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Abstract
By introducing some parameters perturbed by white noises, we propose a class of
stochastic inertial neural networks in random environments. Constructing two
Lyapunov–Krasovskii functionals, we establish the mean-square exponential
input-to-state stability on the addressed model, which generalizes and refines the
recent results. In addition, an example with numerical simulation is carried out to
support the theoretical findings.
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1 Introduction
Recently, Babcock and Westervelt [1, 2] have introduced the well-known inertial neural
networks that take the following second-order delay differential equations:

x′′
i (t) = –aix′

i(t) – bixi(t) +
n∑

j=1

cijfj
(
xj(t)

)

+
n∑

j=1

dijgj
(
xj(t – τj)

)
+ Ii(t), i ∈ J = {1, 2, . . . , n}, (1.1)

to discover the complicated dynamic behavior of electronic neural networks. Here the
initial conditions are defined as

xi(s) = ψi(s),

x′
i(s) = ψ ′

i (s), –τ ≤ s ≤ 0,ψi ∈ C1([–τ , 0],R
)
, i ∈ J , τ = max

j∈J
{τj},

(1.2)

where x(t) = (x1(t), x2(t), . . . , xn(t)) is the state vector, x′′
i (t) is called the ith inertial term,

the positive parameters ai, bi, the nonnegative parameters τj, and the other parame-
ters cij, dij are all constant, Ii(t) is the external input of ith neuron at time t and I =
(I1(t), I2(t), . . . , In(t)) ∈ �∞, where �∞ denotes the family of essential bounded functions
I from [0,∞) to R

n with norm ‖I‖∞ = ess supt≥0

√∑n
i=1 I2

i (t). The activation functions fj
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and gj satisfy fj(0) = gj(0) = 0 and Lipschitz conditions, i.e., there exist positive constants
Fj and Gj such that

∣∣fj(u) – fj(v)
∣∣ ≤ Fj|u – v|, ∣∣gj(u) – gj(v)

∣∣ ≤ Gj|u – v| for all u, v ∈R. (1.3)

There are two main methods to study inertial neural network (1.1). One is the so-called
reduced order method that has been adopted to study Hopf bifurcation [3–8], stability
of equilibrium point [9–13] and periodicity [14–16], synchronization [17–21] and dissi-
pativity [22, 23]. The other is the non-reduced order method that can overcome the great
increase of dimension, and many researchers have used this approach to consider dynamic
behaviors of (1.1) and its generalizations [22–36].

However, both reduced order and non-reduced order methods involve only determinis-
tic inertial neural networks, do not incorporate stochastic inertial neural networks under
the effect of environmental fluctuations. Remarkably, Haykin [37] has pointed out that
synaptic transmission, caused by random fluctuations in neurotransmitter release and
other probabilistic factors, is a noisy process in real nervous systems and in the imple-
mentation of artificial neural networks, hence one should take into consideration noise in
modeling since it is unavoidable.

Assume that the parameter bi (i ∈ J) is affected by environmental noise, with bi →
bi – σi dBi(t), where Bi(t) is independent white noise (i.e., standard Brownian motion)
with Bi(0) = 0 defined on a complete probability space (�, {Ft}t≥0,P), σ 2

i denotes noise
intensity. Then, corresponding to inertial neural network (1.1), we obtain the following
stochastic system:

dx′
i(t) =

[
–aix′

i(t) – bixi(t) +
n∑

j=1

cijfj
(
xj(t)

)
+

n∑

j=1

dijgj
(
xj(t – τj)

)
+ Ii(t)

]
dt

+ σixi(t) dBi(t), i ∈ J . (1.4)

Obviously, the white noise disturbance term σixi(t) dBi(t) will induce randomness such
that the traditional deterministic inertial neural network (1.1) becomes stochastic system
(1.4). One difficulty of this paper is to process white noise disturbances and the other
is to introduce a suitable concept of stability to explain the dynamics of (1.4) precisely.
The main aim of this paper is to investigate the mean-square exponential input-to-state
stability of stochastic inertial neural network (1.4) with initial conditions (1.2). Input-to-
state stability, different from the traditional stability such as asymptotical stability, almost
sure stability, and exponential stability that means the system states will converge to an
equilibrium point as time tends to infinity, can describe the system states varying within a
certain region under external control. For more details about input-to-state stability, one
can refer to [38–42]. However, as far as we know, almost no one has studied mean-square
exponential input-to-state stability of stochastic inertial neural networks.

