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Abstract
Various attempts have been made in defining the derivative of a quaternionic
function due to the noncommutativity of the product over quaternions. We observe
that the difference in the left and right operations caused by the noncommutativity
of the quaternion product is determined by the vector part of the quaternion. In this
paper, we propose a corresponding derivative to replace the derivative of a
quaternion-valued function of a quaternionic variable using the component terms of
a quaternion. Further, the analogous constant, product, and quotient rules for the
proposed calculations are given. Application of the proposed derivatives is provided
to compute the derivatives of elementary functions. Several illustrations are also
presented.
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1 Introduction
The quaternion algebra was introduced by Hamilton [13] in 1843. Further, according to
Frobenius’ theorem in [14], every finite-dimensional associative division algebra over R

(the real numbers) is isomorphic to H (the quaternions). Later, studies and results on the
algebraic properties and functions of the quaternions were compiled in [7, 25]. There have
been many attempts to extend the typical theory of derivatives of complex-valued func-
tions to that for a function over the quaternion field. The theory of holomorphic (regular)
complex-valued functions of a complex variable is established based on the limit defini-
tion of a derivative. Similarly, a study has been conducted to deal with the limit definition
of the holomorphy (regularity) over the field of quaternions. Buff [6] attempted to define
an analytic quaternion-valued function of a quaternion variable, by using the structure of
a quaternion and the properties of the units. For a quaternionic function, there are two
versions of the limit definition of a derivative due to the noncommutative multiplication
of the quaternions. For a function f of a quaternion variable q of the form aq + b, where a
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and b are quaternion constants, the limit

lim
h→0

{
f (q + h) – f (q)

}
h–1

exists; thus, the right-derivative of f exists. Similarly, for a function f of the form qa + b,
where a and b are quaternion constants, the limit

lim
h→0

h–1{f (q + h) – f (q)
}

exists; thus, the left-derivative of f exists. However, [24] has showed that these limit def-
initions do not apply to functions other than those mentioned above, namely aq + b and
qa + b. Bantsuri [4] has proposed that the conditions of differentiability on the right are
almost equivalent to the two-sided differentiability and the existence of a strong gradi-
ent. Gentili and Struppa [12] gave definitions of regularity for functions of a quaternionic
variable and developed representations of the Cullen-regularity of quaternion analysis.
Kim and Shon [17] have proposed ternary numbers, modified to have the product that
can be closed in ternary numbers, and have defined the hyperholomophicity of a ternary
function. Kim [15] has provided the hyperholomorphy and properties of functions of split-
quaternionic variables which are expressed in hyperbolic coordinates, using Cullen’s form.
In addition to studying quaternion functions of the real variables, Kim [16] has examined
the properties of functions for special quaternion variables such as dual quaternions and
split quaternions.

Using the limit definition of the holomorphy for a complex function, Loomann [20] and
Menchoff [22] proved that any complex-valued continuous function satisfies the Cauchy–
Riemann condition in a complex domain. To extend the theory of holomorphic functions
over the complex field to holomorphic functions over the quaternion field, a quaternionic
analog of the Cauchy–Riemann equation was introduced by Fueter [10], in 1935. Fueter
[11] proposed two quaternionic gradient operators as follows: for a quaternion q,

∂r

∂q
=

∂

∂x0
+

∂

∂x1
i +

∂

∂x2
j +

∂

∂x3
k

and

∂ l

∂q
=

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
.

These operators give rise to the definition of regularity of a quaternion function f (q) as
follows:

A function f (q) is said to be right-(resp., left-)regular if f satisfies ∂r f
∂q = 0 (resp., ∂ l f

∂q = 0).
However, this definition of regularity does not apply to general polynomial functions and
functions multiplied by regular functions. As such, functions satisfying the definition of
holomorphy (regularity) are limited. However, if the condition of holomorphy (regularity)
is not satisfied, a formula for derivatives that can be applied to the quaternions is required.
For example, in optimization, the objective function of a quaternion variable is not holo-
morphic (regular), but there are cases where a derivative is needed. The derivative might
be required to minimize, maximize, or approximate the values of quaternion functions.
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Also, this is of interest in the study of derivatives and their properties, such as proposing
the derivation and expansion of differential operators and integral formulas correspond-
ing to special functions and functions of several variables (see [1–3]).

Since the vectorial derivatives of a quaternion function use both the inner and outer
product of the vector used in the calculus, it is easy to understand and perform the calcu-
lation required for obtaining the derivative. The aim of employing the vectorial derivative
is to interpret the quaternion derivative expression so as to overcome the noncommutative
product of the quaternions and define the specific scalar functions in consideration of the
characteristics of the basis of the quaternions causing the noncommutativity. Through the
analysis and examples, the proposed derivatives expand the applicable range of derivatives
in a general, complete, and intuitive way.

