
Jafari et al. Advances in Difference Equations        (2021) 2021:435 
https://doi.org/10.1186/s13662-021-03588-2

R E S E A R C H Open Access

Operational matrices based on the shifted
fifth-kind Chebyshev polynomials for solving
nonlinear variable order integro-differential
equations
H. Jafari1,2,3, S. Nemati1* and R.M. Ganji1

*Correspondence:
s.nemati@umz.ac.ir
1Department of Applied
Mathematics, Faculty of
Mathematical Sciences, University
of Mazandaran, P.O. Box:
47416-95447, Babolsar, Iran
Full list of author information is
available at the end of the article

Abstract
In this research, we study a general class of variable order integro-differential
equations (VO-IDEs). We propose a numerical scheme based on the shifted fifth-kind
Chebyshev polynomials (SFKCPs). First, in this scheme, we expand the unknown
function and its derivatives in terms of the SFKCPs. To carry out the proposed scheme,
we calculate the operational matrices depending on the SFKCPs to find an
approximate solution of the original problem. These matrices, together with the
collocation points, are used to transform the original problem to form a system of
linear or nonlinear algebraic equations. We discuss the convergence of the method
and then give an estimation of the error. We end by solving numerical tests, which
show the high accuracy of our results.

Keywords: Shifted fifth-kind Chebyshev polynomials; Variable order; Nonlinear
integro-differential equations; Operational matrix; Convergence analysis

1 Introduction
Fractional calculus, which is a generalization of differentiation and integration from inte-
ger order to any arbitrary order, has attracted numerous researchers in engineering and
science [1–13]. Different problems in variety fields of applied science can be described
by fractional derivatives (FDs). Recently, Khan and Atangana [14] have modeled the dy-
namics of novel coronavirus (2019-nCov) with FD. Also, Ganji et al. [15] have simulated a
mathematical model of brain tumor involving fractional derivative.

Since the order of fractional integrals and derivatives may take any arbitrary value, a new
extension of these operators has been proposed such that the order of these operators is
not a constant but a function of some independent variables such as time or space. In
1993, Samko and Ross [16] were the first researchers who have suggested the study of VO
operators. Then theory-based studies of VO calculus have been more deeply investigated
by Lorenzo and Hartley [17]. Soon after, many definitions of VO derivative operators have
been introduced by some researchers such as Riemann–Liouville (RL) [18, 19], Lorenzo–
Hartley [17], Coimbra [20], and Caputo [2, 21] derivatives. These operators have been
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used to describe some models in a variety of science fields including biochemical tumor-
ous bone remodeling models [22], characterizing the dynamics of van der Pol oscillators
[23]; see also [24, 25]. Since in this type of problems, we confront with a kernel of VO
[26], computing analytical solutions is very difficult. Hence developing effective numeri-
cal techniques for finding approximate solution for such problems is very important and
necessary. In recent years, many researchers have proposed different schemes to solve this
kind of problems. To mention a few, we refer to [27–30], where the authors have applied
operational matrices based on various polynomials to get approximate solutions of differ-
ent problems of VO.

A significant aim of this research is to express a numerical scheme to solve the following
VO-IDEs:

CDυ(t)
t z(t) = λF

(
t, z(t),

∫ 1

0
K1(t, τ )φ1

(
τ , z(τ )

)
dτ ,

∫ t

0
K2(t, τ )φ2

(
τ , z(τ )

)
dτ

)
,

t ∈ [0, 1],
(1)

with initial conditions

z(i)(0) = ai, i = 0, 1, . . . , p – 1, (2)

where p – 1 < υ(t) ≤ p, p is a positive integer number, F is a given continuous function, λ

and ai, i = 0, 1, . . . , p – 1, are real constants, K1, K2, φ1, and φ2 are given known functions,
z(t) is the unknown solution, and CDυ(t)

t denotes the variable-order derivative operator in
the Caputo sense.

