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Abstract
A three-species non-autonomous stochastic Lotka–Volterra food web system in a
polluted environment is proposed, and the existence of positive periodic solutions of
this system is established by constructing a proper Lyapunov function. Then the
extinction property and its threshold between persistence and extinction are
discussed by using Itô’s formula and the strong law of large numbers of martingale,
and the sufficient condition of a.s. exponential stability of equilibrium point is
obtained. Finally, the conclusions are tested by several numerical simulations.
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1 Introduction
Lotka–Volterra predator-prey model has long been and will continue to be one of the
dominant themes in both ecology and mathematical ecology owing to its universal im-
portance, which can well explain the dynamic relationship between predators and their
preys [1, 2]. Among those predator-prey models, a three-species omnivorous food web
system plays an important role. Its form is as follows [3]:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = x(t)[D1(t) – a11(t)x(t) – a12(t)y(t) – a13(t)z(t)],

ẏ(t) = y(t)[–D2(t) + a21(t)x(t) – a22(t)z(t)],

ż(t) = z(t)[–D3(t) + a31(t)x(t) + a32(t)y(t)],

(1)

where x(t), y(t), z(t) denote prey, middle-predator (also prey), and omnivorous top-
predator. D1(t) is the intrinsic growth rate of x(t), D2(t) and D3(t) are the death rate of
y(t) and z(t) respectively. a11(t) denotes the coefficient of intraspecific competition in the
resource, a21(t), a31(t), a32(t) measure the contributions of the victim to the growth of
consumer, a12(t), a13(t), a22(t) are the rate of consumption [3, 4].

Nowadays, a lot of scholars have been studying the deterministic food web system [3–
5]. Hsu et al. proposed the sufficient conditions of extinction, persistence, uniform per-
sistence, and the existence condition of periodic solutions of the system [3]. Namba ana-
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lyzed bifurcation and chaos of the system [4]. Krikorian proposed the conditions of global
asymptotic stability and global boundedness of the system solution [5]. However, all the
research works are focused on the deterministic system. On account of the influence of
white noise in an environment, it is hard to simulate reality efficiently and to protect the
future of population precisely by the deterministic system. Thus, it is necessary to put
stochastic perturbation into consideration to describe the influence of white noise in a
food web system. Considering the mutual influence with the functional responses only
depends on prey density, Liu [6] proposed half-saturation constant, established sufficient
conditions for the existence of an ergodic stationary distribution to the model. Inspired by
[6], our attention has been paid to the behavior of solutions of the food web system when
there are stochastic noises. Also, as we know, environmental pollution is another impor-
tant factor for population survival, which enabled more and more studies on the influence
of pollution on population [7–10]. Thus, we will consider both stochastic perturbation
and environmental pollution into the system to establish how the environmental noise
and pollution affect the behavior of solutions on the food web system with omnivory. En-
vironmental noise always has an influence on the intrinsic growth rate of population, that
is,

D1(t) → D1(t) + α(t)Ḃ1(t),

D2(t) → D2(t) + β(t)Ḃ2(t),

D3(t) → D3(t) + γ (t)Ḃ3(t),

where Bi(t) (i = 1, 2, 3) are dependent standard Brownian motions, α(t), β(t), γ (t) are dis-
turbing intensities of three intrinsic growth rates.

Then, putting environmental pollution into system (1), we can obtain the important
model in this work:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = x(t)[D1(t) – a11(t)x(t) – a12(t)y(t) – a13(t)z(t) – δ1(t)S(t)] dt

+ α(t)x(t) dB1(t),

dy(t) = y(t)[–D2(t) + a21(t)x(t) – a22(t)z(t) – δ2(t)S(t)] dt + β(t)y(t) dB2(t),

dz(t) = z(t)[–D3(t) + a31(t)x(t) + a32(t)y(t) – δ3(t)S(t)] dt + γ (t)y(t) dB3(t),

dS(t) = [k(t)T(t) – g(t)S(t) – m(t)S(t)] dt,

dT(t) = [–h(t)T(t) + f (t)] dt,

(2)

where S(t), T(t) denote the toxin concentrations in organism and environment separately
at time t [9]. Thus, 0 ≤ S(t), T(t) ≤ 1 for every t ≥ 0. The input rate of the exotic toxin f (t)
is a control function, and this kind of toxin-population model was proposed by Hallam et
al. [7].

On the other hand, the periodic solution of a predator-prey stochastic system has been
studied in [11–14], where the persistence and the global stability of periodic solution of
a three-species omnivorous food web system were studied by Zhou et al. [11]. Ma et al.
discussed the persistence of periodic solution and uniformly asymptotic stability of a dis-
crete competitive system [12]. However, almost all the references focused on the discrete
system, only a few scholars discussed the continuous system, among which there are those
about a non-omnivorous system [15, 16].
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Inspired by the existing research results, we study the periodic solution, extinction, and
exponential stability of a stochastic omnivorous food web system in a polluted environ-
ment. The differences of conclusion between this paper and others (e.g. Hsu et al. [3],
Namba et al. [4], Liu [6], Zhou et al. [11], Zu et al. [15]) are as follows: (a) introduction
of white noise in this system; (b) consideration of the effect of environmental pollution,
which generalizes the results in [3] and [6].