This paper proposes the corresponding derivative of a quaternion-valued function of
a quaternionic variable using the scalar and vector part, denoted by Sp and Vp, respec-
tively, of a quaternion p. Section 2 defines the composition of quaternions and examines
the algebraic properties of quaternions expressed as scalar and vector parts. In addition,
the function defined by the composition of the scalar and vector parts is presented, and
the differential operator to be applied to these functions is defined. Section 3 defines the
operation of a new derivative that will be called the vectorial derivative of a quaternionic
function. We investigate how the rules found in the existing complex analysis (such as the
analogous constant, product, and quotient rules given by the proposed derivative oper-
ation) are applied and extended to the vectorial derivative. In Sect. 4, we apply the pro-
posed derivative to some elementary functions of a quaternion variable, and examine the
properties of the considered derivative. Furthermore, it is confirmed through the figures
that the remainder terms of each elementary function derived from the definition of the
vectorial derivative are approximated to 0 except for some specific set. Finally, in Sect. 5,
we present conclusions on this paper, and propose areas where we expect to utilize the
differential operation proposed in this paper.

2 Preliminaries
The set of quaternions is an associative, but not commutative algebra. The set is denoted
by H and defined as

H =
{

q = x0 + ix1 + jx2 + kx3|xr ∈ R (r = 0, 1, 2, 3)
}

,

where 1, i, j, k are the imaginary units satisfying

i2 = j2 = k2 = –1,

ij = k = –ji, jk = i = –kj, ki = j = –ik.

Any quaternion q = x0 + ix1 + jx2 + kx3 is also written as

q = Sq + Vq, (2.1)

known as the vectorial form of quaternions, where Sq is called the scalar part of q, defined
as Sq = x0, and Vq is called the vector part of q, defined as Vq = ix1 + jx2 + kx3. A quaternion



Kim Advances in Difference Equations        (2021) 2021:426 Page 4 of 21

with Sq = 0 is called a pure quaternion. Given two quaternions p = Sp + Vp and q = Sq + Vq,
their product is given by

pq = SpSq + SpVq + VpSq + VpVq,

where VpVq = –Vp · Vq + Vp × Vq and the symbols · and × denote the standard scalar
product (or dot product) and vector product (or cross product), respectively. The quater-
nion product is not commutative due to the presence of the vector product Vp and Vq, i.e.,
pq �= qp. Since it is convenient to perform the calculus of the noncommutative product of
quaternions, we express quaternions in their vectorial form.

The conjugate of a quaternion q = Sq + Vq, denoted by q∗, is defined as q∗ = Sq – Vq and
satisfies (pq)∗ = q∗p∗. The modulus of a quaternion q = Sq + Vq is defined as

|q| =
√

qq∗ =
√

S2
q + |Vq|2

and satisfies the property |pq| = |p||q|. If |p| = 1, then p is called a unit quaternion. The
inverse of q = Sq + Vq ( �= 0) is given as q–1 = q∗

|q|2 and satisfies (pq)–1 = q–1p–1.
A pure quaternion q satisfies the following:

q∗ = –q and q2 = –|q|2.

So, a pure unit quaternion satisfies the conditions |q| = 1 and q2 = –1. For example, the
imaginary units i, j, k in H are pure unit quaternions.

A function f : H → H is said to be a quaternion function of a quaternion variable if f is
defined as f (q) = f0 + if1 + jf2 + kf3, where fr = fr(x0, x1, x2, x3) (r = 0, 1, 2, 3) are real-valued
functions. Compactly, a quaternion function f is written as f (q) = Sf + Vf , where Sf = f0

and Vf = if1 + jf2 + kf3.

Definition 2.1 ([8]) A quaternion function f (q) is said to be real-differentiable if each
component function fr (r = 0, 1, 2, 3) of f (q) is differentiable as a function of real variables
x0, x1, x2, and x3.

Motivated by Cauchy–Riemann–Fueter equation, the vectorial differential operator D
of a quaternion function is given as

D =
1
2

(SD – VD),

where

SD =
∂

∂x0
and VD = i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
.

If the operator is calculated for a quaternion function f , we obtain

Df =
1
2

(SD – VD)(Sf + Vf ) =
1
2

(SDSf + SDVf – VDSf – VDVf )

=
1
2

(SDSf + SDVf – VDSf + VD · Vf – VD × Vf )
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and

fD =
1
2

(Sf + Vf )(SD – VD) =
1
2

(Sf SD – Sf VD + Vf SD – Vf VD)

=
1
2

(SDSf + SDVf – VDSf + VD · Vf + VD × Vf ),

where

SDSf = Sf SD =
∂f0

∂x0
, SDVf = Vf SD = i

∂f1

∂x0
+ j

∂f2

∂x0
+ k

∂f3

∂x0
,

VDSf = Sf VD = i
∂f0

∂x1
+ j

∂f0

∂x2
+ k

∂f0

∂x3
,

VD · Vf = Vf · VD =
∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3
,

VD × Vf = i
(

∂f3

∂x2
–

∂f2

∂x3

)
+ j

(
∂f1

∂x3
–

∂f3

∂x1

)
+ k

(
∂f2

∂x1
–

∂f1

∂x2

)
,

These results are related as

Df = fD – VD × Vf .