The remaining part of this paper includes four sections. In Sect. 2, we give the main re-
sult: several sufficient conditions that ensue the stochastic inertial neural network (1.4) is
mean-square exponentially input-to-state stable. In Sect. 3, we provide numerical exam-
ples to check the effectiveness of the developed result. Finally, we summarize and evaluate
our work in Sect. 4.
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2 Mean-square exponential stability
Although Wang and Chen [43] have studied the mean-square exponential stability of
stochastic inertial neural network (1.4) with two groups of different initial conditions
(1.2), it is not appropriate to mean-square exponentially input-to-state stability. Fortu-
nately, motivated by Zhu and Cao [38], who introduced the definition of the mean-square
exponential input-to-state stability for stochastic delayed neural networks, together with
the mean-square exponential stability (Wang and Chen [43]), we present the following
definition.

Definition 2.1 Let x(t,ψ) = (x1(t), x2(t), . . . , xn(t)) be a solution of (1.4) with initial con-
ditions (1.2) ψ(s) = (ψ1(s),ψ2(s), . . . ,ψn(s)). The stochastic inertial neural network (1.4) is
said to be mean-square exponentially input-to-state stable if there exist positive constants
λ, η, and K such that

E
(∥∥x(t,ψ)

∥∥2 +
∥∥x′(t,ψ)

∥∥2) ≤ Ke–λt + η‖I‖2
∞ for all t ≥ 0,

where ‖ • ‖ means square norm.

Theorem 2.1 Under assumptions (1.3), the stochastic inertial neural network (1.4) is
mean-square exponentially input-to-state stable if there exist positive constants βi, β̄i, and
nonzero constants αi, γi, ᾱi, γ̄i, i ∈ J such that

Ai < 0, Bi < 0, 4AiBi > C2
i (2.1)

and

Āi < 0, B̄i < 0, 4ĀiB̄i > C̄2
i , (2.2)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai = –α2
i ai + αiγi + 1

2α2
i
∑n

j=1(|cij|Fj + |dij|Gj + 1),

Bi = –αiγibi + 1
2α2

i σ
2
i + 1

2
∑n

j=1(α2
j + |αjγj|)(|dji|Gieλτi + |cji|Fi)

+ 1
2 |αiγi|(∑n

j=1 |dij|Gj + 1),

Ci = βi + γ 2
i – α2

i bi – αiγiai,

Āi = –(β̄i + ᾱ2
i )ai + ᾱiγ̄i + 1

2 (β̄i + ᾱ2
i )(

∑n
j=1 |cij|Fj +

∑n
j=1 |dij|Gj + 1),

B̄i = 1
2 (β̄i + ᾱ2

i )σ 2
i – ᾱiγ̄ibi + 1

2
∑n

j=1(β̄j + ᾱ2
j + |ᾱjγ̄j|)(|dji|Gi + |cji|Fi)

+ 1
2 |ᾱiγ̄i|(∑n

j=1 |dij|Gj + 1),

C̄i = –β̄ibi – ᾱ2
i bi – ᾱiγ̄iai + γ̄ 2

i .

Proof Let x(t) = (x1(t), x2(t), . . . , xn(t)) be a solution of stochastic system (1.4) with initial
values (1.2) such that xi(s) = ψi(s), x′

i(s) = ψ ′
i (s), s ∈ [–τ , 0], i ∈ J . In view of (2.1) and (2.2),

for i ∈ J , we can find a sufficient little positive number λ such that

Aλ
i < 0, Bλ

i < 0, 4Aλ
i Bλ

i >
(
Cλ

i
)2 (2.3)
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and

Āλ
i < 0, B̄λ

i < 0, 4Āλ
i B̄λ

i >
(
C̄λ

i
)2, (2.4)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aλ
i = –α2

i (ai – λ
2 ) + αiγi + 1

2α2
i (

∑n
j=1 |cij|Fj +

∑n
j=1 |dij|Gj + 1),

Bλ
i = –αiγibi + 1

2α2
i σ

2
i + λ

2 (βi + γ 2
i )

