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Abstract
In this research paper, we improve some fractional integral inequalities of
Minkowski-type. Precisely, we use a proportional fractional integral operator with
respect to another strictly increasing continuous function ψ . The functions used in
this work are bounded by two positive functions to get reverse Minkowski
inequalities in a new sense. Moreover, we introduce new fractional integral
inequalities which have a close relationship to the reverse Minkowski-type
inequalities via ψ -proportional fractional integral, then with the help of this fractional
integral operator, we discuss some new special cases of reverse Minkowski-type
inequalities through this work. An open issue is covered in the conclusion section to
extend the current findings to be more general.
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1 Introduction
During their uncompromising effort in the expansion of mathematics, mathematicians
have recently expanded the traditional calculus of derivatives and integrals for integer or-
ders to the generalized form of conventional derivatives and integrals of noninteger order,
these noninteger-order derivatives/integrals are referred to as fractional calculus, which
during a few previous decades became one of very influential branches of mathematics,
especially, when dealing with the differential/integral equations and inequalities.

The fractional calculus theory became important due to its significant applications in
several areas such as physics, fluid dynamics, control theory, computer networking, sig-
nal processing, biology, image processing, and other areas. One of the common tools of
researchers is the use of fractional derivative/integral operators and, consequently, numer-
ous distinct fractional derivatives/integrals have been introduced, such as the Riemann–
Liouville, Liouville, Weyl-type, Katugampola, Hadamard, Atangana–Baleanu, propor-
tional fractional integral, and some other kinds, which can be found in the monograph of
Kilbas et al. [1]. In [2], the authors presented very diverse properties in the framework of
generalized fractional operators with respect to another function. In addition, these opera-
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tors were used to perform qualitative analysis of fractional differential equations and some
epidemiological models, see [3–10]. Numerical analysis of fractional differential equations
and some new concepts in fractional calculus have been extensively investigated recently,
and a variety of interesting results on the topic have been established; for instance, see [11–
13]. On the other hand, we refer here to some works related to the proportional fractional
operator that we will work on; see [14–17].

No one can deny the crucial importance of inequalities in mathematics; in particular,
in classical integral and differential equations, they play a meaningful role. Therefore, not
too long ago, many helpful and remarkable mathematical inequalities were introduced by
several authors. One mathematical inequality which has wide applications was given by
Hermann Minkowski. This inequality, in the last few decades, has received considerable
attention from several researchers, and many articles have appeared in the literature. In
(2006), Bougoffa presented the classical integral version of Minkowski inequality as fol-
lows:

Theorem 1.1 ([18]) Consider positive functions η, ς in Lz[s,ω] with z ∈ [1,∞). Assume
that 0 < q ≤ η(κ)

ς (κ) ≤ Q, κ ∈ [s,ω], where q, Q ∈R
∗
+. Then we have

(∫ ω

s
ηz(ω) dω

) 1
z

+
(∫ ω

s
ς z(ω) dω

) 1
z
≤ (2 + q)Q + 1

(1 + Q)(1 + q)

(∫ ω

s
(η + ς )z(ω) dω

) 1
z
. (1.1)

In the same work, the author gave also the following inequality:

Theorem 1.2 ([18]) For positive functions η, ς in Lz[s,ω] with z ∈ [1,∞), assume that
0 < q ≤ η(κ)

ς (κ) ≤ Q, κ ∈ [s,ω], where q, Q ∈R
∗
+. Then we have

(∫ ω

s
ηz(ω) dω

) 2
z

+
(∫ ω

s
ς z(ω) dω

) 2
z

≥
(

(1 + Q)(1 + q)
Q

– 2
)(∫ ω

s
ηz(ω) dω

) 1
z
(∫ ω

s
ς z(ω) dω

) 1
z
. (1.2)

The fractional integral version of the reverse Minkowski inequality with constants
bounds was given in 2010 by Dahmani [19], and in same work he also gave the fractional
integral version of (1.2) as follows:

Theorem 1.3 Let θ > 0, z ≥ 1. For positive functions η, ς on [0,∞), we have for all ω > 0,
and Iθηz(ω),Iθς z(ω) < ∞, that if 0 < q ≤ η(κ)

ς (κ) ≤ Q, κ ∈ [0,ω], then

(
Iθηz(ω) dω

) 1
z +

(
Iθς z(ω) dω

) 1
z ≤ (2 + q)Q + 1

(1 + Q)(1 + q)
(
Iθ (η + ς )z(ω) dω

) 1
z . (1.3)

Theorem 1.4 Let θ > 0, z ≥ 1. For positive functions η, ς on [0,∞), we have for all ω > 0,
and Iθηz(ω),Iθς z(ω) < ∞, that if 0 < q ≤ η(κ)

ς (κ) ≤ Q, κ ∈ [0,ω], then

(
Iθηz(ω) dω

) 2
z +

(
Iθς z(ω) dω

) 2
z

≥
(

(1 + Q)(1 + q)
Q

– 2
)(

Iθηz(ω) dω
) 1

z
(
Iθς z(ω) dω

) 1
z . (1.4)
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Erhan et al. [20] in 2010 presented reverse Minkowski and Hermite–Hadamard in-
equalities involving two functions for the classical Riemann integral. In 2012, Yang [21]
introduced a new fractional quantum integral Minkowski inequality and other inequali-
ties employing a fractional q-integral on the specific time scale. In 2013, Taf with Brahim
[22] and Chinchane with Pachpatte [23] used the Hadamard fractional integral opera-
tor to establish the reverse Minkowski’s inequality. Vanterler et al. [24] in 2018 employed
Katugampola fractional integral operator to establish reverse Minkowski inequality and
other related inequalities. In 2019, Rahman et al. [25] presented the reverse Minkowski’s
inequality, and they also established some other fractional integral inequalities by using
generalized proportional fractional integral operators. In 2020, the reverse Minkowski in-
equalities were studied by Aljaaidi and Pachpatte [26] via the Riemann–Liouville operator
with respect to the positive monotone function ϕ. In the same year, Rashid et al. [27]
presented a note on reverse Minkowski inequalities by using a generalized proportional
fractional operator involving another function. It should be noted that in that year also
Maga et al. [28] employed Mittag-Leffler function with the corresponding fractional in-
tegral to introduce new Minkowski-type inequalities. For more about some recent and
earlier results related to the Minkowski inequalities, we point the readers to [29–36].