Moreover, if the nth order derivative is introduced, it is expressed by

Dnf =
1
2n

n∑

k=0

(
n
k

)
Sn–k

D (–1)kV k
D,

where

SD =
∂k

∂xk
0

, V k
D =

⎧
⎨

⎩
(–1) k

2 |VD|k k is even;

(–1) k–1
2 VD|VD|k–1 k is odd

and when k is even,

|VD|k =
(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)k/2

.

3 The notion of vectorial derivatives for a quaternion function
In this section, we define the derivative, called the vectorial derivative, of a quaternionic
function and give some corresponding rules that can be derived for the vectorial differen-
tiation.

Definition 3.1 Let f : H → H be real-differentiable. The left vectorial derivative of a
quaternion function f (q) = Sf + Vf with respect to q is defined as

Df =
1
2

(SDSf + SDVf – VDSf + VD · Vf – VD × Vf )
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and the right vectorial derivative of f is defined as

fD =
1
2

(SDSf + SDVf – VDSf + VD · Vf + VD × Vf ).

The left and right vectorial derivatives differ only in the operation of VD × Vf . So, in the
following description, the formulas and properties are derived using the definition of the
left vectorial derivative.

Proposition 3.2 (Constant rule) Let f : H → H be real-differentiable. For α ∈ H, the left
vectorial derivative of the function αf is given as

D(αf ) = α(Df ) + (Vα × VD)f ,

where

Vα × VD = i
(

α2
∂

∂x3
– α3

∂

∂x2

)
+ j

(
α3

∂

∂x1
– α1

∂

∂x3

)
+ k

(
α1

∂

∂x2
– α2

∂

∂x1

)

and

(Vα × VD)f = Vα × VDSf – (Vα × VD) · Vf + (Vα × VD) × Vf .

Proof For a quaternion α, the function αf is expressed by

αf = SαSf + SαVf + VαSf + VαVf ,

where VαVf = –Vα · Vf + Vα × Vf . Since SD = ∂
∂x0

, we have

SD(αf ) = α(SDf ).

Consider the expression of VD(αf ). The formula for VD(αf ) can be written as

VD(αf ) = VD(SαSf + SαVf + VαSf + VαVf )

= Sα(VDSf ) + Sα(VDVf ) + VD(VαSf ) + VD(VαVf ),

where VD(VαSf ) and VD(VαVf ) are expressed as follows:

VD(VαSf ) = –VD · (VαSf ) + VD × (VαSf )

= –Vα · VDSf – Vα × VDSf

= Vα(VDSf ) – 2Vα × VDSf

and

VD(VαVf ) = (VDVα)Vf = (–VD · Vα + VD × Vα)Vf

= (–VD · Vα – Vα × VD)Vf
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= Vα(VDVf ) – 2(Vα × VD)Vf ,

respectively. Hence,

VD(αf ) = Sα(VDSf ) + Sα(VDVf ) + Vα(VDSf )

– 2Vα × VDSf + Vα(VDVf ) – 2(Vα × VD)Vf .

Since

α(Df ) = (Sα + Vα)(SDSf + SDVf – VDSf – VDVf )

= Sα(SDSf ) + Sα(SDVf ) – Sα(VDSf ) – Sα(VDVf )

+ Vα(SDSf ) + Vα(SDVf ) – Vα(VDSf ) – Vα(VDVf ),

we can compare with D(αf ) and then

D(αf ) = α(Df ) + Vα(VDSf ) + Vα(VDVf ) = α(Df ) + (Vα × VD)f ,

where (Vα × VD)f

= –
(

α2
∂f1

∂x3
– α3

∂f1

∂x2

)
–

(
α3

∂f2

∂x1
– α1

∂f2

∂x3

)
–

(
α1

∂f3

∂x2
– α2

∂f3

∂x1

)

+ i
{(

α2
∂f0

∂x3
– α3

∂f0

∂x2

)
+

(
α3

∂f3

∂x1
– α1

∂f3

∂x3

)
–

(
α1

∂f2

∂x2
– α2

∂f2

∂x1

)}

+ j
{(

α3
∂f0

∂x1
– α1

∂f0

∂x3

)
+

(
α1

∂f1

∂x2
– α2

∂f1

∂x1

)
–

(
α2

∂f3

∂x3
– α3

∂f3

∂x2

)}

+ k
{(

α1
∂f0

∂x2
– α2

∂f0

∂x1

)
+

(
α2

∂f2

∂x3
– α3

∂f2

∂x2

)
–

(
α3

∂f1

∂x1
– α1

∂f1

∂x3

)}
. �

Proposition 3.3 (Product rule) Let f , g : H → H be real-differentiable. The left vectorial
derivative of the function fg is given as