+ 1
2
∑n

j=1(α2
j + |αjγj|)(|dji|Gieλτi + |cji|Fi) + 1

2 |αiγi|(∑n
j=1 |dij|Gj + 1),

Cλ
i = βi + γ 2

i – α2
i bi – αiγi(ai – λ),

Āλ
i = –(β̄i + ᾱ2

i )(ai – λ
2 ) + ᾱiγ̄i + 1

2 (β̄i + ᾱ2
i )(

∑n
j=1 |cij|Fj +

∑n
j=1 |dij|Gj + 1),

B̄λ
i = 1

2 γ̄ 2
i λ + 1

2 (β̄i + ᾱ2
i )σ 2

i – ᾱiγ̄ibi,

+ 1
2
∑n

j=1(β̄j + ᾱ2
j + |ᾱjγ̄j|)(|dji|Gieλτi + |cji|Fi) + 1

2 |ᾱiγ̄i|(∑n
j=1 |dij|Gj + 1),

C̄λ
i = –β̄ibi – ᾱ2

i bi – ᾱiγ̄i(ai – λ) + γ̄ 2
i .

Then we construct the following two Lyapunov–Krasovskii functionals:

U(t) =
n∑

i=1

βix2
i (t)eλt +

n∑

i=1

(
αix′

i(t) + γixi(t)
)2eλt

+
n∑

i=1

n∑

j=1

(
α2

i + |αiγi|
)|dij|Gjeλτj

∫ t

t–τj

x2
j (s)eλs ds

and

V (t) =
n∑

i=1

β̄i
(
x′

i(t)
)2eλt +

n∑

i=1

(
ᾱix′

i(t) + γ̄ixi(t)
)2eλt

+
n∑

i=1

n∑

j=1

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)|dij|Gjeλτj

∫ t

t–τj

x2
j (s)eλs ds.

Using Itô’s formula, we obtain the following stochastic differential:

dU(t) = LU(t) dt +
n∑

i=1

2
(
α2

i σixi(t)x′
i(t) + αiγiσix2

i (t)
)
eλt dBi(t) (2.5)

and

dV (t) = LV (t) dt +
n∑

i=1

2
((

β̄i + ᾱ2
i
)
σixi(t)x′

i(t) + ᾱiγ̄iσix2
i (t)

)
eλt dBi(t), (2.6)

where L is the weak infinitesimal operator such that

LU(t) = 2
n∑

i=1

[(
βi + γ 2

i – α2
i bi – αiγi(ai – λ)

)
xi(t)x′

i(t)

+
(

αiγi – α2
i

(
ai –

λ

2

))(
x′

i(t)
)2
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+
(

1
2
α2

i σ
2
i +

λ

2
(
βi + γ 2

i
)

– αiγibi

)
x2

i (t)
]

eλt

+
n∑

i=1

n∑

j=1

(
α2

i + |αiγi|
)|dij|Gjeλτj x2

j (t)eλt

–
n∑

i=1

n∑

j=1

(
α2

i + |αiγi|
)|dij|Gjx2

j (t – τj)eλt

+ 2
n∑

i=1

n∑

j=1

(
α2

i x′
i(t) + αiγixi(t)

)
eλtcijfj

(
xj(t)

)

+ 2
n∑

i=1

n∑

j=1

(
α2

i x′
i(t) + αiγixi(t)

)
eλtdijgj

(
xj(t – τj)

)

+ 2
n∑

i=1

(
α2

i x′
i(t) + αiγixi(t)

)
eλtIi(t)

≤ 2
n∑

i=1

[(
βi + γ 2

i – α2
i bi – αiγi(ai – λ)

)
xi(t)x′

i(t)

+
(

αiγi – α2
i

(
ai –

λ

2

))(
x′

i(t)
)2

+
(

1
2
α2

i σ
2
i +

λ

2
(
βi + γ 2

i
)

– αiγibi

)
x2

i (t)
]

eλt

+
n∑

i=1

n∑

j=1

(
α2

i + |αiγi|
)|dij|Gjeλτj x2

j (t)eλt

–
n∑

i=1

n∑

j=1

(
α2

i + |αiγi|
)|dij|Gjx2

j (t – τj)eλt

+ 2
n∑

i=1

n∑

j=1

(
α2

i
∣∣x′

i(t)
∣∣ + |αiγi|

∣∣xi(t)
∣∣)eλt|cij|

∣∣fj
(
xj(t)

)
– fj(0)