The rest of the paper is organized as follows. In Sect. 2, some assumptions, definitions,
and lemmas are given. Then the existence of positive periodic solutions is proved by con-
structing a proper Lyapunov function in Sect. 3. In Sect. 4, by using Itô’s formula and the
strong law of large numbers of martingale, the conditions of extinction of solution are
discussed. In Sect. 5, the exponential stability of the equilibrium is considered. Then, nu-
merical simulations are provided in Sect. 6. Finally, conclusions and discussion are given
in Sect. 7.

2 Preliminaries
Let (Ω ,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (i.e. it is right-continuous and F0 contains all p-null sets). For con-
venience’s sake, let

gu := max
t∈[0,θ ]

g(t), gl := min
t∈[0,θ ]

g(t),

〈g〉 :=
1
t

∫ t

0
g(s) ds,

g∗ := lim sup
t→+∞

g(t), g∗ := lim inf
t→+∞ g(t),

where g(t) is a continuous and bounded function, θ is a positive constant. In addition,
several assumptions are given as follows.

Assumption 2.1 All the parameters Di(t), aij(t) (i = 1, 2, 3; j = 1, 2, 3) of system (2) are
continuous functions with period θ and positive upper and lower bound.

Assumption 2.2 The parameters δi(t) (i = 1, 2, 3) of system (2) are bounded continuous
functions.

Assumption 2.3 Di(t), aij(t), δi(t), α(t), β(t), γ (t), k(t), g(t), m(t), h(t), f (t) (i = 1, 2, 3; j =
1, 2, 3) are all constants which are recorded briefly as Di, aij, δi, α, β , γ , k, g , m, h, f (i =
1, 2, 3; j = 1, 2, 3).

Resources in an ecological environment are always limited in reality, so increase in popu-
lation density will not be unlimited. In this regard, we propose the following assumptions.

Assumption 2.4 The population density x, y, z are bounded.

Let

Ω1 :=
{

w ∈ Ω|(x
(
t, w(t)

)
, y

(
t, w(t)

)
, z

(
t, w(t)

)
, S

(
t, w(t)

)
, T

(
t, w(t)

)) ∈ Δ, t ≥ 0
}

,
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where Δ denotes the subset of Rl . In this paper, we assume that sample paths always stay
in Ω1.

Definition 2.5 ([17]) For the stochastic process ζ (t) = ζ (t,ω)(–∞ < t < +∞), if ζ (t1 +
h), . . . , ζ (tn + h) are dependent on h (h = kθ (k = 1, 2, . . .)) for arbitrary finite-time se-
ries t1, . . . , tn, then ζ (t) is called a period stochastic process with period θ .

In reference [17], Khasminskii proposed that Markov process r(t) has θ as its period
if and only if its transition probability function also has the same period, and func-
tion F0(t, A) = F{X(t) ∈ A} satisfies

F0(s, A) =
∫

Rl
F0(s, dr)F(s, r, s + θ , A) := F0(s + θ , A),

where A ∈ B, B denotes σ -algebra.
For the l– dimensional stochastic differential equation

dw(t) = f
(
w(t), t

)
dt + g

(
w(t), t

)
dB(t), w(0) = w0, (3)

where vectors f (w, t), g(w, t), (t ∈ [t0, T]), w(t) ∈ R
l are both continuous function vectors

and satisfy the following conditions:

∣
∣f (t, w) – f (t, w̄)

∣
∣ +

∣
∣g(t, w) – g(t, w̄)

∣
∣ ≤ B|w – w̄|,

∣
∣f (t, w)

∣
∣ +

∣
∣g(t, w)

∣
∣ ≤ B

(
1 + |w|),

(4)

where B is a constant. The definition of a.s. exponential stability is given as follows.

Definition 2.6 ([18]) If

lim sup
t→∞

1
t

ln
∣
∣w(t, w0)

∣
∣ < 0,

then the equilibrium w = 0 of system (3) is a.s. exponentially stable.

Let E denote a given open set and G = H × R
l . Let C2 denote a set defined in G and

consist of continuous differentiate function on t and two times continuous differentiate
function to wi (i = 1, 2, . . . , l).

Lemma 2.7 ([17]) If Assumption 1.1 holds, and the parameters of Eq. (3) satisfy condition
(4) on H × E, also there exists a function V (t, w) ∈C

2 with period θ satisfying the following
conditions:

(I) inf|z|>R V (t, w) → ∞ when R → ∞;
(II) L V (t, w) ≤ –1 holds outside some compact set,

then a solution of Eq. (3) exists, which is a Markovian process with θ as its period.

Lemma 2.8 ([17]) It assumes that Z(t) = (Z1(t), Z2(t), . . . , Zl(t)) (l ∈ N) denotes a bounded
function defined inR

l , {t0,n} denotes an arbitrary unbounded positive sequence of real num-
bers. Then, for every k ∈ {1, 2, . . . , l}, there exists a set of sequence {tk,n} such that {tk,n} is the
subsequence of {tk–1,n} and converges to the largest limit of sequence {Zk(tk,n)}.
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Lemma 2.9 Let Assumption 1.2 hold, then for every given initial value (x(0), y(0), z(0)),
there exists a unique solution (x(t), y(t), z(t)), which will stay in R

3
+ with probability 1.