D(fg) = (Df )g + f (Dg) + (Vf × VD)g,

where

Vf × VD = i
(

f2
∂

∂x3
– f3

∂

∂x2

)
+ j

(
f3

∂

∂x1
– f1

∂

∂x3

)
+ k

(
f1

∂

∂x2
– f2

∂

∂x1

)

and

(Vf × VD)g = (Vf × VD)Sg + (Vf × VD)Vg

= f3
∂g1

∂x2
– f2

∂g1

∂x3
+ f1

∂g2

∂x3
– f3

∂g2

∂x1
+ f2

∂g3

∂x1
– f1

∂g3

∂x2

+ i
(

f2
∂g0

∂x3
– f3

∂g0

∂x2
+ f3

∂g3

∂x1
– f1

∂g3

∂x3
– f1

∂g2

∂x2
+ f2

∂g2

∂x1

)
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+ j
(

f3
∂g0

∂x1
– f1

∂g0

∂x3
+ f1

∂g1

∂x2
– f2

∂g1

∂x1
– f2

∂g3

∂x3
+ f3

∂g3

∂x2

)

+ k
(

f1
∂g0

∂x2
– f2

∂g0

∂x1
+ f2

∂g2

∂x3
– f3

∂g2

∂x2
– f3

∂g1

∂x1
+ f1

∂g1

∂x3

)
.

Proof Since we have

SD(fg) = (SDf )g + f (SDg),

we consider

VD(fg) = VD(Sf Sg + Sf Vg + Vf Sg + Vf Vg)

= VD(Sf Sg) + VD(Sf Vg) + VD(Vf Sg) + VD(Vf Vg)

= (VDSf )Sg + Sf (VDSg) + (VDSf )Vg + Sf (VDVg)

+ VD(Vf Sg) + VD(Vf Vg).

In particular, since

VD(Vf Sg) = (VDVf )Sg + (Vf VD – 2Vf × VD)Sg

and

VD(Vf Vg) = (VDVf )Vg + (Vf VD – 2Vf × VD)Vg ,

we have

VD(fg) = (VDf )g + f (VDg) – 2(Vf × VD)g.

So, we obtain

D(fg) =
1
2
(
SD(fg) – VD(fg)

)

=
1
2
{

(SDf )g + f (SDg) – (VDf )g – f (VDg) + 2(Vf × VD)g)
}

= (Df )g + f (Dg) + (Vf × VD)g. �

If f is a real-valued function of a quaternion variable, we have

D(fg) = (Df )g + f (Dg).

Proposition 3.4 (Quotient rule) Let f , g : H → H be real-differentiable. If g �= 0, then the
left vectorial derivative of the function g–1 is given as

Dg–1 =
(
D|g|–2)g∗ + |g|–2(Dg∗). (3.1)
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In equation (3.1), g–1 is written as

g–1 = |g|–2g∗ =
(
S2

g + |Vg |2
)–1(Sg – Vg)

and |g|–2 is expressed by

|g|–2 =
(
S2

g + |Vg |2
)–1.

Furthermore, the left vectorial derivative of the function fg–1 (resp., g–1f ) is given as

D
(
fg–1) = D

(|g|–2fg∗) =
(
D|g|–2)(fg∗) + |g|–2(D

(
fg∗)),

resp.,

D
(
g–1f

)
= D

(|g|–2g∗f
)

=
(
D|g|–2)(g∗f

)
+ |g|–2(D

(
g∗f

))
.

4 Examples of the left vectorial derivative
We look at the elementary functions as examples of the quaternion function of a quater-
nion variable and illustrate our findings with figures. A study was conducted on the defi-
nition and properties of elementary functions of quaternion variables (see [5, 9, 19, 23]).

Proposition 4.1 (Power function) Let f : H → H be the power function defined as f (p) =
pn, where n is any nonnegative integer. Then, the left vectorial derivative of the function
f (p) = Sf + Vf with respect to p is given as

f ′(p) = D
(
pn) = npn–1 + On(p),

where the scalar function On(p) is

On(p) =
m∑

k=0

(
n

2k + 1

)
(–1)kSn–2k–1

p |Vp|2k (n ≥ 2m + 1).

Proof First, we find the vectorial expression for the power function pn. We note the ex-
pression in which the power of the vector part of p is calculated on the basis of the non-
commutativity property of the product for quaternions. If a similar operation as in

Vp = Vp, V 2
p = –|Vp|2, V 3

p = –Vp|Vp|2

is continuously performed, the following expression is obtained:

V n
p =

⎧
⎨

⎩
(–1) n

2 |Vp|n if n is even;

(–1) n–1
2 Vp|Vp|n–1 if n is odd.

Hence, we obtain

pn =
n∑

k=0

(
n
k

)
Sn–k

p V k
p .