The fractional integral reverse Minkowski inequality with functional bounds is given by
Aljaaidi and Pachpatte [37] by employing the Riemann–Liouville operator as follows:

Theorem 1.5 ([37]) Consider positive functions η, ς on [0,∞) with Iθηz(ω),Iθς z(ω) < ∞,
∀ω ∈ [0,∞) and for all θ > 0, z ≥ 1. Let ψ be a positive and strictly increasing continuous
function. Assume that Ł, ϕ are positive functions such that 0 < Ł(ε) ≤ η(κ)

ς (κ) ≤ ϕ(ε), κ , ε ∈
[0,ω]. Then we have

[
Iθηz(ω)

] 1
z +

[
Iθς z(ω)

] 1
z

≤ 
(θ + 1)
ωθ

{
Iθ

(
ϕ(ω)

ϕ(ω) + 1

)
+ Iθ

(
1

Ł(ω) + 1

)}[
Iθ (η + ς )z(ω)

] 1
z . (1.5)

In the same work, the authors gave also the following inequality:

Theorem 1.6 ([37]) Consider positive functions η, ς on [0,∞) with Iθηz(ω),Iθς z(ω) < ∞,
∀ω ∈ [0,∞) and for all θ > 0, z ≥ 1. Let ψ be a positive and strictly increasing continuous
function. Assume that Ł, ϕ are positive functions such that 0 < Ł(ε) ≤ η(κ)

ς (κ) ≤ ϕ(ε), κ , ε ∈
[0,ω]. Then we have

[
Iθηz(ω)

] 2
z +

[
Iθς z(ω)

] 2
z

≥
{


2(θ + 1)
ω2θ

Iθ

(
ϕ(ω) + 1

ϕ(ω)

)
Iθ

(
Ł(ω) + 1

)
– 2

}[
Iθηz(ω)

] 1
z
[
Iθς z(ω)

] 1
z . (1.6)

Motivated by the results mentioned above, in particular, Theorems 1.5 and 1.6, we strive
in our recent work to employ a generalized proportional fractional integral with respect
to a strictly increasing continuous function ψ to establish the functional bounds in the
reverse Minkowski type inequalities in terms of the fractional integral. Moreover, we in-
troduce new functional bounds in fractional inequalities which are related to the reverse
Minkowski’s inequality employing the ψ-proportional fractional operator. During this
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work, we will enrich the research by discussing some special cases related to the current
work.

We organized this paper as follows: in Sect. 2, we invoke some definitions, results, no-
tations, and precursory information which we will employ throughout this work. Sec-
tion 3 is devoted to essential results of reverse Minkowski’s inequalities involving func-
tional bounds. In Sect. 4, we give some other related results which include proportional
fractional integral with respect to another strictly increasing continuous function.

2 Essential preliminaries
Here, we present some elementary definitions and properties of some basic fractional in-
tegral operators and present the fractional integral operator utilized to obtain our new
results.

Definition 2.1 ([1]) Consider an integrable function η on [s, t] and let s ≥ 0. We define,
for all θ > 0,

Iθ
s+η(ω) =

1

(θ )

∫ ω

s
(ω – κ)θ–1η(κ) dκ , κ > s, (2.1)

and

Iθ
t–η(ω) =

1

(θ )

∫ t

ω

(κ – ω)θ–1η(κ) dκ , ω < t, (2.2)

where 
(θ ) =
∫ ∞

0 e–xxδ–1 dx is the Gamma function and I0
s+η(ω) = I0

t–η(ω) = η(ω); Iθ
s+ and

Iθ
t– are called the left- and right-sided Riemann–Liouville fractional integrals, respectively.

Definition 2.2 ([1, 38]) For an integrable function η on the interval ϒ and for an increas-
ing function ψ , where ψ(ω) ∈ C1(ϒ ,R) is such that ψ ′(ω) 	= 0, ω ∈ ϒ , we define, for all
θ > 0,

Iθ ;ψ
s+ η(ω) =

1

(θ )

∫ ω

s
ψ ′(κ)

[
ψ(ω) – ψ(κ)

]θ–1
η(κ) dκ (2.3)

and

Iθ ;ψ
t– η(ω) =

1

(θ )

∫ t

ω

ψ ′(κ)
[
ψ(κ) – ψ(ω)

]θ–1
η(κ) dκ , (2.4)

where Iθ ;ψ
s+ η(ω) and Iθ ;ψ

t– η(ω) are called the left- and right-sided ψ-Riemann–Liouville
fractional integrals of a function η, respectively.

Definition 2.3 ([39]) Consider an integrable function η and let υ > 0. We define, for all
θ ∈C, Re(θ ) ≥ 0,

(
sDθ ,υη

)
(ω) = Dm,υ

sIm–θ ,υη(ω) (2.5)

=
Dm,υ

ω

υm–θ
(m – θ )

∫ ω

s
exp

[
υ – 1

υ
(ω – κ)

]
(ω – κ)m–θ–1η(κ) dκ
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and

(
Dθ ,υ

t η
)
(ω) = γ Dm,υIm–θ ,υ

t η(ω) (2.6)

= γ Dm,υ
ω

υm–θ
(m – θ )

∫ t

ω

exp

[
υ – 1

υ
(κ – ω)

]
(κ – ω)m–θ–1η(κ) dκ ,

where

Dm,υ = DυDυ · · ·Dυ︸ ︷︷ ︸
m-times

, m =
[
Re(θ )

]
+ 1,

and

(
γ Dυη

)
(ω) = (1 – υ)η(ω) – υη′(ω), γ Dm,υ = γ Dυ

γ Dυ · · ·γ Dυ

︸ ︷︷ ︸
m-times

;

(sDθ ,υη)(ω) and (Dθ ,υ
t η)(ω) are called the left- and right-sided proportional fractional

derivatives of a function η of order θ , respectively.