∣∣

+ 2
n∑

i=1

n∑

j=1

(
α2

i
∣∣x′

i(t)
∣∣ + |αiγi|

∣∣xi(t)
∣∣)eλt|dij|

∣∣gj
(
xj(t – τj)

)
– gj(0)

∣∣

+ 2
n∑

i=1

(
α2

i
∣∣x′

i(t)
∣∣ + |αiγi|

∣∣xi(t)
∣∣)eλt∣∣Ii(t)

∣∣

≤ 2
n∑

i=1

[(
βi + γ 2

i – α2
i bi – αiγi(ai – λ)

)
xi(t)x′

i(t)

+
(

αiγi – α2
i

(
ai –

λ

2

))(
x′

i(t)
)2

+
(

1
2
α2

i σ
2
i +

λ

2
(
βi + γ 2

i
)

– αiγibi

)
x2

i (t)
]

eλt

+
n∑

i=1

n∑

j=1

(
α2

i + |αiγi|
)|dij|Gjeλτj x2

j (t)eλt
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–
n∑

i=1

n∑

j=1

(
α2

i + |αiγi|
)|dij|Gjx2

j (t – τj)eλt

+ 2
n∑

i=1

n∑

j=1

(
α2

i
∣∣x′

i(t)
∣∣ + |αiγi|

∣∣xi(t)
∣∣)eλt|cij|Fj

∣∣xj(t)
∣∣

+ 2
n∑

i=1

n∑

j=1

(
α2

i
∣∣x′

i(t)
∣∣ + |αiγi|

∣∣xi(t)
∣∣)eλt|dij|Gj

∣∣xj(t – τj)
∣∣

+ 2
n∑

i=1

(
α2

i
∣∣x′

i(t)
∣∣ + |αiγi|

∣∣xi(t)
∣∣)eλt∣∣Ii(t)

∣∣

≤ 2
n∑

i=1

[(
βi + γ 2

i – α2
i bi – αiγi(ai – λ)

)
xi(t)x′

i(t)

+
(

αiγi – α2
i

(
ai –

λ

2

))(
x′

i(t)
)2

+
(

1
2
α2

i σ
2
i +

λ

2
(
βi + γ 2

i
)

– αiγibi

)
x2

i (t)
]

eλt

+
n∑

i=1

n∑

j=1

(
α2

i + |αiγi|
)|dij|Gjeλτj x2

j (t)eλt

–
n∑

i=1

n∑

j=1

(
α2

i + |αiγi|
)|dij|Gjx2

j (t – τj)eλt

+
n∑

i=1

n∑

j=1

[
(α2

i
((

x′
i(t)

)2 + x2
j (t)

)
+ |αiγi|

(
x2

i (t) + x2
j (t)

)]
eλt|cij|Fj

+
n∑

i=1

n∑

j=1

[
α2

i
((

x′
i(t)

)2 + x2
j (t – τj)

)
+ |αiγi|

(
x2

i (t) + x2
j (t – τj)

)]
eλt|dij|Gj

+
n∑

i=1

[
α2

i
((

x′
i(t)

)2 + I2
i (t)

)
+ |αiγi|

(
x2

i (t) + I2
i (t)

)]
eλt

=
n∑

i=1

[
2
(
βi + γ 2

i – α2
i bi – αiγiai(ai – λ)

)
xi(t)x′

i(t)

+

(
–α2

i (2ai – λ) + 2αiγi + α2
i

( n∑

j=1

|cij|Fj +
n∑

j=1

|dij|Gj + 1

))
(
x′

i(t)
)2

+

(
–2αiγibi + α2

i σ
2
i + λ

(
βi + γ 2

i
)

+
n∑

j=1

(
α2

j + |αjγj|
)(|dji|Gieλτi + |cji|Fi

)

+ |αiγi|
( n∑

j=1

|dij|Gj + 1

))
x2

i (t)

]
eλt +

n∑

i=1

(
α2

i + |αiγi|
)
I2

i (t)eλt

=
n∑

i=1

[
2Aλ

i

(
x′

i(t) +
Cλ

i
2Aλ

i
xi(t)

)2

+ 2
(

Bλ
i –

(Cλ
i )2

4Aλ
i

)
x2

i (t)
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+
n∑

i=1

(
α2

i + |αiγi|
)
I2

i (t)