Proof The proof of Lemma 2.9 is similar to Theorem 2.1 in [19], so we omit it here. �

3 Existence of positive periodic solutions
We consider that Assumption 1.1 always holds. Taking a biological meaning of the
model into account, we discuss the solution of system (2) with the initial condition
(x(0), y(0), z(0)) ∈ R

3
+ in R

3
+ = {(x, y, z) ∈ R

3|x > 0, y > 0, z > 0}. On the basis of Lemma 2.7,
together with constructing a proper Lyapunov function, the sufficient condition of a pos-
itive period solution of (2) will be obtained. For convenience, we let

λ =
1
θ

∫ θ

0

(

–2au
21au

31

[

D1(t) –
α2(t)

2

]

+ al
11al

31

[

D2(t) +
β2(t)

2

]

+ al
11al

21

[

D3(t) +
γ 2(t)

2

])

dt.

Theorem 3.1 If λ > 0 and

al
12 ≥ au

21, al
13 ≥ au

31, al
22 ≥ au

32, (5)

2au
31al

12 ≥ al
11au

32, (6)

then for system (2), there exists at least one periodic solution with θ as its period.

Proof (4) holds in that parameters of system (2) are all continuous and bounded periodic
functions. Now we will prove that conditions (I) and (II) of Lemma 2.7 hold. The Lyapunov
function V : [0, +∞) ×R

3
+ →R on C

2 is defined as

V (t, x, y, z) = M
(
2au

21au
31 ln x + al

11al
31 ln y + al

11al
21 ln z

)
+

(x + y + z)2

2
+ M


= V1(x, y, z) + V2(x, y, z) + V3(t),

where M = (2/λ) max{1, sup(x,y,z)∈R3
+

Q(x, y, z)},

Q(x, y, z) = –
1
2

al
11x3 +

(

Du
1 +

(α2)u

2

)

x2 +
(β2)u

2
y2 +

(γ 2)u

2
z2 –

(
Dl

1 + Dl
2
)
xy

+
(
–Dl

3 + Du
1
)
xz +

(
–Dl

3 – Dl
2
)
yz,
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V2(x, y, z) = (x+y+z)2

2 , V3(t) = M
 , obviously Mλ ≥ 2. Let


̇ = –
1
θ

∫ θ

0

(

–2au
21au

31

[

D1(t) –
α2(t)

2

]

+ al
11al

31

[

D2(t) +
β2(t)

2

]

+ al
11al

21

[

D3(t) +
γ 2(t)

2

])

dt

– 2au
21au

31

[

D1(t) –
α2(t)

2

]

+ al
11al

31

[

D2(t) +
β2(t)

2

]

+ au
11au

21

[

D3(t) +
γ 2(t)

2

]

= –λ +
(

–2au
21au

31

[

D1(t) –
α2(t)

2

]

+ al
11al

31

[

D2(t) +
β2(t)

2

]

+ al
11al

21

[

D3(t) +
γ 2(t)

2

])

. (7)

It is obvious that 
 (t) is a periodic function with period θ . As a matter of fact, integrating
(7) from t to t + θ , we get


 (t + θ ) – 
 (θ ) =
∫ t+θ

t

̇ (s) ds

= –
∫ θ

0

(

–2au
21au

31

[

D1(s) –
α2(s)

2

]

+ al
11al

31

[

D2(s) +
β2(s)

2

]

+ al
11al

21

[

D3(s) +
γ 2(s)

2

])

ds +
∫ θ

0

(

–2au
21au

31

[

D1(s) –
α2(s)

2

]

+ al
11al

31

[

D2(s) +
β2(s)

2

]

+ al
11al

21

[

D3(s) +
γ 2(s)

2

])

ds = 0.

Now we will prove that condition (I) of Lemma 2.7 holds. Since quadratic terms of
V (t, x, y, z) are all positive, then

inf
(x,y,z)∈R3

+\Eκ

V (t, x, y, z) → ∞, when κ → ∞,

where Eκ = ( 1
κ

,κ) × ( 1
κ

,κ) × ( 1
κ

,κ). Now we will prove that condition (II) of Lemma 2.7
holds. By using Itô’s formula and condition (6), we have

L V1(x, y, z) = M
(

2au
21au

31
[
D1(t) – a11(t)x – a12(t)y – a13(t)z – δ1(t)S(t)

]

+ al
11al

31
[
–D2(t) + a21(t)x – a22(t)z – δ2(t)S(t)

]

+ al
11al

21
[
–D3(t) + a31(t)x + a32(t)y – δ2(t)S(t)

]

– al
21al

31
α2(t)

2
– al

11al
31

β2(t)
2

+ au
11au

21
γ 2(t)

2

)

≤ M
(

2au
21au

31

[

D1(t) –
α2(t)