Definition 2.4 ([39]) Consider an integrable function η and let υ > 0. We define, for all
θ ∈C, Re(θ ) ≥ 0,

(
sIθ ,υη

)
(ω) =

1
υθ
(θ )

∫ ω

s
exp

[
υ – 1

υ
(ω – κ)

]
(ω – κ)θ–1η(κ) dκ (2.7)

and

(
Iθ ,υ

t η
)
(ω) =

1
υθ
(θ )

∫ t

ω

exp

[
υ – 1

υ
(κ – ω)

]
(κ – ω)θ–1η(κ) dκ , (2.8)

where (sIθ ,υη)(ω) and (Iθ ,υ
t η)(ω) are called the left- and right-sided proportional fractional

integrals of a function η of order θ , respectively.

Definition 2.5 ([40]) Consider an integrable function η and a strictly increasing contin-
uous function ψ on [s, t], and let υ ∈ (0, 1]. We define, for all θ ∈C, Re(θ ) ≥ 0,

(
ψ
s Dθ ,υη

)
(ω) = ψDm,υψ

s Im–θ ,υη(ω) (2.9)

=
ψDm,υ

ω

υm–θ
(m – θ )

∫ ω

s
exp

[
υ – 1

υ

(
ψ(ω) – ψ(κ)

)]

× (
ψ(ω) – ψ(κ)

)m–θ–1
ψ ′(κ)η(κ) dκ

and

(
ψDθ ,υ

t η
)
(ω) = ψ

γ Dm,υψIm–θ ,υ
t η(ω) (2.10)

=
ψ
γ Dm,υ

ω

υm–θ
(m – θ )

∫ t

ω

exp

[
υ – 1

υ

(
ψ(κ) – ψ(ω)

)]

× (
ψ(κ) – ψ(ω)

)m–θ–1
ψ ′(κ)η(κ) dκ ,
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where

ψDm,υ = ψDυψDυ · · ·ψDυ︸ ︷︷ ︸
m-times

, m =
[
Re(θ )

]
+ 1,

and

(
ψ
γ Dυη

)
(ω) = (1 – υ)η(ω) – υ

η′(ω)
ψ ′(ω)

, ψ
γ Dm,υ = ψ

γ Dυψ
γ Dυ · · ·ψ

γ Dυ

︸ ︷︷ ︸
m-times

;

(ψs Dθ ,υη)(ω) and (ψDθ ,υ
t η)(ω) are called respectively the left- and right-sided proportional

fractional derivatives of a function η with respect to the function ψ of order θ .

Definition 2.6 ([40]) Consider an integrable function η and a strictly increasing contin-
uous function ψ on [s, t], and let υ ∈ (0, 1]. We define, for all θ ∈C, Re(θ ) ≥ 0,

(
ψ
s Iθ ,υη

)
(ω) =

1
υθ
(θ )

∫ ω

s
exp

[
υ – 1

υ

(
ψ(ω) – ψ(κ)

)]

× (
ψ(ω) – ψ(κ)

)θ–1
ψ ′(κ)η(κ) dκ (2.11)

and

(
ψIθ ,υ

t η
)
(ω) =

1
υθ
(θ )

∫ t

ω

exp

[
υ – 1

υ

(
ψ(κ) – ψ(ω)

)]

× (
ψ(κ) – ψ(ω)

)θ–1
ψ ′(κ)η(κ) dκ , (2.12)

where (ψs Iθ ,υη)(ω) and (ψIθ ,υ
t η)(ω) are called respectively the left- and right-sided propor-

tional fractional integrals of a function η with respect to the function ψ of order θ .

Lemma 2.1 ([40]) Let ψ be a continuous function on ω ≥ s. If υ ∈ (0, 1] and Re(θ ), Re(μ) >
0, then we have

ψ
s Iθ ,υ(

ψ
s Iμ,υη

)
(ω) = ψ

s Iμ,υ(
ψ
s Iθ ,υη

)
(ω) =

(
ψ
s Iθ+μ,υη

)
(ω), (2.13)

ψIθ ,υ
t

(
ψIμ,υ

t η
)
(ω) = ψIμ,υ

t
(
ψIθ ,υ

t η
)
(ω) =

(
ψIθ+μ,υ

t η
)
(ω). (2.14)

Lemma 2.2 ([40]) Let ψ be an integrable functions defined on [s,ω] or for ω > s. If 0 ≤ m <
[Re(θ )] + 1, then we have

ψDm,υ(
ψ
s Iθ ,υη

)
(ω) =

(
ψ
s Iθ–m,υη

)
(ω), (2.15)

ψ
γ Dm,υ(

ψIθ ,υ
t η

)
(ω) =

(
ψIθ–m,υ

t η
)
(ω). (2.16)

This paper is concerned with the use of left-sided ψ-proportional fractional integrals
(2.11) to obtain the main results.
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3 Reverse Minkowski’s inequalities for fractional integral
This part is concerned with our main results on the generalization and development of
Minkowski’s and related inequalities with the help of proportional fractional integral op-
erator with respect to another strictly increasing continuous function ψ .