]
eλt

≤
n∑

i=1

[
2Aλ

i

(
x′

i(t) +
Cλ

i
2Aλ

i
xi(t)

)2

+ 2
(

Bλ
i –

(Cλ
i )2

4Aλ
i

)
x2

i (t)
]

eλt

+ eλt max
i∈J

(
α2

i + |αiγi|
)‖I‖2

∞() (2.7)

and

LV (t) =
n∑

i=1

[
2
(
–β̄ibi – ᾱ2

i bi – ᾱiγ̄i(ai – λ) + γ̄ 2
i
)
xi(t)x′

i(t)

+ 2
(

–
(
β̄i + ᾱ2

i
)(

ai –
λ

2

)
+ ᾱiγ̄i

)(
x′

i(t)
)2

+
(
γ̄ 2

i λ +
(
β̄i + ᾱ2

i
)
σ 2

i – 2ᾱiγ̄ibi
)
x2

i (t)
]

eλt

+
n∑

i=1

n∑

j=1

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)|dij|Gjeλτj x2

j (t)eλt

–
n∑

i=1

n∑

j=1

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)|dij|Gjx2

j (t – τj)eλt

+ 2
n∑

i=1

n∑

j=1

((
β̄i + ᾱ2

i
)
x′

i(t) + ᾱiγ̄ixi(t)
)
cijfj

(
xj(t)

)
eλt

+ 2
n∑

i=1

n∑

j=1

((
β̄i + ᾱ2

i
)
x′

i(t) + ᾱiγ̄ixi(t)
)
dijgj

(
xj(t – τj)

)
eλt

+ 2
n∑

i=1

((
β̄i + ᾱ2

i
)
x′

i(t) + ᾱiγ̄ixi(t)
)
Ii(t)eλt

≤
n∑

i=1

[
2
(
–β̄ibi – ᾱ2

i bi – ᾱiγ̄i(ai – λ) + γ̄ 2
i
)
xi(t)x′

i(t)

+ 2
(

–
(
β̄i + ᾱ2

i
)(

ai –
λ

2

)
+ ᾱiγ̄i

)(
x′

i(t)
)2

+
(
γ̄ 2

i λ +
(
β̄i + ᾱ2

i
)
σ 2

i – 2ᾱiγ̄ibi
)
x2

i (t)
]

eλt

+
n∑

i=1

n∑

j=1

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)|dij|Gjeλτj x2

j (t)eλt

–
n∑

i=1

n∑

j=1

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)|dij|Gjx2

j (t – τj)eλt

+ 2
n∑

i=1

n∑

j=1

((
β̄i + ᾱ2

i
)∣∣x′

i(t)
∣∣ + |ᾱiγ̄i|

∣∣xi(t)
∣∣)eλt|cij|

∣∣fj
(
xj(t)

)
– fj(0)

∣∣

+ 2
n∑

i=1

n∑

j=1

((
β̄i + ᾱ2

i
)∣∣x′

i(t)
∣∣ + |ᾱiγ̄i|

∣∣xi(t)
∣∣)eλt|dij|

∣∣gj
(
xj(t – τj)

)
– gj(0)

∣∣
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+ 2
n∑

i=1

((
β̄i + ᾱ2

i
)∣∣x′

i(t)
∣∣ + |ᾱiγ̄i|

∣∣xi(t)
∣∣)eλt∣∣Ii(t)

∣∣

≤
n∑

i=1

[
2
(
–β̄ibi – ᾱ2

i bi – ᾱiγ̄i(ai – λ) + γ̄ 2
i
)
xi(t)x′

i(t)

+ 2
(

–
(
β̄i + ᾱ2

i
)(

ai –
λ

2

)
+ ᾱiγ̄i

)(
x′

i(t)
)2

+
(
γ̄ 2

i λ +
(
β̄i + ᾱ2

i
)
σ 2

i – 2ᾱiγ̄ibi
)
x2

i (t)
]

eλt

+
n∑

i=1

n∑

j=1

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)|dij|Gjeλτj x2

j (t)eλt

–
n∑

i=1

n∑

j=1

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)|dij|Gjx2

j (t – τj)eλt

+ 2
n∑

i=1

n∑

j=1

((
β̄i + ᾱ2

i
)∣∣x′

i(t)
∣∣ + |ᾱiγ̄i|

∣∣xi(t)
∣∣)eλt|cij|Fj

∣∣xj(t)
∣∣

+ 2
n∑

i=1

n∑

j=1

((
β̄i + ᾱ2

i
)∣∣x′

i(t)
∣∣ + |ᾱiγ̄i|

∣∣xi(t)
∣∣)eλt|dij|Gj

∣∣xj(t – τj)
∣∣

+ 2
n∑

i=1

((
β̄i + ᾱ2

i
)∣∣x′

i(t)
∣∣ + |ᾱiγ̄i|

∣∣xi(t)
∣∣)eλt∣∣Ii(t)