2

]

– al
11al

31

[

D2(t) +
β2(t)

2

]

– al
11al

21

[

D3(t) +
γ 2(t)

2

])

. (8)
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Considering (7) and (8) together, we get

L (V1 + V3) = –Mλ. (9)

Similarly, we get the following conclusion by using (5):

L V2(x, y, z) = (x + y + z)
(

D1(t)x – a11(t)x2 – a12(t)xy – a13(t)xz – δ1(t)S – D2(t)y

+ a21(t)xy – a22(t)yz – δ2(t)S – D3(t)z + a31(t)xz + a32(t)yz – δ3(t)S

+
α2(t)

2
x2 +

β2(t)
2

y2 +
γ 2(t)

2
z2

)

≤ –al
11x3 +

[

Du
1 +

(α2)u

2

]

x2 +
[

–Dl
2 +

(β2)u

2

]

y2 +
[

–Dl
3 +

(β2)u

2

]

z2

+
(
–Dl

2 + Du
2
)
xy +

(
–Dl

3 + Du
1
)
xz –

(
Dl

3 + Dl
2
)
yz. (10)

Considering (9) and (10), we get

L V (t, x, y, z) ≤ –Mλ – al
11x3 +

[

Du
1 +

(α2)u

2

]

x2 +
[

–Dl
2 +

(β2)u

2

]

y2

+
[

–Dl
3 +

(β2)u

2

]

z2 +
(
–Dl

2 + Du
2
)
xy

+
(
–Dl

3 + Du
1
)
xz –

(
Dl

3 + Dl
2
)
yz

= –Mλ –
1
2

al
11x3 – Dl

2y2 – Dl
3z2 + Q(x, y, z). (11)

Now we define a bounded close set

D =
{

(x, y, z) ∈R
3
+ : ε ≤ x ≤ 1

ε
, ε ≤ y ≤ 1

ε
, ε ≤ z ≤ 1

ε

}

,

where 0 < ε < 1. We choose ε small enough such that

–Mλ –
al

11
2ε3 + Qsup ≤ –1, (12)

–Mλ –
Dl

2
ε2 + Qsup ≤ –1, (13)

–Mλ –
Dl

3
ε2 + Qsup ≤ –1, (14)

where Qsup = sup(x,y,z)∈R3
+

Q(x, y, z). Let

D1
ε =

{
(x, y, z) ∈R

3
+ : 0 < x < ε

}
, D2

ε =
{

(x, y, z) ∈R
3
+ : 0 < y < ε

}
,

D3
ε =

{
(x, y, z) ∈R

3
+ : 0 < z < ε

}
, D4

ε =
{

(x, y, z) ∈R
3
+ : x >

1
ε

}

,

D5
ε =

{

(x, y, z) ∈R
3
+ : y >

1
ε

}

, D6
ε =

{

(x, y, z) ∈R
3
+ : z >

1
ε

}

.
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A complementary set of D can be denoted as DC = D1
ε ∪ D2

ε ∪ D3
ε ∪ D4

ε ∪ D5
ε ∪ D6

ε . Now
we prove that L V (t, x, y, z) ≤ –1 is valid on [0, +∞) × DC .

Case 1. When (t, x, y, z) ∈ [0, +∞) × (D1
ε ∪ D2

ε ∪ D3
ε ), we have

L V (t, x, y, z) ≤ –Mλ + Q(x, y, z) ≤ –Mλ + Qsup

≤ –Mλ +
Mλ

2
= –

Mλ

2
≤ –1. (15)

Case 2. When (t, x, y, z) ∈ [0, +∞) × D4
ε , on the basis of (12), we have

L V (t, x, y, z) ≤ –Mλ –
al

11
2

x3 + Q(x, y, z) ≤ –Mλ –
al

11
2ε3 + Qsup ≤ –1. (16)

Case 3. When (t, x, y, z) ∈ [0, +∞) × D5
ε , from (13), we get

L V (t, x, y, z) ≤ –Mλ – Dl
2y2 + Q(x, y, z) ≤ –Mλ –

Dl
2

ε2 + Qsup ≤ –1. (17)

Case 4. When (t, x, y, z) ∈ [0, +∞) × D6
ε , on the basis of (14), we get

L V (t, x, y, z) ≤ –Mλ – Dl
3y2 + Q(x, y, z) ≤ –Mλ –

Dl
3

ε2 + Qsup ≤ –1. (18)

Thus, from (15)–(18), we get

L V (t, x, y, z) ≤ –1, ∀(t, x, y, z) ∈ [0, +∞) × DC . (19)

So Lemma 2.7 (II) is true, and there exists a periodic solution of system (2) with period θ .
Besides, from Lemma 2.9, there exists a unique positive solution of system (2). Thus there
exists at least one periodic solution of system (2) with period θ . �

Thanks to Part 3 in [3], we obtain the condition of a periodic solution of system (2),
which is an expansion of Theorem 1 in [6].

4 Extinction of solution
We assume that Assumptions (2.1) and (2.2) always hold.

Theorem 4.1 If 〈r1(t)〉∗ = lim supt→+∞
1
t
∫ t

0 (D1(s) – 1
2α2(s)) ds < 0, then system (2) will go

to extinction with probability 1.