First, in order to state our results, we compute the left-sided ψ-proportional fractional
integral for any constant as follows:

Let υ ∈ (0, 1], θ ∈C, Re(θ ) ≥ 0, and ψ be a strictly increasing continuous function. Then
for any constant k, we have

(
ψ
s Iθ ,υk

)
(ω) =

(ψ(ω) – ψ(s))θ

υθ
(θ + 1)
k. (3.1)

Theorem 3.1 Consider positive functions η, ς on [0,∞) with ψ
s Iθ ,υηz(ω), ψ

s Iθ ,υς z(ω) < ∞,
∀ω ∈ [0,∞) and for all υ ∈ (0, 1], θ ∈ C, Re(θ ) ≥ 0, z ≥ 1. Let ψ be a strictly increasing
continuous function. Assume that Ł, ϕ are two positive functions such that 0 < Ł(ε) ≤ η(κ)

ς (κ) ≤
ϕ(ε), κ , ε ∈ [s,ω]. Then we have

[
ψ
s Iθ ,υηz(ω)

] 1
z +

[
ψ
s Iθ ,υς z(ω)

] 1
z

≤ υθ
(θ + 1)
(ψ(ω) – ψ(s))θ

{
ψ
s Iθ ,υ

(
ϕ(ω)

ϕ(ω) + 1

)
+ ψ

s Iθ ,υ
(

1
Ł(ω) + 1

)}

×(
ψ
s Iθ ,υ (η + ς )z(ω)

) 1
z . (3.2)

Proof Due to the assumption η(κ)
ς (ε) ≤ ϕ(ε); κ , ε ∈ [s,ω], we can write

[
ϕ(ε) + 1

]z
ηz(κ) ≤ ϕz(ε)(η + ς )z(κ), (3.3)

and from the assumption Ł(ε) ≤ η(κ)
ς (ε) ; κ , ε ∈ [s,ω], we have

(
1 +

1
Ł(ε)

)z

ς z(κ) ≤
(

1
Ł(ε)

)z

(η + ς )z(κ). (3.4)

Multiplying both sides of (3.3) and (3.4) by 1
υθ 
(θ ) × exp[ υ–1

υ (ψ(ω)–ψ(κ))]
(ψ(ω)–ψ(κ))1–θ ψ ′(κ), κ < ω, then

integrating the results with respect to κ over (s,ω), we respectively get

[ϕ(ε) + 1]z

υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(κ))]
(ψ(ω) – ψ(κ))1–θ

ψ ′(κ)ηz(κ) dκ (3.5)

≤ ϕz(ε)
υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(κ))]
(ψ(ω) – ψ(κ))1–θ

ψ ′(κ)(η + ς )z(κ) dκ

and

(
1 +

1
Ł(ε)

)z 1
υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(κ))]
(ψ(ω) – ψ(κ))1–θ

ψ ′(κ)ς z(κ) dκ

≤
(

1
Ł(ε)

)z 1
υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(κ))]
(ψ(ω) – ψ(κ))1–θ

ψ ′(κ)(η + ς )z(κ) dκ . (3.6)
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So we have

[
ϕ(ε) + 1

]zψ
s Iθ ,υηz(ω) ≤ ϕz(ε)ψs Iθ ,υ (η + ς )z(ω)

and
(

1 +
1

Ł(ε)

)z
ψ
s Iθ ,υς z(ω) ≤

(
1

Ł(ε)

)z
ψ
s Iθ ,υ (η + ς )z(ω),

which can be written as

(
ψ
s Iθ ,υηz(ω)

) 1
z ≤ ϕ(ε)

ϕ(ε) + 1
(
ψ
s Iθ ,υ(η + ς )z(ω)

) 1
z (3.7)

and

(
ψ
s Iθ ,υς z(ω)

) 1
z ≤ 1

Ł(ε) + 1
(
ψ
s Iθ ,υ(η + ς )z(ω)

) 1
z . (3.8)

Analogously, multiplying both sides of (3.7) and (3.8) by 1
υθ 
(θ ) × exp[ υ–1

υ (ψ(ω)–ψ(ε))]
(ψ(ω)–ψ(ε))1–θ ψ ′(ε),

ε < ω, then integrating the results with respect to ε over (s,ω), we respectively obtain

(
ψ
s Iθ ,υηz(ω)

) 1
z 1
υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(ε))]
(ψ(ω) – ψ(ε))1–θ

ψ ′(ε) dε

≤ (
ψ
s Iθ ,υ (η + ς )z(ω)

) 1
z 1
υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(ε))]
(ψ(ω) – ψ(ε))1–θ

ψ ′(ε)ϕ(ε)
ϕ(ε) + 1

dε

and

(
ψ
s Iθ ,υς z(ω)

) 1
z 1
υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(ε))]
(ψ(ω) – ψ(ε))1–θ

ψ ′(ε) dε

≤ (
ψ
s Iθ ,υ (η + ς )z(ω)

) 1
z 1
υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(ε))]
(ψ(ω) – ψ(ε))1–θ

ψ ′(ε)
Ł(ε) + 1

dε,

which yields

(ψ(ω) – ψ(s))θ

υθ
(θ + 1)
(
ψ
s Iθ ,υηz(ω)

) 1
z ≤ ψ

s Iθ ,υ
(

ϕ(ω)
ϕ(ω) + 1

)(
ψ
s Iθ ,υ (η + ς )z(ω)

) 1
z (3.9)

and

(ψ(ω) – ψ(s))θ

υθ
(θ + 1)
(
ψ
s Iθ ,υς z(ω)

) 1
z ≤ ψ

s Iθ ,υ
(

1
Ł(ω) + 1

)(
ψ
s Iθ ,υ (η + ς )z(ω)

) 1
z . (3.10)

Consequently, the addition of (3.9) and (3.10) completes the proof. �

As a special case, the following corollary is a two-parameter version of Theorem 3.1.