Many researchers in various fields of science employ orthogonal basis functions to get
approximate solutions for many problems [31–33]. The fifth-kind Chebyshev polynomials
consist a special class of symmetric orthogonal polynomials, which are created with the
help of the extended Sturm–Liouville theorem for symmetric functions. In this work, with
the help of these polynomials, we reduce problem (1)–(2) to the solution of a system of
nonlinear algebraic equations, which greatly simplifies the problem under study.

The design of this research is as follows. In Sect. 2, we introduce some essential defini-
tions of variable fractional calculus and some basic properties of the SFKCPs. Section 3 is
devoted to proposing a numerical scheme to solve problem (1)–(2). In Sect. 4, we study
an error bound of the proposed scheme. Section 5 includes some examples. In the end, we
give concluding remarks in Sect. 6.

2 Perliminaries
In this section, we present the definitions of VO RL-integral and Caputo derivative. Then,
some basic properties of the SFKCPs are given which are used later.

2.1 VO fractional calculus
Definition 2.1 (See [34]) Let p – 1 < υ(t) ≤ p and z ∈ C[0, 1]. The RL-integral and Caputo
derivative of VO υ(t) are, respectively, defined by

RLIυ(t)
t z(t) =

1
�(υ(t))

∫ t

0
(t – τ )υ(t)–1z(τ ) dτ ,

CDυ(t)
t z(t) =

1
�(p – υ(t))

∫ t

0
(t – τ )p–υ(t)–1z(p)(τ ) dτ .
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Two main properties of these operators are given as follows:

CDυ(t)
t tζ =

⎧⎨
⎩

�(ζ+1)
�(ζ–υ(t)+1) tζ–υ(t), ζ ∈N and ζ ≥ �υ(t)� or ζ /∈N and ζ > �υ(t)�,

0, ζ ∈N∪ {0} and ζ < �υ(t)�,
(3)

CDυ(t)
t z(t) = RLIp–υ(t)

t
(
z(p)(t)

)
.

2.2 Definition of the SFKCPs and function approximation
The SFKCPs on the interval [0, 1] are defined by [28, 35]

C∗
m(t) = Cm(2t – 1), m = 0, 1, 2, . . . ,

where Cm(t) is the fifth-kind Chebyshev polynomial defined on [–1, 1] as follows:

Cm(t) =
1√
δm

B(–3,2,–1,1)
m (t),

where

δm =

⎧⎨
⎩

π

22m+1 , m is even,
π (m+2)
m22m+1 , m is odd,

and

B(v,w,r,s)
m (t) =

(� m
2 �–1∏
k=0

(2k + (–1)m+1 + 2)s + w
(2k + (–1)m+1 + 2�m

2 �)r + v

)
B(v,w,r,s)

m (t),

with

B(v,w,r,s)
m (t) =

� m
2 �∑

j=0

((�m
2 �
j

)(� m
2 �–j–1∏
k=0

(2k + (–1)m+1 + 2�m
2 �)r + v

(2k + (–1)m+1 + 2)s + w

)
tm–2j

)
.

Furthermore, the analytic form of the SFKCPs of degree m is given by

C∗
m(t) =

m∑
l=0

ςl,mtl,

where

ςl,m =
22l+ 3

2√
π (2l)!

⎧⎪⎨
⎪⎩

2
∑m

2
k=� l+1

2 �
(–1)

m
2 +k–lkεk (2k+l–1)!

(2k–l)! , m is even,

1√
m(m+2)

∑m–1
2

k=� l
2 �

(–1)
m+1

2 +k–l(2k+1)2(2k+l)!
(2k–l+1)! , m is odd,

(4)

and

εk =

⎧⎨
⎩

1
2 , k = 0,

1, k > 0.
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Also, the orthogonality condition is given for these polynomials as follows:

∫ 1

0
w∗(t)C∗

r (t)C∗
s (t) dt =

⎧⎨
⎩

1, r = s,

0, r �= s,

where w∗(t) = (2t–1)2√
t–t2 .