Proof By using Itô’s formula to (2), we get

d ln x =
(

D1(t) – a11(t) – a12(t) – a13(t)z – δ1(t)S –
1
2
α2

)

dt + α(t) dB1(t). (20)

Integrating both sides on the above formula, we get

ln x(t) – ln x0

t
=

〈
r1(t)

〉
–

〈
a11(t)x

〉
–

〈
a12(t)y

〉
–

〈
a13(t)z

〉
–

〈
δ1(t)S

〉

+
∫ t

0 αt(s) dB1(s)
t

, (21)
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where r1(t) = D1(t) – 1
2α2(t). Similarly, we have

ln y(t) – ln y0

t
=

〈
r2(t)

〉
+

〈
a21(t)x

〉
–

〈
a22(t)z

〉
–

〈
δ2(t)S

〉
+

∫ t
0 βt(s) dB1(s)

t
, (22)

ln z(t) – ln z0

t
=

〈
r3(t)

〉
+

〈
a31(t)x

〉
+

〈
a32(t)y

〉
–

〈
δ3(t)S

〉
+

∫ t
0 γt(s) dB3(s)

t
, (23)

where r2(t) = –D2(t) – 1
2β2(t) < 0, r3(t) = –D3(t) – 1

2γ 2(t) < 0. Let M1(t) =
∫ t

0 α(t) dB1(t),
M2(t) =

∫ t
0 β(t) dB2(t), M3(t) =

∫ t
0 γ (t) dB3(t), we find that Mi(t), i = 1, 2, 3, are local mar-

tingales. So from the strong law of large numbers, we get

lim
t→+∞ Mi(t)/t = 0 a.s. (24)

Taking the upper limit on both sides of (21), together with (24), we get

(
1
t

ln x(t)
)∗

≤ 〈
r1(t)

〉∗ –
〈
a11(t)x

〉

∗ –
〈
a12(t)y

〉

∗ –
〈
a13(t)z

〉

∗ –
〈
δ1(t)S

〉

∗

≤ 〈
r1(t)

〉∗ < 0. (25)

Thus, we have limt→+∞ x(t) = 0. Besides, if 〈r1(t)〉∗ < 0, then 〈x(t)〉∗ = 0. Similarly, taking
the upper limit on both sides of (22) and taking (24) into consideration, we can get

(
1
t

ln y(t)
)∗

≤ 〈
r2(t)

〉∗ +
〈
a21(t)x(t)

〉∗ –
〈
a22(t)z

〉

∗ –
〈
δ2(t)S

〉

∗

≤ 〈
r2(t)

〉∗ < 0. (26)

So limt→+∞ y(t) = 0. By using the same method, we can get 〈x(t)〉∗ = 0, 〈y(t)〉∗ = 0, then

(
1
t

ln z(t)
)∗

≤ 〈
r3(t)

〉∗ +
〈
a31(t)x(t)

〉∗ +
〈
a32(t)y

〉∗ –
〈
δ3(t)S

〉

∗ ≤ 〈
r2(t)

〉∗ < 0,

so limt→+∞ z(t) = 0. �

Corollary 4.2 Let (x(t), y(t), z(t)) be a solution of system (2) on the initial condition
(x(0), y(0), z(0)), then we have the following conclusions about population x of system (2):

(a) If 〈r1(t)〉∗ = 0, then x will not be a.s. persistent in mean;
(b) If 〈r1(t)〉∗ > 〈δ1(t)〉∗ and (a11(t))∗〈r2(t)〉∗ + 〈r1(t)〉∗au

21 < 0, then x will be a.s. weakly
persistent;

(c) For all s > 1, there exists L(s) such that E[xs(t)] ≤ L(s),
where r2(t) = –D2(t) – 1

2β2(t).

Remark 4.3 [20] x(t) is called weakly persistent if x∗ = lim supt→∞ x(t) > 0.

Proof The proof is similar to [20], so we omit it here. �
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5 Exponential stability of the equilibrium
Now we consider that Assumptions (2.3) and (2.4) always hold. For all given σ1 > 0, σ2 > 0,
. . . ,σ5 > 0, the stochastic process is defined as follows:

p
(
X(t)

)
= σ1x(t) + σ2y(t) + σ3z(t) + σ4

(
1 – S(t)

)
+ σ5

(
1 – T(t)

)
(27)

and

Ux = p–1x, Uy = p–1y, Uz = p–1z, US = p–1(1 – S), UT = p–1(1 – T).

Then, for every t > 0, we get

0 < Ux(t) ≤ 1
σ1

, 0 < Uy(t) ≤ 1
σ2

, 0 < Uz(t) ≤ 1
σ3

,

0 < US(t) ≤ 1
σ4

, 0 < UT (t) ≤ 1
σ5

.