Corollary 3.1 Consider positive functions η, ς on [0,∞) with ψ
s Iθ ,υηz(ω), ψ

s Iθ ,υς z(ω) < ∞,
∀ω ∈ [0,∞) and for all υ ∈ (0, 1], θ ,μ ∈ C, Re(θ ), Re(μ) ≥ 0, z ≥ 1. Let ψ be a strictly
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increasing continuous function. Assume that Ł, ϕ are two positive functions such that 0 <
Ł(ε) ≤ η(κ)

ς (κ) ≤ ϕ(ε), κ , ε ∈ [s,ω]. Then we have

[
ψ
s Iθ ,υηz(ω)

] 1
z +

[
ψ
s Iθ ,υς z(ω)

] 1
z

≤ υμ
(μ + 1)
(ψ(ω) – ψ(s))μ

{
ψ
s Iμ,υ

(
ϕ(ω)

ϕ(ω) + 1

)
+ ψ

s Iμ,υ
(

1
Ł(ω) + 1

)}

× (
ψ
s Iθ ,υ(η + ς )z(ω)

) 1
z . (3.11)

Proof We can easily prove (3.11) by multiplying both sides of (3.7) and (3.8) by

1
υμ
(μ)

× exp[ υ–1
υ

(ψ(ω) – ψ(ε))]
(ψ(ω) – ψ(ε))1–μ

ψ ′(ε), ε < ω,

then integrating the results with respect to ε over (s,ω). We can conclude the proof using
the same argument as that in the proof of Theorem 3.1. �

The next theorem is as follows:

Theorem 3.2 Consider positive functions η, ς on [0,∞) with ψ
s Iθ ,υηz(ω), ψ

s Iθ ,υς z(ω) < ∞,
∀ω ∈ [0,∞) and for all υ ∈ (0, 1], θ ∈ C, Re(θ ) ≥ 0, z ≥ 1. Let ψ be a strictly increasing
continuous function. Assume that Ł, ϕ are two positive functions such that 0 < Ł(ε) ≤ η(κ)

ς (κ) ≤
ϕ(ε), κ , ε ∈ [s,ω]. Then we have

(
ψ
s Iθ ,υηz(ω)

) 2
z +

(
ψ
s Iθ ,υς z(ω)

) 2
z

≥
{[

υ2θ
2(θ + 1)
(ψ(ω) – ψ(s))2θ

]
ψ
s Iθ ,υ

(
ϕ(ω) + 1

ϕ(ω)

)
ψ
s Iθ ,υ(

Ł(ω) + 1
)

– 2
}

× (
ψ
s Iθ ,υηz(ω)

) 1
z
(
ψ
s Iθ ,υς z(ω)

) 1
z .

(3.12)

Proof Here, to get started, we reformulate inequalities (3.7) and (3.8), respectively, as

ϕ(ε) + 1
ϕ(ε)

(
ψ
s Iθ ,υηz(ω)

) 1
z ≤ (

ψ
s Iθ ,υ(η + ς )z(ω)

) 1
z (3.13)

and

(
Ł(ε) + 1

)(
ψ
s Iθ ,υς z(ω)

) 1
z ≤ (

ψ
s Iθ ,υ (η + ς )z(ω)

) 1
z . (3.14)

Multiplying both sides of (3.13) and (3.14) by 1
υθ 
(θ ) × exp[ υ–1

υ (ψ(ω)–ψ(ε))]
(ψ(ω)–ψ(ε))1–θ ψ ′(ε), ε < ω, then

integrating the results with respect to ε over (s,ω), we respectively obtain

[
υθ
(θ + 1)

(ψ(ω) – ψ(s))θ

]
ψ
s Iθ ,υ

(
ϕ(ω) + 1

ϕ(ω)

)(
ψ
s Iθ ,υηz(ω)

) 1
z ≤ (

ψ
s Iθ ,υ (η + ς )z(ω)

) 1
z (3.15)

and
[

υθ
(θ + 1)
(ψ(ω) – ψ(s))θ

]
ψ
s Iθ ,υ(

Ł(ω) + 1
)(

ψ
s Iθ ,υς z(ω)

) 1
z ≤ (

ψ
s Iθ ,υ (η + ς )z(ω)

) 1
z . (3.16)
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Now, taking the product of corresponding parts of inequalities (3.15) and (3.16), we obtain

[
υ2θ
2(θ + 1)

(ψ(ω) – ψ(s))2θ

]
ψ
s Iθ ,υ

(
ϕ(ω) + 1

ϕ(ω)

)
ψ
s Iθ ,υ(

Ł(ω) + 1
)(

ψ
s Iθ ,υηz(ω)

) 1
z
(
ψ
s Iθ ,υς z(ω)

) 1
z

≤ ((
ψ
s Iθ ,υ(η + ς )z(ω)

) 1
z
)2. (3.17)

On the right-hand side of (3.17), we apply Minkowski inequality to obtain

((
ψ
s Iθ ,υ (η + ς )z(ω)

) 1
z
)2 ≤ ((

ψ
s Iθ ,υηz(ω)

) 1
z +

(
ψ
s Iθ ,υς z(ω)

) 1
z
)2,

which yields

((
ψ
s Iθ ,υ(η + ς )z(ω)

) 1
z
)2 ≤ (

ψ
s Iθ ,υηz(ω)

) 2
z +

(
ψ
s Iθ ,υς z(ω)

) 2
z

+ 2
(
ψ
s Iθ ,υηz(ω)

) 1
z
(
ψ
s Iθ ,υς z(ω)

) 1
z .

(3.18)

By matching inequality (3.17) with (3.18), we obtain the required inequality (3.12). �

Remark 3.1
(i) In Theorems 3.1 and 3.2, putting υ = 1 and ψ(ω) = ω (∀ω ∈ [s, t], s = 0), we get

Theorems 3.1 and 3.3, respectively, proved in [37].
(ii) In Theorems 3.1 and 3.2, putting s = 0, υ = 1, Ł(ω) = q, and ϕ(ω) = Q, ψ(ω) = ω

(∀ω ∈ [s, t] where q, Q are constants), we get Theorems 2.1 and 2.3, respectively,
introduced by Dahmani [19].

(iii) Applying Theorems 3.1 and 3.2 with θ = 1, υ = 1, ψ(ω) = ω, Ł(ω) = q, and ϕ(ω) = Q
on [s, w], we obtain Theorem 1.2 introduced by Bougoffa [18] and Theorem 2.2
proved by Set et al. [20], respectively.