Lemma 2.1 (See [35]) The SFKCPs satisfy the following boundedness property on [0, 1] for
all s ≥ 0:

∣∣C∗
s (t)

∣∣ <
√

2
π

(s + 2), ∀t ∈ [0, 1].

Suppose that r1, r2 ∈ L2
w∗ (0, 1). Then the inner product and norm in L2

w∗ (0, 1) are, respec-
tively, defined by

〈r1, r2〉w∗ =
∫ 1

0
w∗(t)r1(t)r2(t) dt,

‖r1‖2 =
√〈r1, r1〉w∗ .

Any arbitrary function z(t) ∈ L2
w∗ (0, 1) can be expanded by the SFKCPs as

z(t) =
∞∑
i=0

ziC∗
i (t). (5)

By considering only the first M + 1 terms in (5), we can approximate z(t) as

z(t) � zM(t) =
M∑
i=0

ziC∗
i (t) = ZTϕ(t),

where

ϕ(t) =
[
C∗

0 (t),C∗
1 (t), . . . ,C∗

M(t)
]T ,

and in the vector Z = [z0, z1, . . . , zM]T , the entries zi, i = 0, 1, . . . , M, are given by

zi =
∫ 1

0
w∗(t)z(t)C∗

i (t) dt. (6)

In a similar way, a bivariate function f (t, τ ) ∈ L2
w∗ ((0, 1) × (0, 1)) can be approximated

based on the SFKCPs as

f (t, τ ) �
M∑
i=0

M∑
j=0

fijC∗
i (t)C∗

j (τ ) = ϕT (t)Fϕ(τ ),

where F is an (M + 1) × (M + 1) matrix given by

F =
〈
ϕ(t),

〈
f (t, τ ),ϕ(τ )

〉
w∗
〉
w∗ .
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We can consider the vector ϕ(t) in a matrix form as

ϕ(t) = ATM(t), (7)

where A = [ai,j], i, j = 0, 1, . . . , M, with

ai,j =

⎧⎨
⎩

ςi,j, i ≥ j,

0, i < j,

ςi,j are given by (4), and

TM(t) =
[
1, t, . . . , tM]T .

Theorem 2.1 (See [35]) Suppose that z(t) ∈ L2
w∗ (0, 1) with |z(3)(t)| ≤ θ . Let

∑∞
i=0 ziC∗

i (t) be
its expansion using the SFKCPs. Then, for i > 3, the coefficient zi is bounded as

|zi| <
√

2πθ

2i3 .

Lemma 2.2 Consider the basis vector ϕ(t) defined by (7). By applying the first-order deriva-
tive on this vector we get

d
dt

ϕ(t) = Dϕ(t),

where D is the operational matrix of derivative based on the SFKCPs given by

D = A

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 2 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · M 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

A–1.

Also, for m ≥ 2, we can write

dm

dtm ϕ(t) = Dmϕ(t). (8)

Proof It can be easily proved in a similar way as that of the corresponding theorem in
[36]. �

Lemma 2.3 For the vector ϕ(t) given by (7), the dual operational matrix Q is given by

∫ 1

0
ϕ(τ )ϕT (τ ) dτ = A

(∫ 1

0
TM(τ )TT

M(τ ) dτ

)
AT = Q, (9)

where Q = AHAT with the well-known Hilbert matrix H .

Proof The proof process is similar to that given in [36]. �
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Lemma 2.4 The integral of the vector ϕ(t) given by (7) can be approximated as

∫ t

0
ϕ(τ ) dτ � Pϕ(t), (10)

where P is called the operational matrix of integration for the SFKCPs.

Proof Using (7), we write

∫ t

0
ϕ(τ ) dτ = A

∫ t

0
TM(τ ) dτ = ABT∗(t),

where B = [bi,j], i, j = 0, 1, . . . , M, is an (M + 1) × (M + 1) matrix with elements

bi,j =

⎧⎨
⎩

1
i+1 , i = j,

0, i �= j,

and

T∗(t) =
[
t, t2, . . . , tM+1

]T
.