In other words, the above stochastic process has an upper bound max{ 1
σ1

, 1
σ2

, 1
σ3

, 1
σ4

, 1
σ5

}.
So

σ1Ux(t) + σ2Uy(t) + σ3Uz(t) + σ4US(t) + σ5UT (t) = 1. (28)

According to the assumptions, the stochastic process p(X(t)) is also bounded, that is,

p
(
X(t)

)
< M, t > 0, (29)

where M is a constant.

Theorem 5.1 We suppose that E∗(0, 0, 0, S∗, T∗) denotes the equilibrium of system (2). If

σ5f ≥ D1M, (30)

D1 > (g + m) ∧ h + η2, (31)

σ1a12 ≥ σ2a21, σ1a13 ≥ σ3a31, σ2a22 ≥ σ3a32, (32)

where η = α∧β ∧γ , then the equilibrium point E∗(0, 0, 0, S∗, T∗) is a.s. exponentially stable.

Proof For convenience’s sake, we let X(t) := (x(t), y(t), z(t), S(t), T(t)). Defining a stochastic
process p(X(t)) similar to (27), we find that p(X(t)) > 0 for all t > 0 (since a sample path will
come into Ω1). Then we define

V
(
X(t)

)
= ln p

(
X(t)

)
.

In order to prove Theorem 5.1, we only have to prove that p(X(t)) will converge to zero
a.s. By using Itô’s formula, we rewrite the stochastic process V (X(t)) as

V
(
X(t)

)
= V

(
X(0)

)
+

∫ t

0
L V

(
X(ξ )

)
dξ + M(t), (33)
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where M(t) =
∑3

i=1 Mi(t) is a local martingale, here

M1(t) =
∫ t

0

αx(u)
p(X(u))

dB1(u),

M2(t) =
∫ t

0

βy(u)
p(X(u))

dB2(u),

M3(t) =
∫ t

0

γ z(u)
p(X(u))

dB3(u).

Applying the strong law of large numbers of martingale, we get

lim
t→∞

1
t

3∑

i=1

Mi(t) = 0, a.s. (34)

Taking limits on both sides of (33) and using (34), we get

lim sup
t→∞

1
t

V
(
X(t)

)
= lim sup

t→∞
1
t

∫ t

0
L V

(
X(u)

)
du, a.s. (35)

In order to prove that p(X(t)) will converge to zero a.s., we only have to prove that

lim sup
t→∞

L V
(
X(t)

)
< 0, a.s. (36)

From (32), together with Itô’s formula, we get

L V (X) =
1
p
[
σ1x(D1 – a11x – a12y – a13z – δ1S) + σ2y(–D2 + a21x – a22z – δ2S)

+ σ3z(–D3 + a31x + a32y – δ3S) – σ4(kT – gS – mS) – σ5(–hT + f )
]

–
3
p2

[
(σ1αx)2 + (σ2βy)2 + (σ3γ z)2]

≤ 1
p

[σ1D1x – σ1δ1Sx – σ2D2y – σ2δ2Sy – σ3D3z – σ3δ3Sz – σ4kT + σ4gS

+ σ4mS + σ5hT – σ5f ] –
3
p2

[
(σ1αx)2 + (σ2βy)2 + (σ3γ z)2]. (37)

For every sample path of three-dimensional Brownian motion w(t), there exists an un-
bounded increasing sequence {τw

n } such that

lim
n→∞L V

(
X

(
τn, w(τn)

))
= lim sup

n→∞
L V

(
X

(
t, w(t)

))
.

Now we fix a sequence. From Lemma 2.8, there exists a subsequence {tw
n } such that the

following limit exists:

lim
n→∞

(
Ux

(
X

(
tw
n , w

(
tw
n
)))

, Uy
(
X

(
tw
n , w

(
tw
n
)))

,

Uz
(
X

(
tw
n , w

(
tw
n
)))

, S
(
tw
n , w

(
tw
n
))

, T
(
tw
n , w

(
tw
n
)))

,
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which can guarantee the definition of the following limits:

x̄ = lim
n→∞ Ux

(
X(tn)

)
, ȳ = lim

n→∞ Uy
(
X(tn)

)
, z̄ = lim

n→∞ Uz
(
X(tn)

)
,

S̄ = lim
n→∞ US

(
X(tn)

)
, T̄ = lim

n→∞ UT
(
X(tn)

)
,

S̃ = lim
n→∞ S(tn), T̃ = lim

n→∞ T(tn).

(38)

Putting (38) into (28), we get

σ1x̄ + σ2ȳ + σ3z̄ + σ4S̄ + σ5T̄ = 1. (39)

Let

Ψ = lim
n→∞L

(
ln p(tn)

)
,

then, applying (29) and (37), (38) can be rewritten as

Ψ ≤ σ1D1x̄ – σ1δ1S̃x̄ – σ2D2ȳ – σ2δ2S̃ȳ – σ3D3z̄

– σ3δ3S̃z̄ – σ4kT̄ + σ4gS̄ + σ4mS̄ + σ5hT̄

–
σ5

M
f – 3

[
(σ1αx̄)2 + (σ2β ȳ)2 + (σ3γ z̄)2]. (40)

From equation (39), we get

σ1x̄ + σ2ȳ + σ3z̄ = 1 – σ4S̄ – σ5T̄ , σ1x̄ + σ2ȳ + σ3z̄ ≤ 1.