∣∣

≤
n∑

i=1

[
2
(
–β̄ibi – ᾱ2

i bi – ᾱiγ̄i(ai – λ) + γ̄ 2
i
)
xi(t)x′

i(t)

+ 2
(

–
(
β̄i + ᾱ2

i
)(

ai –
λ

2

)
+ ᾱiγ̄i

)(
x′

i(t)
)2

+
(
γ̄ 2

i λ +
(
β̄i + ᾱ2

i
)
σ 2

i – 2ᾱiγ̄ibi
)
x2

i (t)
]

eλt

+
n∑

i=1

n∑

j=1

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)|dij|Gjeλτj x2

j (t)eλt

–
n∑

i=1

n∑

j=1

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)|dij|Gjx2

j (t – τj)eλt

+
n∑

i=1

n∑

j=1

[(
β̄i + ᾱ2

i
)((

x′
i(t)

)2 + x2
j (t)

)
+ |ᾱiγ̄i|

(
x2

i (t) + x2
j (t)

)]
eλt|cij|Fj

+
n∑

i=1

n∑

j=1

[(
β̄i + ᾱ2

i
)((

x′
i(t)

)2 + x2
j (t – τj)

)

+ |ᾱiγ̄i|
(
x2

i (t) + x2
j (t – τj)

)]
eλt|dij|Gj

+
n∑

i=1

[(
β̄i + ᾱ2

i
)((

x′
i(t)

)2 + I2
i (t)

)
+ |ᾱiγ̄i|

(
x2

i (t) + I2
i (t)

)]
eλt

=
n∑

i=1

[
2
(
–β̄ibi – ᾱ2

i bi – ᾱiγ̄i(ai – λ) + γ̄ 2
i
)
xi(t)x′

i(t)
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+

(
–
(
β̄i + ᾱ2

i
)
(2ai – λ) + 2ᾱiγ̄i

+
(
β̄i + ᾱ2

i
)
( n∑

j=1

|cij|Fj +
n∑

j=1

|dij|Gj + 1

))
(
x′

i(t)
)2

+

(
γ̄ 2

i λ +
(
β̄i + ᾱ2

i
)
σ 2

i – 2ᾱiγ̄ibi

+
n∑

j=1

(
β̄j + ᾱ2

j + |ᾱjγ̄j|
)(|dji|Gieλτi + |cji|Fi

)

+ |ᾱiγ̄i|
( n∑

j=1

|dij|Gj + 1

))
x2

i (t)

]
eλt +

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)
I2

i (t)eλt

=
n∑

i=1

[
2B̄λ

i

(
xi(t) +

C̄λ
i

2B̄λ
i

x′
i(t)

)2

+ 2
(

Āλ
i –

(C̄λ
i )2

4B̄λ
i

)(
x′

i(t)
)2

+
(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)
I2

i (t)
]

eλt

≤
n∑

i=1

[
2B̄λ

i

(
xi(t) +

C̄λ
i

2B̄λ
i

x′
i(t)

)2

+ 2
(

Āλ
i –

(C̄λ
i )2

4B̄λ
i

)(
x′

i(t)
)2

]
eλt

+ eλt max
i∈J

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)‖I‖2

∞. (2.8)

Integrating both sides of (2.5), (2.6) and taking the expectation operator, we obtain from
(2.3), (2.4), (2.7), and (2.8) that

EU(t) ≤ U(0) + ‖I‖2
∞ max

i∈J

(
α2

i + |αiγi|
)∫ t

0
eλs ds (2.9)

and

EV (t) ≤ V (0) + ‖I‖2
∞ max

i∈J

(
β̄i + ᾱ2

i + |ᾱiγ̄i|
)∫ t

0
eλs ds. (2.10)