Kim Advances in Difference Equations        (2021) 2021:426 Page 10 of 21

So, the left vectorial derivative is obtained as

D
(
pn) =

1
2

(SD – VD)pn

=
n–1∑

k=0

(
n
k

)
(n – k)Sn–k–1

p V k
p +

n∑

k=1

(
n
k

)
Sn–k

p
(
VDV k

p
)
,

where

VDV k
p =

⎧
⎨

⎩
(–1) k

2 k|Vp|k–2Vp if k is even;

(–1) k+1
2 (k + 2)|Vp|k–1 if k is odd.

Furthermore,

SDpn = npn–1, VDpn = –npn–1 – 2
m∑

k=0

(
n

2k + 1

)
Sn–2k–1

p V 2k
p ,

Thus, we obtain

f ′(p) = D
(
pn) = npn–1 +

m∑

k=0

(
n

2k + 1

)
Sn–2k–1

p V 2k
p . �

Proposition 4.2 (Exponential function) Let f : H →H be the exponential function defined
as f (p) = exp(p). Then, the left vectorial derivative of f with respect to p is given as

f ′(p) = D
(
exp(p)

)
= exp(p) +

exp(Sp) sin(|Vp|)
|Vp| .

Proof The function exp(p) is expressed as

exp(p) = exp(Sp)
(

cos |Vp| +
Vp

|Vp| sin |Vp|
)

.

So, to obtain the left vectorial derivatives of exp(p), we calculate

SD exp(p) = SD

(
exp(Sp)

(
cos |Vp| +

Vp

|Vp| sin |Vp|
))

=
(

∂

∂x0
exp(Sp)

)(
cos |Vp| +

Vp

|Vp| sin |Vp|
)

= exp(p).

Also,

VD exp(p) = exp(Sp)
(

i
∂

∂x1
cos |Vp| + j

∂

∂x2
cos |Vp| + k

∂

∂x3
cos |Vp|

)

+ exp(Sp)
(

–VD · Vp

|Vp| sin |Vp| + VD × Vp

|Vp| sin |Vp|
)

,
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where

∂

∂xr
cos |Vp| = –

xr

|Vp| sin |Vp| (r = 1, 2, 3),

–VD · Vp

|Vp| sin |Vp|

= –
∂

∂x1

(
x1

|Vp| sin |Vp|
)

–
∂

∂x2

(
x2

|Vp| sin |Vp|
)

–
∂

∂x3

(
x3

|Vp| sin |Vp|
)

= –
1

|Vp|2
(|Vp| sin |Vp| + |Vp|2 cos |Vp| – |Vp| sin |Vp|

)

= – cos |Vp| – 2
sin(|Vp|)

|Vp|

and

VD × Vp

|Vp| sin |Vp| = i
{

∂

∂x2

(
x3

|Vp| sin |Vp|
)

–
∂

∂x3

(
x2

|Vp| sin |Vp|
)}

+ j
{

∂

∂x3

(
x1

|Vp| sin |Vp|
)

–
∂

∂x1

(
x3

|Vp| sin |Vp|
)}

+ k
{

∂

∂x1

(
x2

|Vp| sin |Vp|
)

–
∂

∂x2

(
x1

|Vp| sin |Vp|
)}

)

= 0.

Hence,

VD exp(p) = – exp(Sp)
Vp

|Vp| sin |Vp| – exp(Sp) cos |Vp|

= – exp(Sp)
(

cos |Vp| +
Vp

|Vp| sin |Vp| + 2
sin(|Vp|)

|Vp|
)

= – exp(p) – 2
exp(Sp) sin(|Vp|)

|Vp| .

Thus, the formula is obtained as

D exp(p) =
1
2

(SD – VD) exp(p) = exp(p) +
exp(Sp) sin(|Vp|)

|Vp| . �

In particular, the remainder term

exp(Sp) sin(|Vp|)
|Vp|

of the vectorial derivative of an exponential function is a scalar function. In the illustration
of the remainder term of the vectorial derivative of exp(p), Sp and |Vp| are represented by
real variables x and y > 0, respectively, as shown in Figs. 1 and 2. Further, excluding the
specific area in Figs. 1 and 2, if |Vp| is treated as a sufficiently large number compared to
Sp, D exp(p) can be used as the derivative of exp(p).
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Figure 1 Illustration of the remainder term of Dexp(p) according to the range of x(= Sp) and y(= |Vp|) using
Maple 20 ‘Plot3D’ function: (a) output of Plot3D of exp(x) sin(y)

y with x = –10 · · ·10, y = 0 · · ·10; (b) output of
Plot3D of exp(x) sin(y)

y with x = –20 · · ·20, y = 0 · · ·60

Figure 2 Figures observed in the direction perpendicular to the xz plane of each graph in Fig. 1. Depending
on the range of y, it can be checked which points x will be excluded: (a) graph observed perpendicular to the
xz plane with x = –10 · · ·10, y = 0 · · ·10; (b) graph observed perpendicular to the xz plane with x = –30 · · ·30,
y = 0 · · ·10

We consider a corresponding logarithm of exp(p). In [5], the logarithm of quaternions
is given as

log p = ln |p| +
Vp

|Vp| arg(p), |Vp| �= 0,

where arg(p) = tan–1( |Vp|
x0

) + 2nπ , n ∈ Z, for some real number α, such that α < arg(p) <
α + 2π .