Now, by approximating tk , k = 1, 2, . . . , M + 1, in terms of the SFKCPs using (7), we have

⎧⎨
⎩

tk = A–1
k+1ϕ(t), k = 1, 2, . . . , M,

tM+1 = LTϕ(t),

where A–1
i , i = 2, 3, . . . , M + 1, is the ith row of the matrix A–1, and L = 〈tM+1,ϕ(t)〉w∗ . Then,

we get

T∗(t) = Eϕ(t),

where E = [A–1
2 , A–1

3 , . . . , A–1
M+1,LT ]T . Therefore by taking P = ABE, we complete the

proof. �

Lemma 2.5 Suppose Z = [z0, z1, . . . , zM]T . Then Ẑ is the operational matrix of product
whenever

ϕ(t)ϕT (t)Z � Ẑϕ(t). (11)

Proof According to (7) and expanding the function C∗
i (t)C∗

j (t), i, j = 0, 1, . . . , M, we have

C∗
i (t)C∗

j (t) �
i+j∑

m=0

cmC∗
m(t),

where cm, m = 0, 1, . . . , i + j, can be computed as

cm =
i∑

k=0

j∑
l=0

m∑
s=0

ςi,kςj,lςm,s

∫ 1

0
w∗(t)tk+l+s dt = �i,j,m,
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with

�i,j,m =
i∑

k=0

j∑
l=0

m∑
s=0

√
π (3 + k2 + s(3 + s) + k(3 + 2s))�( 3

2 + k + s)
�(4 + k + s)

ςi,kςj,lςm,s.

By considering Z = [z0, z1, . . . , zM] and (6), we have

ϕ(t)ϕT (t)Z � Ẑϕ(t),

where the elements of Ẑ = [ẑi,j], i, j = 0, 1, . . . , M, are given by

ẑi,j =
M∑

m=0

�i,j,mzm. �

Theorem 2.2 Let ϕ(t) be the SFKCPs vector given in (7), and let p – 1 < υ(t) ≤ p. Then

CDυ(t)
t ϕ(t) = ϒυ(t)ϕ(t), (12)

where ϒυ(t) = A�υ(t)A–1 with

�υ(t) =
[
ρ

i,j
t
]
, i, j = 0, 1, . . . , M, (13)

and

ρ
i,j
t =

⎧⎨
⎩

�(i+1)
�(i+1–υ(t)) t–υ(t), i = j&i ≥ p,

0, otherwise.

Proof By employing CDυ(t)
t to both sides of (7), we get

CDυ(t)
t ϕ(t) = CDυ(t)

t
(
ATM(t)

)
= A

(CDυ(t)
t TM(t)

)
. (14)

Taking into account that p = �υ(t)� and using (3), (14) becomes

CDυ(t)
t ϕ(t) = A

[
0, 0, . . . , 0,

�(p + 1)
�(p + 1 – υ(t))

tp–υ(t), . . . ,
�(M + 1)

�(M + 1 – υ(t))
tM–υ(t)

]T

= A�υ(t)TM(t),

where �υ(t) is given as (13). Therefore from (7), we get

CDυ(t)
t ϕ(t) = ϒυ(t)υ(t),

with

ϒυ(t) = A�υ(t)A–1. �
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3 Numerical scheme
The aim of this section is to propose a numerical scheme for solving problem (1)–(2). To
do this, we first consider an approximate solution of equation (1) in terms of the SFKCPs
as

z(t) � ZTϕ(t). (15)

By employing CDυ(t)
t to both sides of (15) and using (12), we have

CDυ(t)
t z(t) = ZTϒυ(t)ϕ(t). (16)

Now we must approximate the Fredholm and Volterra parts of equation (1). To do this,
the functions K1, K2, φ1, and φ2 are expanded using the SFKCPs as

K1(t, τ ) � ϕT (t)K1ϕ(τ ),

K2(t, τ ) � ϕT (t)K2ϕ(τ ),

φ1
(
t, y(t)

)� HTϕ(t),

φ2
(
t, y(t)

)� STϕ(t).

