TDI2B(1) = (8, B(E), @ (£), (2)), 1<t<e,
—HDY3 (3, ("D P (1)) = (6, B(), w (1), (), 1<i<e, 17)
~HDIH gy, (1D} oo(t)) = (6, B(8), (1), 0(t)), L<t<e,
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with the boundary conditions

B(1)=B(1)=0, HD¥2B(1)=0,  3B(e) + 8 D2B(e) = ¥y,
w(l)=w'(1)=0, HD7/3w(1) =0, 3w (e) + 8" D¥2w () = Y, (18)
w(1)=w'(1) =0, HDYto(1) = 3w(e) + 81D w(e) = Y3,

where Yy, ¥y, V3 are parameters. We have m = 0.125, A; = 13.63472 > 0, A, = 12.90201 >
0, A3 =12.74027 > 0, so assumption (H2) is satisfied. Besides we deduce

(8(1 —logs)™1® +2.256758)(1 —logs)?°™1, 1<t<s<e,
1

Gi(t,s) = 13.63472 (8(1 —logs)™*> + 2.256758)(1 — log s)>°>*

- 5=(1-loge)** !, 1<s<t<e

(8(1 —logs)™1® +2.858519)(1 —logs)?33~!, 1<t<s<e,

1
t,8) = ———— - -L5 4 9 _ 2.33-1

Ga(t,s) 12.50001 (8(1 —logs)™® + 2.858519)(1 — log s)

- 55s(1-logs)*¥1, 1<s<t=<e,

(8(1 —logs)™ + 3.244696)(1 — logs)?>?>1, 1<t<s<e,
1

t,8)= ———— - -15 13, _ 2.25-1
Gs(t,s) 1274007 (8(1 — logs)~® + 3.244696)(1 — log s)

225(1 —logs)?®1l, l<s<t<e.

Then we obtain

3/4

’ 8(1 —logs)™'® + 2.256758](1 — log s)'®
/1 Giles) < 1363472/;1/4 ([( 0gs) J1 ~Togs)

1 ds
- —(1-logs)** )=
551 10g9) )s

~ 0.232374.

/
Similarly, [5s Ga(e )% ~ 0.323496 and [ Gs(e,s)% ~ 0.338443.

(1/aypr@-n - el ds (1/4)»@D
s e . e e [ e
(14 et Giens)™
(Clos + 1)1 S 7297

=max{0.131103,0.228309, 0.264027} ~ 0.264027,

B= min{ / G (e, s)(logs)™ (1-1) is

(F(p1 1))l

ds
p2(q2-1)
(F(pz " 1) q2_1 / g2(e;3)(10g8) s )

ds
(T(om + 1))5-1 ,$)(1 p3(q3-1)
(T(ps + 1))qs 1 / Gs(e,s)(logs) }

=min{0.29447,0.177359,0.141563} ~ 0.141563.
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Example 5.1 We consider the functions

13(¢-1) 11
— + —e

B+ +w) +925
15 17 ’

[tB,T,0) =
15 —(B+@ +w)
LB, o,0) = ﬁ(logt)+e ) +21,
15
f3(8,8,@,w) =5(logt) + T log(B + @ + w) + 22.

Ifwechooseq:Z,Q:lOOandUil:U%:Uis:i:R—Z:Rig:%,thenq<mQandﬁ
(i = 1,2, 3) fulfill the following conditions:

(F1) fi(t,8, @, ) > 20.19993 = ¢,,,(51), for t € [*, %], (B, ', w) € [2,100],

(Fp) fi(t,B,w,w) <88.30011 = ¢pi(&)f0r te[l,e], (B, w,w) e [1,100].
Consequently, all presumptions in Theorem 4.1 are agreeable. Thus, for ¥, < 170.434,
Yo <161.275125, 3 < 159.253375, the system of (17)—(18) has at least one positive solu-

tion.

Example 5.2 We consider the functions

ét(B+w+w)+§—;(logt), 0<B+w +w <10,
filt B w,0)= (10gt)(B+w+w)+2—79(13+zzr+w)+61, 10<B+ @ + w < 80,

(logt) + Z5 (e B+ 1 55) + 13, 80<B+w +w <90,

1f,7t+%(ﬁ+w+w), 0<B+w +w<10,
LB @, 0)=(logt)B+w +w)+ 15t +3B+ @ + ) +69, 10<B+w +w <80,

(logt) + }—Z(t+4) + 10e~B+m+0) 1 73 4 %, 80<B+w +w=<90,

Zlogt+ 2+ 1) +e® ™), 0<B+w +w <10,

logt)(B + @ + w) + 2(log ¢
A m,w) < (log)( ) + 1 (log?)
+7B+ @ +w) +24t, 10<B+ @ +w < 80,

(logt) + %(logt) + %sin(B+ o +w)+28 80<B+w+w=<90.

Choosing a =5, b = 10, ¢ = 90, evidently, 0 < a < b < % < cand Uil Sl il i i
N—ls = é and f; (i = 1,2, 3) fulfill the following conditions:
(Fs) fi(t,8, @, w) < 4.415005 = ¢Pi(UL,-B) for t € [1,e] and |B| + || + |w| € [0.625, 5],
(Fo) fi(t,B,@,0) >100.9996 = ¢, (%) for t € [e%,e¥*] and |B] + || + || € [10,80],
(F7) fi(t,B,@,w) <79.4701 = ¢, O%B) for t € [1,e] and |B| + || + |w| € [0,90].
Thus, all the conditions of Theorem 4.3 are fulfilled. Hence, for v; < 153.3906, v, <
145.14762, 3 < 143.32803, the system of (17)—(18) has at least three positive solutions.

6 Conclusion

In this study, we are pleased to investigate the multiplicity of positive solutions for the sys-
tem of three Hadamard fractional two-point boundary value problems with parameters
and (p1, p2, p3)-Laplacian operators by using the cone expansion and compression of func-
tional type and five functional fixed point theorems for cones in ordered Banach spaces

respectively.
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