Proposition 4.3 (Logarithm function) Let f : H →H be the logarithm function defined as
f (p) = log(p). Then, the left vectorial derivative of f with respect to p is given as

f ′(p) = D
(
log(p)

)
= p–1 +

tan–1( |Vp|
x0

)
|Vp|
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Proof By the definition of vectorial derivative of log(p), we have

D log(p) =
1
2

(SD – VD) log(p).

The calculation of the vectorial derivative of log(p) is as follows:

SD log(p) =
1
|p|

x0

|p| +
Vp

|Vp|
–|Vp|
|p|2

=
x0 – Vp

|p|2 =
p∗

|p|2

and

VD log(p) = VD ln |p| –
(

VD · Vp

|Vp| tan–1
( |Vp|

x0

))

+ VD × Vp

|Vp| tan–1
( |Vp|

x0

)
.

In particular, each term is calculated as

VD ln |p| =
Vp

|p|2 ,

VD · Vp

|Vp| tan–1
( |Vp|

x0

)
= 2

1
|Vp| tan–1

( |Vp|
x0

)
+

x0

|p|2

and

VD × Vp

|Vp| tan–1
( |Vp|

x0

)
= 0.

Hence, we have

VD log(p) =
Vp

|p|2 – 2
1

|Vp| tan–1
( |Vp|

x0

)
–

x0

|p|2 .

Thus, the vectorial derivative of the logarithm function is given by

D log(p) =
1
2

(
p∗

|p|2 –
Vp

|p|2 + 2
1

|Vp| tan–1
( |Vp|

x0

)
+

x0

|p|2
)

=
p∗

|p|2 +
1

|Vp| tan–1
( |Vp|

Sp

)
. �

The remainder term

1
|Vp| tan–1

( |Vp|
Sp

)

of the vectorial derivative of the logarithm function is a scalar function. The illustration
of the remainder term of the vectorial derivative of a logarithm function is expressed in
several figures. In the remainder term of the vectorial derivative of log(p), Sp and |Vp| are
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Figure 3 Figures showing what values of the remainder term of D log(p) have according to the size of x = Sp
and y = |Vp| using Maple 20 performance. It can be seen that as x and y approach 0, the value of the
remainder term increases infinitely. (a) Output of Maple 20 ‘Plot3D’ performance of 1

y tan
–1 y

x with
x = –10 · · ·10, y = 0 · · ·10. (b) Graph observed perpendicular to the yz plane with x = –20 · · ·20, y = 0 · · ·20

Figure 4 Side views where we can observe the remainder term of D log(p) according to the respective sizes
of x and y using Maple 20 performance. (a) Graph observed perpendicular to the xz plane with x = –10 · · ·10,
y = 0 · · ·10. As the absolute value of x increases, the remainder term approaches zero. (b) Graph observed
perpendicular to the yz plane with x = –20 · · ·20, y = 0 · · ·10. As the value of y increases, the remainder term
gets closer to zero

represented by real variables x and y > 0, respectively. Except for a specific area that both
Sp and |Vp| are close to 0, in each of Figs. 3–5, D log(p) can be used approximately as the
derivative of log(p).

We consider sin(p) and cos(p). In [5], we have

exp(p) = exp(Sp)
(

cos
(|Vp|

)
+

Vp

|Vp| sin
(|Vp|

))

and, if Sp = 0,

exp

(
Vp

|Vp| |Vp|
)

= cos
(|Vp|

)
+

Vp

|Vp| sin
(|Vp|

)
.
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Figure 5 Side views that can observe the effect of the size of x on the remainder term over a certain range of
y using Maple 20 performance. (a) Graph observed perpendicular to the xz plane with x = –60 · · ·0,
y = 0 · · ·20. As the size of x gets smaller than –10, the remainder term gets closer to zero. (b) Graph observed
perpendicular to the xz plane with x = 0 · · ·60, y = 0 · · ·20. For a certain range of y, as the magnitude of x
becomes greater than 10, the remainder term approaches zero

From the expression in [5], we can write

exp

(
Vp

|Vp|p
)

= cos(p) +
Vp

|Vp| sin(p) and exp

(
–Vp

|Vp|p
)

= cos(p) –
Vp

|Vp| sin(p).

Hence, we get

cos(p) =
1
2

(
exp

(
Vp

|Vp|p
)

+ exp

(
–Vp

|Vp|p
))

and

sin(p) =
1
2

–Vp

|Vp|
(

exp

(
Vp

|Vp|p
)

– exp

(
–Vp

|Vp|p
))

.