(17)

From (9)–(11) and (17), we obtain

∫ 1

0
K1(t, τ )φ1

(
τ , y(τ )

)
dτ �

∫ 1

0
ϕT (t)K1ϕ(τ )ϕT (τ )H dτ

= ϕT (t)K1

(∫ 1

0
ϕ(τ )ϕT (τ ) dτ

)
H

= ϕT (t)K1QH , (18)
∫ t

0
K2(t, τ )φ2

(
τ , y(τ )

)
dτ �

∫ t

0
ϕT (t)K2ϕ(τ )ϕT (τ )S dτ

= ϕT (t)K2

∫ t

0
ϕ(τ )ϕT (τ )S dτ

= ϕT (t)K2

∫ t

0
Ŝϕ(τ ) dτ

= ϕT (t)K2̂S
∫ t

0
ϕ(τ ) dτ

= ϕT (t)K2̂SPϕ(t). (19)

Substituting (15), (16), (18), and (19) into equation (1) yields

ZTϒυ(t)ϕ(t) – λF
(
t, ZTϕ(t),ϕT (t)K1QH ,ϕT (t)K2̂SPϕ(t)

)
= 0. (20)

Taking (8) and (15) into account, we can rewrite the initial conditions (2) as follows:

ZT Diϕ(0) – ai = 0, i = 0, 1, . . . , p – 1. (21)
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On the other hand, by introducing the approximation z(t) � ZTϕ(t) into the functions φ1

and φ1 given by (17), we get

φ1
(
t, ZTϕ(t)

)
– HTϕ(t) = 0,

φ2
(
t, ZTϕ(t)

)
– STϕ(t) = 0.

(22)

To calculate the approximate solution, we put the collocation points r
M+2 for r = 1, . . . , M +

1 – p into equation (20). By solving simultaneously the resulting system and system (21),
we get an approximation of the solution using (15).

4 Convergence analysis
Here we consider the convergence of the approximate solution obtained by the proposed
scheme in Sect. 3 to the analytical solution of problem (1)–(2).

Theorem 4.1 (See [35]) Let z(t) ∈ L2
w∗ (0, 1) and suppose |z(3)(t)| ≤ θ with positive con-

stant θ . Suppose that the expansion of z in terms of the SFKCPs is given by (5). If En(t) =
z(t) – zM(t) =

∑∞
i=M+1 ziC∗

i (t) is the universal error, then En(t) can be evaluated as

∣∣EM(t)
∣∣ <

3θ

M
.

Theorem 4.2 Let zM(t) be the approximate solution of problem (1)–(2) obtained by the
proposed scheme in Sect. 3, let z(t) be its analytical solution, and RM(t) be the residual
error for the approximate solution. Also, suppose the Lipschitz conditions for the functions
F , φ1, and φ2 with respect to the confirmed constants L, L1, and L2, respectively. Then, if
z(t) satisfies the conditions of Theorem 4.1, then RM(t) tends to zero as M → ∞.

Proof By applying RLIυ(t)
t to both sides of equation (1), we can rewrite equation (1) as fol-

lows:

z(t) =
p–1∑
r=0

tr

r!
z(r)(0) + λRLIυ(t)

t F
[
z(t)

]
,

where

F
[
z(t)

]
= F

(
t, z(t), I1z(t), I2z(t)

)
,

with

I1z(t) =
∫ 1

0
K1(t, τ )φ1

(
τ , z(τ )

)
dτ ,

I2z(t) =
∫ t

0
K2(t, τ )φ2

(
τ , z(τ )

)
dτ .