In terms of the above two equalities, we obtain the following estimation:

– (σ1αx̄)2 – (σ2β ȳ)2 – (σ3γ z̄)2

= –η2[(σ1x̄)2 + (σ2ȳ)2 + (σ3z̄)2]

≤ –
1
3
η2[σ1x̄ + σ2ȳ + σ3z̄]2

= –
1
3
η2[σ1x̄ + σ2ȳ + σ3z̄](1 – σ4S̄ – σ5T̄)

≤ –
1
3
η2(σ1x̄ + σ2ȳ + σ3z̄) +

1
3
η2(σ1x̄ + σ2ȳ + σ3z̄)σ4S̄

+
1
3
η2(σ1x̄ + σ2ȳ + σ3z̄)σ5T̄

≤ –
1
3
η2(σ1x̄ + σ2ȳ + σ3z̄) +

1
3
η2σ4S̄ +

1
3
η2σ5T̄ ,

where η = min{α,β ,γ }. Putting the above inequality into (40), we get

Ψ ≤ σ1D1x̄ – σ1δ1S̃x̄ – σ2D2ȳ – σ2δ2S̃ȳ – σ3D3z̄

– σ3δ3S̃z̄ – σ4kT̄ + σ4gS̄ + σ4mS̄ + σ5hT̄

–
σ5

M
f – η2σ1x̄ – η2σ2ȳ – η2σ3z̄ + η2σ4S̄ + η2σ5T̄ . (41)
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Owing to σ1x̄ = 1 – σ2ȳ – σ3z̄ – σ4S̄ – σ5T̄ , we get

Ψ ≤ D1 – D1σ2ȳ – D1σ3z̄ – D1σ4S̄ – D1σ5T̄ – σ2D2ȳ – σ3D3z̄ – σ4kT̄ + σ4gS̄

+ σ4mS̄ + σ5hT̄ –
σ5

M
f – η2σ1x̄ – η2σ2ȳ – η2σ3z̄ + η2σ4S̄ + η2σ5T̄

≤ –η2σ1x̄ –
(
D1σ2 + D2σ2 + η2σ2

)
ȳ –

(
D1σ3 + D3σ3 + η2σ3

)
z̄

–
(
D1σ4 – σ4g – σ4m – η2σ4

)
S̄ –

(
D1σ5 – σ5h – η2σ5

)
T̄

:= A1x̄ + A2ȳ + A3z̄ + A4S̄ + A5T̄ .

From (31), we know that A4, A5 < 0, so parameters A1, A2, A3, A4, A5 are all negative.
Besides, from (39), we know that x̄, ȳ, z̄, S̄, T̄ are not completely zeroes, thus Ψ < 0. �

In system (2), if α = β = γ = 0, then stochastic system (2) will be a deterministic sys-
tem with environmental pollution. For the deterministic system, the following conclusion
holds.

Theorem 5.2 If (30)–(32) hold, then the deterministic system is exponentially stable a.s.

Proof The proof of this theorem is similar to that of Theorem 5.1. In the process of the
proof, (40) will be simplified as follows:

Ψ ≤σ1D1x̄ – σ1δ1S̃x̄ – σ2D2ȳ – σ2δ2S̃ȳ – σ3D3z̄

– σ3δ3S̃z̄ – σ4kT̄ + σ4gS̄ + σ4mS̄ + σ5hT̄ –
σ5

M
f .

The following proof is similar to Theorem 5.1, thus can be omitted here. �

6 Numerical simulations
We now verify the rationality of the above theorems’ conclusion by several examples. Se-
lecting parameters of system (2), we get the following equation set:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = x(t)[(0.8 + 0.1 sin t) – (0.4 + 0.1 sin t)x(t) – (0.8 + 0.1 sin t)y(t)

– (0.6 + 0.1 sin t)z(t) – 0.01S(t)] dt + α(t)x(t) dB1(t),

dy(t) = y(t)[–(0.3 + 0.2 sin t) + (0.5 + 0.2 sin t)x(t) – (0.5 + 0.1 sin t)z(t)

– 0.1S(t)] dt + β(t)y(t) dB2(t),

dz(t) = z(t)[–(0.36 + 0.3 sin t) + (0.3 + 0.2 sin t)x(t) + (0.3 + 0.1 sin t)y(t)

– 0.01S(t)] dt + γ (t)z(t) dB3(t),

dS(t) = [0.1T(t) – 0.05S(t)] dt,

dT(t) = [–0.2T(t) + f (t)] dt,

(42)

with the initial condition

x(0) = y(0) = 0.9, z(0) = 0.7, S(0) = 0.5, T(0) = 0.5.

α(t), β(t), and γ (t) will be offered separately in Examples 6.1 and 6.2. Besides, we suppose
that the control function f (t) subjects to uniform distribution of [0, 1].
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Figure 1 (a) (b) (c) denote persistent existence of the periodic solution of x(t), y(t), and z(t) respectively when
there is weak environmental noise. The imaginary line denotes a solution of the stochastic system, the full line
denotes a solution of the corresponding deterministic system

Example 6.1 Let α(t) = β(t) = 0.6 + 0.1 sin t, γ (t) = 0.5 + 0.2 sin t.