4 Other related ψ -proportional fractional integral inequalities
This section is devoted to deducing some fractional integral inequalities in the case of
functional boundaries, which are close to the fractional Minkowski integral inequalities.

Theorem 4.1 Consider positive functions η, ς on [0,∞) with ψ
s Iθ ,υηz(ω), ψ

s Iθ ,υς z(ω) < ∞,
∀ω ∈ [0,∞) and for all υ ∈ (0, 1], θ ∈ C, Re(θ ) ≥ 0, z, l ≥ 1, z, l ∈ R

∗
+ where 1

z + 1
l = 1. Let

ψ be a strictly increasing continuous function. Assume that Ł, ϕ are two positive functions
such that 0 < Ł(ε) ≤ η(κ)

ς (κ) ≤ ϕ(ε), κ , ε ∈ [s,ω]. Then we have

ψ
s Iθ ,υ(ης )(ω) ≤

[
2λ–1υθ
(θ + 1)
z(ψ(ω) – ψ(s))θ

]
ψ
s Iθ ,υ

(
ϕz(ω)

[ϕ(ω) + 1]z

)
ψ
s Iθ ,υ[

ηz(ω) + ς z(ω)
]

+
[

2λ–1υθ
(θ + 1)
l(ψ(ω) – ψ(s))θ

]
ψ
s Iθ ,υ

(
1

(Ł(ω) + 1)l

)
ψ
s Iθ ,υ[

ηl(ω) + ς l(ω)
]
.

(4.1)

Proof Due to the assumption η(κ)
ς (ε) ≤ ϕ(ε); κ , ε ∈ [s,ω], we can write

[
ϕ(ε) + 1

]z
ηz(κ) ≤ ϕz(ε)(η + ς )z(κ), (4.2)
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and from the assumption Ł(ε) ≤ η(κ)
ς (ε) ; κ , ε ∈ [s,ω], we obtain

(
Ł(ε) + 1

)l
ς l(κ) ≤ (η + ς )l(κ). (4.3)

Multiplying both sides of (4.2) and (4.3) by 1
υθ 
(θ ) × exp[ υ–1

υ (ψ(ω)–ψ(κ))]
(ψ(ω)–ψ(κ))1–θ ψ ′(κ), κ < ω, then

integrating the results with respect to κ over (s,ω), we respectively get

ψ
s Iθ ,υηz(ω) ≤

(
ϕz(ε)

[ϕ(ε) + 1]z

)
ψ
s Iθ ,υ (η + ς )z(ω) (4.4)

and

ψ
s Iθ ,υς l(ω) ≤

(
1

(Ł(ε) + 1)l

)
ψ
s Iθ ,υ(η + ς )l(ω). (4.5)

Again, multiplying both sides of (4.4) and (4.5) by 1
υθ 
(θ ) × exp[ υ–1

υ (ψ(ω)–ψ(ε))]
(ψ(ω)–ψ(ε))1–θ ψ ′(ε), ε < ω,

then integrating the results with respect to ε over (s,ω), we respectively obtain

ψ
s Iθ ,υηz(ω) ≤

[
υθ
(θ + 1)

(ψ(ω) – ψ(s))θ

]
ψ
s Iθ ,υ

(
ϕz(ω)

[ϕ(ω) + 1]z

)
ψ
s Iθ ,υ(η + ς )z(ω) (4.6)

and

ψ
s Iθ ,υς l(ω) ≤

[
υθ
(θ + 1)

(ψ(ω) – ψ(s))θ

]
ψ
s Iθ ,υ

(
1

(Ł(ω) + 1)l

)
ψ
s Iθ ,υ (η + ς )l(ω). (4.7)

Now, considering Young’s inequality [10],

η(κ)ς (κ) ≤ ηz(κ)
z

+
ς l(κ)

l
. (4.8)

Multiplying both sides of (4.8) by 1
υθ 
(θ ) × exp[ υ–1

υ (ψ(ω)–ψ(κ))]
(ψ(ω)–ψ(κ))1–θ ψ ′(κ), κ < ω, then integrating

the result with respect to κ over (s,ω), we get

ψ
s Iθ ,υ (ης )(ω) ≤ 1

z
ψ
s Iθ ,υηz(ω) +

1
l

ψ
s Iθ ,υς l(ω). (4.9)

Inequalities (4.6), (4.7), and (4.9) lead to

ψ
s Iθ ,υ(ης )(ω) ≤ 1

z
ψ
s Iθ ,υηz(ω) +

1
l

ψ
s Iθ ,υς l(ω)

≤
[

υθ
(θ + 1)
z(ψ(ω) – ψ(s))θ

]
ψ
s Iθ ,υ

(
ϕz(ω)

[ϕ(ω) + 1]z

)
ψ
s Iθ ,υ (η + ς )z(ω)

+
[

υθ
(θ + 1)
l(ψ(ω) – ψ(s))θ

]
ψ
s Iθ ,υ

(
1

(Ł(ω) + 1)l

)
ψ
s Iθ ,υ(η + ς )l(ω).