So zM(t) satisfies the following equation:

zM(t) =
p–1∑
r=0

tr

r!
z(r)(0) + λRLIυ(t)

t F
[
zM(t)

]
+ RM(t),
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where RM(t) is the residual function given by

RM(t) = zM(t) – z(t) + λRLIυ(t)
t

(
F
[
z(t)

]
– F

[
zM(t)

])
.

Then we have

∣∣RM(t)
∣∣≤ ∣∣zM(t) – z(t)

∣∣ + |λ|∣∣F[
z(t)

]
– F

[
zM(t)

]∣∣
∣∣∣∣ tυ(t)

�(υ(t) + 1)

∣∣∣∣. (23)

Using Theorem 4.1, we have

∣∣zM(t) – z(t)
∣∣ <

3θ

M
. (24)

On the other hand, since p – 1 < υ(t) ≤ p, we have

∣∣∣∣ tυ(t)

�(υ(t) + 1)

∣∣∣∣≤ 5
4

. (25)

Since F , φ1, and φ2 satisfy the Lipschitz conditions, we can write

∣∣F[
z(t)

]
– F

[
zM(t)

]∣∣ ≤ L
(∣∣z(t) – zM(t)

∣∣ + I1
∣∣z(t) – zM(t)

∣∣ + I2
∣∣z(t) – zM(t)

∣∣)

< L
(

3θ

M
+

3θ

M
k1L1 +

3θ

M
k2L2

)

<
3θL
M

(1 + k1L1 + k2L2), (26)

where k1 = max(t,τ )∈(0,1)2 |K1(t, τ )| and k2 = max(t,τ )∈(0,1)2 |K2(t, τ )|. Substituting (24)–(26)
into (1) yields

∣∣RM(t)
∣∣ <

3θ

M

(
1 +

5
4
|λ|L(1 + k1L1 + K2L2)

)
.

Therefore it is clear that RM(t) tends to zero as M → ∞. �

5 Numerical examples
Now we apply the proposed scheme to some examples. For solving these examples, we
used the Mathematica software.

Example 5.1 Consider the following VO problem:

CDυ(t)
t z(t) =

∫ 1

0
(τ – t)z2(τ ) dτ +

∫ t

0
(τ + t)z3(τ ) dτ +

et(�(3 – υ(t)) – �(3 – υ(t), t))
�(3 – υ(t))

+
1

36
(
–13 + e3t(4 – 24t) – 6t + 9e2(–1 + 2t)

)
, t ∈ [0, 1],

under the initial conditions

z(0) = 1, z′(0) = 1, z′′(0) = 1,
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Figure 1 Numerical results obtained for Example 5.1. (a) υ(t) = sin2(t) + 2 (b) υ(t) = t
2 + 2

Table 1 Comparison of the absolute errors (AEs) for Example 5.1

υ(t) t M = 5 M = 6 M = 7

2 + sin2(t) 0.1 7.19412e–6 1.54664e–6 2.99341e–7
0.3 1.10636e–4 1.79715e–5 2.93344e–6
0.5 2.31202e–4 3.27628e–5 7.16227e–6
0.7 1.83256e–4 4.51147e–5 1.57474e–5
0.9 1.79488e–4 4.28828e–5 3.26010e–5

2 + t
2 0.1 6.93416e–6 1.50588e–6 2.89671e–7

0.3 1.09643e–4 1.84283e–5 2.93573e–6
0.5 2.41980e–4 3.64777e–5 7.18866e–6
0.7 2.20654e–4 5.38491e–5 1.56380e–5
0.9 2.02560e–4 6.62049e–5 3.11399e–5

in which �(·, ·) is the incomplete gamma function. We have solved this problem by dif-
ferent values of M for υ(t) = sin2(t) + 2, υ(t) = t

2 + 2, and the analytical solution z(t) = et .
Figure 1 and Table 1 display the numerical results. As it can be seen from these results, the
approximate solution obtained by the proposed scheme converges to the analytical one by
increasing the number of basis functions.