Proposition 4.4 (Trigonometric functions) Let cos, sin : H → H be the sine and cosine
functions defined as cos(p) and sin(p), respectively. Then, the left vectorial derivatives of
cos(p) and sin(p) with respect to p are given as

cos′(p) = D
(
cos(p)

)
= – sin(p) –

sin(Sp) sinh(|Vp|)
|Vp|

and

sin′(p) = D
(
sin(p)

)
= cos(p) +

cos(Sp) cosh(|Vp|)
|Vp| .

Proof The function cos(p) is expressed by

cos(p) =
1
2

(
exp

(
Vp

|Vp|p
)

+ exp

(
–Vp

|Vp|p
))

.
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So, to obtain the left vectorial derivative of cos(p), we calculate

SD cos(p) =
1
2

SD

(
exp

(
Vp

|Vp|p
)

+ exp

(
–Vp

|Vp|p
))

=
1
2

∂

∂x0

(
exp

(
–|Vp|

)
exp

(
Vp

|Vp|Sp

)
+ exp

(|Vp|
)

exp

(
–Vp

|Vp|Sp

))

=
1
2

(
Vp

|Vp| exp
(
–|Vp|

)
exp

(
Vp

|Vp|Sp

)
+

–Vp

|Vp| exp
(|Vp|

)
exp

(
–Vp

|Vp|Sp

))

=
1
2

Vp

|Vp|
(

exp

(
Vp

|Vp|p
)

– exp

(
–Vp

|Vp|p
))

= – sin(p).

Also,

VD cos(p) =
1
2

(VD

(
exp

(
–|Vp|

)
exp

(
Vp

|Vp|Sp

)
+ VD exp

(|Vp|
)

exp

(
–Vp

|Vp|Sp

))
, (4.1)

and the first term of equation (4.1) is

VD(exp
(
–|Vp|

)
exp

(
Vp

|Vp|Sp

)

= VD

(
exp

(
–|Vp|

)(
cos x0 +

Vp

|Vp| sin x0

))

= (VD exp
(
–|Vp|

)
cos x0 +

(
VD

exp(–|Vp|)Vp

|Vp|
)

sin x0,

where

VD exp
(
–|Vp|

)
cos x0 =

(
i

∂

∂x1
exp

(
–|Vp|

)
+ j

∂

∂x2
exp

(
–|Vp|

)

+ k
∂

∂x3
exp

(
–|Vp|

))
cos x0

=
–Vp

|Vp| exp
(
–|Vp|

)
cos x0

and

VD
exp(–|Vp|)Vp

|Vp| sin x0

= –VD · exp(–|Vp|)Vp

|Vp| + VD × exp(–|Vp|)Vp

|Vp|

= –
(

∂

∂x1
exp

(
–|Vp|

) x1

|Vp| +
∂

∂x2
exp

(
–|Vp|

) x2

|Vp| +
∂

∂x3
exp

(
–|Vp|

) x3

|Vp|
)

sin x0

= exp
(
–|Vp|

)
sin x0 – 2

exp(–|Vp|) sin x0

|Vp| .
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So,

VD(exp
(
–|Vp|

)
exp

(
Vp

|Vp|Sp

)

=
–Vp

|Vp| exp
(
–|Vp|

)(
cos(x0) +

Vp

|Vp| sin(x0)
)

– 2
exp(–|Vp|) sin x0

|Vp| .

And the second term of equation (4.1) is

VD exp
(|Vp|

)
exp

(
–Vp

|Vp|Sp

)

= VD

(
exp

(|Vp|
)(

cos x0 –
Vp

|Vp| sin x0

))

=
Vp

|Vp| exp
(|Vp|

)
cos x0 + exp

(|Vp|
)

sin x0 + 2
exp(|Vp|) sin x0

|Vp| .

Hence,

VD cos(p) =
1
2

–Vp

|Vp|
(

exp

(
Vp

|Vp|p
)

– exp

(
–Vp

|Vp|p
))

–
exp(–|Vp|) sin x0

|Vp|

+
exp(|Vp|) sin x0

|Vp|

= sin(p) –
exp(–|Vp|) sin x0

|Vp| +
exp(|Vp|) sin x0

|Vp| .

Thus, the formula is obtained as

D cos(p) = – sin(p) +
1
2

(
exp(–|Vp|)

|Vp| sin x0 –
exp(|Vp|)

|Vp| sin x0

)

= – sin(p) –
sin(Sp) sinh(|Vp|)

|Vp| .