(4.10)

Now, due to the inequality (� + �)λ ≤ 2λ–1(�λ + �λ), λ > 1, �,� ≥ 0, we can write

ψ
s Iθ ,υ (η + ς )z(ω) ≤ 2λ–1ψ

s Iθ ,υ[
ηz(ω) + ς z(ω)

]
(4.11)
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and

ψ
s Iθ ,υ (η + ς )l(ω) ≤ 2λ–1ψ

s Iθ ,υ[
ηl(ω) + ς l(ω)

]
. (4.12)

By substituting inequalities (4.11) and (4.12) into (4.10), we obtain inequality (4.1), which
ends the proof. �

Theorem 4.2 Consider positive functions η, ς on [0,∞) with ψ
s Iθ ,υηz(ω), ψ

s Iθ ,υς z(ω) < ∞,
∀ω ∈ [0,∞) and for all υ ∈ (0, 1], θ ∈ C, Re(θ ) ≥ 0, z ≥ 1. Let ψ be a strictly increasing
continuous function. Assume that Ł, ϕ are two positive functions such that 0 < � < Ł(ε) ≤
η(κ)
ς (κ) ≤ ϕ(ε), κ , ε ∈ [s,ω]. Then we have

υθ
(θ + 1)
(ψ(ω) – ψ(s))θ

{
ψ
s Iθ ,υ

(
1

(ϕ(ω) – �)

)
+ ψ

s Iθ ,υ
(

Ł(ω)
Ł(ω) – �

)}[
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z] 1

z

≤ (
ψ
s Iθ ,υς z(ω)

) 1
z +

(
ψ
s Iθ ,υηz(ω)

) 1
z

≤ υθ
(θ + 1)
(ψ(ω) – ψ(s))θ

{
ψ
s Iθ ,υ

(
1

(Ł(ω) – �)

)
+ ψ

s Iθ ,υ
(

ϕ(ω)
ϕ(ω) – �

)}

× [
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z] 1

z . (4.13)

Proof Due to the assumption 0 < � < Ł(ε) ≤ η(κ)
ς (κ) ≤ ϕ(ε), we can write

Ł(ε) ≤ η(κ)
ς (κ)

≤ ϕ(ε) 
⇒ Ł(ε) – � ≤ η(κ)
ς (κ)

– � ≤ ϕ(ε) – �.

So

Ł(ε) – � ≤ η(κ) – �ς (κ)
ς (κ)

≤ ϕ(ε) – �,

which leads to

(η(κ) – �ς (κ))z

(ϕ(ε) – �)z ≤ ς z(κ) ≤ (η(κ) – �ς (κ))z

(Ł(ε) – �)z . (4.14)

Also, we have

Ł(ε) ≤ η(κ)
ς (κ)

≤ ϕ(ε) 
⇒ 1
�

–
1

Ł(ε)
≤ 1

�
–

ς (κ)
η(κ)

≤ 1
�

–
1

ϕ(ε)
,

so

Ł(ε) – �

Ł(ε)
≤ η(κ) – �ς (κ)

η(κ)
≤ ϕ(ε) – �

ϕ(ε)
,

which leads to

(
Ł(ε)

Ł(ε) – �

)z(
η(κ) – �ς (κ)

)z ≤ ηz(κ) ≤
(

ϕ(ε)
ϕ(ε) – �

)z(
η(κ) – �ς (κ)

)z. (4.15)



Aljaaidi et al. Advances in Difference Equations        (2021) 2021:419 Page 13 of 17

Multiplying both sides of (4.14) and (4.15) by 1
υθ 
(θ ) × exp[ υ–1

υ (ψ(ω)–ψ(κ))]
(ψ(ω)–ψ(κ))1–θ ψ ′(κ), κ < ω, then

integrating the results with respect to κ over (s,ω), we respectively get

1
υθ
(θ )(ϕ(ε) – �)z

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(κ))]
(ψ(ω) – ψ(κ))1–θ

(
η(κ) – �ς (κ)

)z
ψ ′(κ) dκ

≤ 1
υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(κ))]
(ψ(ω) – ψ(κ))1–θ

ς z(κ)ψ ′(κ) dκ

≤ 1
υθ
(θ )(Ł(ε) – �)z

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(κ))]
(ψ(ω) – ψ(κ))1–θ

(
η(κ) – �ς (κ)

)z
ψ ′(κ) dκ

and

(
Ł(ε)

Ł(ε) – �

)z 1
υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(κ))]
(ψ(ω) – ψ(κ))1–θ

(
η(κ) – �ς (κ)

)z
ψ ′(κ) dκ

≤ 1
υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(κ))]
(ψ(ω) – ψ(κ))1–θ

ηz(κ)ψ ′(κ) dκ

≤
(

ϕ(ε)
ϕ(ε) – �

)z 1
υθ
(θ )

∫ ω

s

exp[ υ–1
υ

(ψ(ω) – ψ(κ))]
(ψ(ω) – ψ(κ))1–θ

(
η(κ) – �ς (κ)

)z
ψ ′(κ) dκ ,

from which it follows that

1
(ϕ(ε) – �)z

ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z

≤ ψ
s Iθ ,υς z(ω) ≤ 1

(Ł(ε) – �)z
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z (4.16)

and

(
Ł(ε)

Ł(ε) – �

)z
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z

≤ ψ
s Iθ ,υηz(ω) ≤

(
ϕ(ε)

ϕ(ε) – �

)z
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z. (4.17)

The above inequalities are respectively equivalent to

1
(ϕ(ε) – �)

[
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z] 1

z

≤ (
ψ
s Iθ ,υς z(ω)

) 1
z ≤ 1

(Ł(ε) – �)
[
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z] 1

z (4.18)

and

Ł(ε)
Ł(ε) – �

[
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z] 1

z

≤ (
ψ
s Iθ ,υηz(ω)

) 1
z ≤ ϕ(ε)

ϕ(ε) – �

[
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z] 1

z . (4.19)
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Multiplying both sides of (4.18) and (4.19) by 1
υθ 
(θ ) × exp[ υ–1

υ (ψ(ω)–ψ(ε))]
(ψ(ω)–ψ(ε))1–θ ψ ′(ε), ε < ω, then

integrating the results with respect to ε over (s,ω), we respectively obtain

ψ
s Iθ ,υ

(
1

(ϕ(ω) – �)

)[
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z] 1

z

≤ (ψ(ω) – ψ(s))θ

υθ
(θ + 1)
(
ψ
s Iθ ,υς z(ω)

) 1
z

≤ ψ
s Iθ ,υ

(
1

(Ł(ω) – �)