Example 5.2 Consider the following VO problem [37]:

CDυ(t)
t z(t) =

∫ 1

0
τ sin(t)z(τ ) dτ +

∫ t

0
(t – τ )z(τ ) dτ –

16t 27
4

621
–

25t
41
5

1476
–

299 sin(t)
1107

+
�( 23

4 )t 19
4 –υ(t)

�( 23
4 – υ(t))

+
�( 36

5 )t
31
5 –υ(t)

�( 36
5 – υ(t))

,

with

z(0) = 0,

where t ∈ [0, 1]. By considering υ(t) = t and carrying out the proposed scheme, the outputs
obtained for this problem are depicted together with the analytical solution (z(t) = t 19

4 +
t

31
5 ) in Fig. 2. From Fig. 2 it is clear that increasing the number of basis functions improves

the accuracy. Furthermore, in Table 2, we have compared the outputs obtained by the
proposed scheme with the method of [37] based on the Bernstein polynomials.
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Figure 2 Numerical results obtained for Example 5.2

Table 2 Comparison of the AEs for Example 5.2 with υ(t) = t

M t Proposed method Method of [37]

5 0.1 4.39175e–3 3.17089e–3
0.3 1.54003e–3 4.38223e–4
0.5 3.13373e–4 3.33008e–3
0.7 2.45949e–4 3.03242e–2
0.9 2.29803e–4 2.02549e–1

6 0.1 2.87601e–4 1.31233e–3
0.3 4.15540e–5 1.28026e–4
0.5 1.33728e–5 3.72545e–3
0.7 8.30744e–5 2.64696e–2
0.9 8.30885e–5 1.81576e–1

7 0.1 2.76736e–6 8.24676e–4
0.3 1.16055e–6 9.11265e–5
0.5 1.01844e–5 1.25615e–3
0.7 1.09912e–5 9.57862e–3
0.9 1.10564e–5 8.65824e–2

Example 5.3 Consider the following VO problem [38, 39]:

CDυ(t)
t z(t) =

2t2–υ(t)

�(3 – υ(t))
+

3t1–υ(t)

�(2 – υ(t))
, t ∈ [0, 1],

where

z(0) = 0.

The analytical solution is z(t) = t2 + 3t. By considering υ(t) = sin(t), t
2 and choosing M = 2,

we get

z0 =
31
16

√
π

2
, z1 =

3π

2
, z2 =

1
16

√
π

2
,

which gives the analytical solution. As it is seen, the proposed scheme gives the analytical
solution with M = 2 (only three basis functions) compared to the methods introduced in
[38–40]. Table 3 reports the maximum absolute errors (MAE) (E∞(M)) obtained in [38–
40].
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Table 3 Comparison of the MAE E∞(M) for Example 5.3

υ(t) M E∞(M) ([38]) E∞(M) ([39]) E∞(M) ([40])

sin(t) 4 2.47e–2 7.53e–7 2.87e–1
8 5.60e–3 3.16e–10 1.44e–1
16 1.33e–3 2.11e–10 7.26e–2

t
2 4 5.98e–3 1.20e–6 2.12e–1

8 1.42e–3 3.34e–9 1.06e–1
16 3.47e–4 1.08e–10 5.30e–2

6 Conclusion
In this research, we have generalized a collocation method including the shifted fifth-kind
Chebyshev polynomials to numerically solve variable order integro-differential equations
in the Caputo sense. For finding approximate solutions of the considered equations, we
have used the properties of the shifted fifth-kind Chebyshev polynomials. In addition,
by applying the collocation points, we have changed the primary problem to solving a
system of algebraic equations to get an approximate solution. Also, we have discussed the
convergence of the numerical solution obtained by the proposed scheme. Eventually, the
efficiency and suitability of the proposed scheme are displayed by solving some problems
of variable order.
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