Similarly as for D cos(p), the left vectorial derivative D sin(p) of sin(p) is obtained as follows:

D sin(p) = cos(p) +
1
2

(
exp(–|Vp|)

|Vp| cos x0 +
exp(|Vp|)

|Vp| cos x0

)

= cos(p) +
cos(Sp) cosh(|Vp|)

|Vp| . �

The remainder term

sin(Sp) sinh(|Vp|)
|Vp|

of the vectorial derivative of the cosine function is a scalar function. In the illustration
of the remainder term of the vectorial derivative of the cosine function, Sp and |Vp| are
represented by x and y, respectively, as shown in Figs. 6 and 7. Observe that D cos(p) can
be used as a derivative of cos(p) in the region where the remainder term is close to 0 by
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Figure 6 Figures showing the size of the remainder term of D cos(p) as the size of x = Sp and y = |Vp| changes
using Maple 20 performance. (a) Output of Maple 20 Plot3D of 1

y sin(x) sinh(y) with x = –10 · · ·10, y = 0 · · ·10.
(b) Graph observed perpendicular to the xz plane with x = –10 · · ·10, y = 0 · · ·10

Figure 7 Side views showing the size of the remainder term of D cos(p) that is output according to the size of
a positive real y in a certain range of x using Maple 20 performance. (a) Graph observed perpendicular to the
yz plane with x = –10 · · ·10, y = 0 · · ·20. For x within –10 ≤ x ≤ 10, the remainder term becomes 0 in a region
where the size of y is less than about 15. (b) Graph observed perpendicular to the yz plane with x = –20 · · ·20,
y = 0 · · ·60. For x where –20 ≤ x ≤ 20, the remainder term is zero, excluding the area where y is larger than 55

considering appropriate ranges of x and y and their size. In particular, as the size of y
decreases, the remainder term approaches zero.

Further, the remainder term of D sin(p) is represented by figures similar to those of
D cos(p), and the remainder term of D sin(p) also approaches 0 as the size of |Vp| decreases
for a certain range of Sp. Therefore, if the size of |Vp| is sufficiently small in each interval
for Sp, D sin(p) can be used as the derivative of sin(p). The remainder term

cos(Sp) cosh(|Vp|)
|Vp|
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Figure 8 Figures showing the size of the remainder term of D sin(p) according to the range of x = Sp and
y = |Vp| using Maple 20 performance. (a) Output of Maple 20 Plot3d of 1

y cos(x) cosh(y) with
x = –10 · · ·10, y = 0 · · ·10. For x within a certain interval, as the size of y decreases, the remainder term is
approximated to zero. (b) Graph observed perpendicular to the xz plane with x = –10 · · ·10, y = 0 · · ·10

Figure 9 Side views that can observe the effect of the size of x on the remainder term over a certain range of
y using Maple 20 performance. (a) Graph observed perpendicular to the yz plane with
x = –20 · · ·20, y = 0 · · ·30. For x within –20 ≤ x ≤ 20, as the size of y is less than about 15, the remainder term
is approximated to zero. (b) Graph observed perpendicular to the yz plane with x = –20 · · ·20, y = 0 · · ·60.
Except for areas where y is larger than about 55, the remainder term of D sin(p) is closed to zero

of the vectorial derivative of the sine function is a scalar function. In the illustration of the
remainder term of the vectorial derivative of the sine function, Sp and |Vp| are represented
by x and y, respectively, as shown in Figs. 8 and 9.

5 Conclusion
This paper has presented a novel notion of a quaternion derivative, called the vectorial
derivative. Since the noncommutative product rule applies to quaternions, various results
about derivatives are needed. Although there are some differences between the calculation
methods and the properties of differentiation in complex analysis, this paper introduces
the newly defined derivative calculation method using the Fueter operator and examines
the computational properties according to this definition.
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The vectorial derivative calculation method flexibly interprets the existence conditions
for the derivative of a general nonlinear function of a quaternion variable. Furthermore,
this paper has shown that the defined derivative of the quaternion function is simplified
by presenting the properties of operations such as the product and quotient of the quater-
nion functions, applied to the vectorial derivative calculation. Unlike quaternion function
derivatives which require certain existence assumptions, the vectorial derivative calcu-
lation method is general; it can be used for either analytic or nonanalytic function of a
quaternion variable.

Because quaternions provide more efficient modeling of rotations and transformations
than real vectors, they are utilized in physics and engineering applications. For example,
since the general motion of a rigid body is a combination of translation and rotation,
it is possible to interpret the motion of a rigid body over time using the corresponding
quaternion structure of such transformation. In addition, the motion of a rigid body can
be formulated for relativity using two quaternionic operators, and a differential operation
for space–time intervals in the special theory of relativity can be defined. In electrody-
namics, the Lorenz–Gauge condition can be reached by using the quaternionic derivative
to express the electron velocity as the potential of the quaternion structure. In quantum
physics, the Dirac special wave equation can be dealt with by combining the square mag-
nitude of energy and the wave function of the quaternion system. (Actual formulas and
symbols to which the quaternary structure is applied can be found in [18, 21].) From the
algebraic characteristics and analytic properties caused by the noncommutativity of the
quaternion operations, the definition of the derivative for applications requires the estab-
lishment of some restrictions and strong conditions. The vectorial derivative can be used
to extend the range of applications that require derivatives. Our work is intended to help in
setting conditions. Furthermore, algorithms for quaternions can be developed by extend-
ing the range that can be set by usual calculation methods for the real- and complex-valued
optimization algorithms.
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