Choosing γ = maxi∈J{α2
i + |αiγi|, β̄i + ᾱ2

i + |ᾱiγ̄i|} and β = mini∈J{βi, β̄i}, we obtain from (2.9)
and (2.10) that

βeλtE

( n∑

i=1

x2
i (t)

)
≤ EU(t) ≤ U(0) +

γ

λ
‖I‖2

∞
(
eλt – 1

)
(2.11)

and

βeλtE

( n∑

i=1

(
x′

i(t)
)2

)
≤ EV (t) ≤ V (0) +

γ

λ
‖I‖2

∞
(
eλt – 1

)
. (2.12)

Combining (2.11) and (2.12), the following holds:

E
(∥∥x(t)

∥∥2 +
∥∥x′(t)

∥∥2) ≤ U(0) + V (0)
β

e–λt +
2γ

βλ
‖I‖2

∞,
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which, together with Definition 2.1, implies that the stochastic inertial neural network
(1.4) is mean-square exponentially input-to-state stable. This completes the proof of The-
orem 2.1. �

Remark 2.1 From Definition 2.1, it is obvious that if stochastic inertial neural networks are
mean-square exponentially input-to-state stable, the second moments of states and their
first-order derivatives will remain bounded, but not converge to the equilibrium point.
This reveals that the external inputs influence the dynamics of the stochastic inertial neu-
ral networks, and when they are bounded, the second moments of states and their first-
order derivatives remain bounded. In Theorem 2.1, we derive some sufficient conditions
for stochastic inertial neural network (1.4) to ensure the mean-square exponential input-
to-state stability. To the best of our knowledge, it is the first time to consider the mean-
square exponential input-to-state stability for stochastic inertial neural networks. Since
references [1–18] and [20–36] are concerned with the deterministic inertial neural net-
works, Prakash et al. [19] only consider synchronization of Markovian jumping inertial
neural networks, and the authors of [38–42] only study input-to-state stability of non-
inertial neural networks. Those results are invalid for mean-square exponential input-to-
state stability of stochastic inertial neural network (1.4).

3 An illustrative example
In order to verify correctness and effectiveness of the theoretical results, we show an ex-
ample with numerical simulations.

Example 3.1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx′
1(t) = [–3x′

1(t) – 8x1(t) + 1.2f1(x1(t)) + 1.5f2(x2(t))

– 0.8g1(x1(t – 2)) + 1.9g2(x2(t – 2)) + 6 cos t] dt + x1(t) dB1(t),

dx′
2(t) = [–4x′

2(t) – 10x2(t) – 0.9f1(x1(t)) – 1.7f2(x2(t))

– 2.5g1(x1(t – 2)) + 2.1g2(x2(t – 2)) + 7 sin t] dt + x2(t) dB2(t),

(3.1)

where fi(u) = gi(u) = 0.25(|u + 1| – |u – 1|), i = 1, 2.
Choosing α1 = α2 = γ1 = γ2 = 1, β1 = 8, β2 = 9, ᾱ1 = 1

10 , ᾱ2 = 1
4 , γ̄1 = 10, γ̄2 = 4, β̄1 = 1.1,

β̄2 = 1, we obtain A1 = –0.65, A2 = –1.2, B1 = –2.95, B2 = –3.6, C1 = –2, C2 = –4, Ā1 =
–0.7715, Ā2 = –1.3375, B̄1 = –1.757, B̄2 = –4.2219, C̄1 = 0.82, C̄2 = 0.14. Then (2.1) and
(2.2) hold. Therefore, by Theorem 2.1, we see that the stochastic inertial neural network
(3.1) is mean-square exponentially input-to-state stable. Furthermore, Fig. 1 shows this
fact.

4 Concluding remarks
In this paper, we have studied the mean-square exponential input-to-state stability for a
class of stochastic inertial neural networks. By applying non-reduced order method and
Lyapunov–Krasovskii functional, we have obtained several sufficient conditions to guar-
antee the mean-square exponential input-to-state stability of the suggested stochastic sys-
tem, which has been considered by few authors. An example and its numerical simulation
have been presented to check the theoretical result well.
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Figure 1 The states and their first-order derivatives of (3.1) with initial values
(x1(s), x2(s), x′1(s), x′2(s)) = (1, –3, 0, 0), s ∈ [–2, 0]
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