Taking notice of λ = 0.102 > 0, we find that the conditions of Theorem 3.1 are obviously
satisfied, so there exists at least one periodic solution of system (2). Meanwhile, if the ten-
dency of pollution can be controlled within a certain range, then the population of system
(2) will be persistent in terms of survival. From Fig. 1, we know that the weaker stochas-
tic disturbance, the weaker disturbance to population x, while the stronger disturbance to
population y and z. In addition, for an arbitrary initial value, a solution of the deterministic
model will come into the periodic orbit, while a stochastic one will fluctuate around the
periodic orbit when stochastic noise is smaller.

Example 6.2 Let 0.5α2(t) = 0.9 + 0.2 sin t, β(t) = γ (t) = 0.1 + 0.1 sin t.

For 〈r1(t)〉∗ = –0.1 < 0, the condition of Theorem 4.1 will be satisfied. Therefore, for an
arbitrary initial value, system (2) will tend to extinction in the sense of probability. From
Fig. 2, we know that x(t), y(t), z(t) will tend to zero in a time, which means that population
will go to extinction.
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Figure 2 The below curve (full line) denotes a solution of the stochastic system, and the above curve (dotted
line) denotes a solution of the corresponding deterministic system. From this figure, we found that the
stochastic system in polluted environment will go extinct with large environmental noise, while the
determined system will go into a periodic orbit

Example 6.3 Choose the parameters of system (2) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t) = x(t)(0.8 – 0.4x(t) – 0.2y(t) – 0.6z(t) – 0.01S(t)) dt + 0.6x(t) dB1(t),

dy(t) = y(t)(–0.3 + 0.5x(t) – 0.5z(t) – 0.1S(t)) dt + 0.2y(t) dB2(t),

dz(t) = z(t)(–0.4 + 0.3x(t) + 0.3y(t) – 0.01S(t)) dt + 0.2z(t) dB3(t),

dS(t) = [0.1T(t) – 0.05S(t)] dt, dT(t) = [–0.4T(t) + 0.3] dt,

(43)

with the initial value

x(0) = y(0) = 0.9, z(0) = 0.7, S(0) = 0.05, T(0) = 0.8.

Obviously, the condition of Theorem 5.1 holds, so equilibrium E∗(0, 0, 0, S∗, T∗) of sys-
tem (43) is exponentially stable a.s. From Fig. 3, we find that exponential stability of equi-
librium E∗ holds. From Fig. 3(a) we can see that densities of x, y, and z will decrease sharply
with white noise and pollution. When t equals 2, 5, 8 respectively, the decreasing rate of
x, y, and z will slow down, but when t equals 3, 15, 15 respectively, x, y, and z will go to
extinction. From Fig. 3(b) and Fig. 3(c) we know that toxin concentration S(t) and T(t) will
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Figure 3 (a) denotes x(t), y(t), and z(t) will all go exponential stability even extinction with proper noise in a
polluted environment, (b) denotes concentration of toxin in organism will reach equilibrium when t = 10 after
sharp reduction, (c) denotes concentration of toxin in environment will also reach equilibrium when t = 10
after sharp reduction

reach equilibrium when t equals 10, which indicates that population will tend to extinction
under certain white noise and pollution.

7 Conclusions and discussion
This paper is concerned with a stochastic three-species food web system with omnivory
and environmental pollution. First, by using stochastic analysis theory, we establish a suf-
ficient condition for the existence of a positive periodic solution of system (2). Next, we
investigate the condition of extinction and a.s. exponential stability of equilibrium E∗ un-
der some assumptions. Finally, some numerical simulations are introduced to support the
main results. In Sect. 4, we prove that if we control the environmental pollution within a
certain range, then system (2) can keep persistent existence, otherwise not. While small
noises have small influence on prey x(t) under the impact of the intrinsic growth rate, they
have large influence on middle-predator y(t) and omnivorous top-predator z(t). Further-
more, under a certain range of white noise and environmental pollution, species will go
to extinction, otherwise species will go into a periodic orbit under some certain pollution
when there is no influence of stochastic noise.
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Although there are many research works focusing on the condition of extinction and
exponential stability of a food web system, there are few works on the influence of both
stochastic noise and environment pollution, which do harm to the stability and persistent
existence. In general, inspired by [3] and [6], we finally obtain the conditions of existence of
periodic solutions, extinction, and exponential stability under some assumptions, which
is different from the existing conclusions.

To the best of our knowledge, there are many related recent literature works on frac-
tional integral [21–23] and derivative in the field of mathematical modeling and applied
sciences, such as [24–26]. In the near future, we will focus on the fractional order food
web model with stochastic noise and environmental pollution to find out the behavior of
system solution, which will extend the results of this work. Furthermore, there are also
other literature works on oscillations of periodic solutions in some timescale model, such
as [27, 28] and so on, which give us an open view of continuing to explore how timescale
impacts the behavior of system solution.
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