)[
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z] 1

z (4.20)

and

ψ
s Iθ ,υ

(
Ł(ω)

Ł(ω) – �

)[
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z] 1

z

≤ (ψ(ω) – ψ(s))θ

υθ
(θ + 1)
(
ψ
s Iθ ,υηz(ω)

) 1
z

≤ ψ
s Iθ ,υ

(
ϕ(ω)

ϕ(ω) – �

)[
ψ
s Iθ ,υ(

η(ω) – �ς (ω)
)z] 1

z . (4.21)

The addition of inequalities (4.20) and (4.21) completes the proof. �

Theorem 4.3 Consider positive functions η, ς on [0,∞) with ψ
s Iθ ,υηz(ω), ψ

s Iθ ,υς z(ω) < ∞,
∀ω ∈ [0,∞) and for all υ ∈ (0, 1], θ ∈ C, Re(θ ) ≥ 0, z ≥ 1. Let ψ be a strictly increasing
continuous function. Assume that Ł, ϕ are two positive functions such that 0 < Ł(κ) ≤ η(κ)

ς (κ) ≤
ϕ(κ), κ ∈ [s,ω]. Then we have

(
ψ
s Iθ ,υηz(ω)

) 1
z +

(
ψ
s Iθ ,υς z(ω)

) 1
z ≤ 2

(
ψ
s Iθ ,υξ z(η(ω),ς (ω)

)) 1
z , (4.22)

where ξ is an integrable function defined on [0,∞) by

ξ
(
η(ω),ς (ω)

)
= max

{[(
1 +

ϕ(ω)
Ł(ω)

)
η(ω) – ϕ(ω)ς (ω)

]
,

(ϕ(ω) + Ł(ω))ς (ω) – η(ω)
Ł(ω)

}
.

Proof Due to the assumption 0 < Ł(κ) ≤ η(κ)
ς (κ) ≤ ϕ(κ), κ ∈ [s,ω], we get

Ł(κ) ≤ ϕ(κ) + Ł(κ) –
η(κ)
ς (κ)

(4.23)

and

ϕ(κ) + Ł(κ) –
η(κ)
ς (κ)

≤ ϕ(κ). (4.24)

By using the inequalities (4.23) and (4.24), we can write

ς (κ) ≤ (ϕ(κ) + Ł(κ))ς (κ) – η(κ)
Ł(κ)

≤ ξ
(
η(κ),ς (κ)

)
, (4.25)

where ξ is an integrable function defined on [0,∞) by

ξ
(
η(κ),ς (κ)

)
= max

{[(
1 +

ϕ(κ)
Ł(κ)

)
η(κ) – ϕ(κ)ς (κ)

]
,

(ϕ(κ) + Ł(κ))ς (κ) – η(κ)
Ł(κ)

}
,
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which leads to

ς z(κ) ≤ ξ z(η(κ),ς (κ)
)
. (4.26)

On the other hand, from the assumption 1
ϕ(κ) ≤ ς (κ)

η(κ) ≤ 1
Ł(κ) , we have

1
ϕ(κ)

≤ 1
ϕ(κ)

+
1

Ł(κ)
–

ς (κ)
η(κ)

(4.27)

and

1
ϕ(κ)

+
1

Ł(κ)
–

ς (κ)
η(κ)

≤ 1
Ł(κ)

. (4.28)

Using (4.27) and (4.28), we obtain

1
ϕ(κ)

≤ ( 1
ϕ(κ) + 1

Ł(κ) )η(κ) – ς (κ)
η(κ)

≤ 1
Ł(κ)

.

So

η(κ) ≤ ϕ(κ)
(

1
v(τ )

+
1

Ł(κ)

)
η(κ) – ϕ(κ)ς (κ)

=
(

1 +
ϕ(κ)
Ł(κ)

)
η(κ) – ϕ(κ)ς (κ)

≤ max

{[(
1 +

ϕ(κ)
Ł(κ)

)
η(κ) – ϕ(κ)ς (κ)

]
,

(ϕ(κ) + Ł(κ))ς (κ) – η(κ)
Ł(κ)

}

= ξ
(
η(κ),ς (κ)

)
,

which yields

ηz(κ) ≤ ξ z(η(κ),ς (κ)
)
. (4.29)

Multiplying both sides of (4.26) and (4.29) by 1
υθ 
(θ ) × exp[ υ–1

υ (ψ(ω)–ψ(κ))]
(ψ(ω)–ψ(κ))1–θ ψ ′(κ), κ < ω, then

integrating the results with respect to κ over (s,ω), we respectively get

(
ψ
s Iθ ,υς z(ω)

) 1
z ≤ (

ψIθ ,υ
s ξ z(η(ω),ς (ω)

)) 1
z (4.30)

and

(
ψ
s Iθ ,υηz(ω)

) 1
z ≤ (

ψ
s Iθ ,υξ z(η(ω),ς (ω)

)) 1
z . (4.31)

Hence, the addition of (4.30) and (4.31) ends the proof. �

5 Concluding remarks
We have applied a proportional fractional integral operator with respect to another strictly
increasing continuous function ψ . We then improved and generalized several conse-
quences in the framework of fractional integral inequalities of Minkowski’s type. The func-
tions used in this work are bounded by two positive functions to get reverse Minkowski
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inequalities in the new setting. Moreover, we have introduced new fractional integral in-
equalities which have a close relationship to the reverse Minkowski-type inequalities via
ψ-proportional fractional integral. Also with the aid of the considered operator, some new
special cases of reverse Minkowski-type inequality have been discussed. The acquired re-
sults can be applied to emphasize the existence of nontrivial answers to various problems
having fractional order. The results derived in this work are general in character and give
some contributions to inequality theory, e.g., when υ and ψ take different values, our re-
sults reduce to many results that include classical fractional operators such as Riemann–
Liouville, Hadamard, Katugampola, etc. As a future work, we are considering studying
such results with respect to the Mittag-Leffler power law [41].
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