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Abstract
In this article, by using the Herman–Pole technique the conservation laws of the
(3 + 1)– Jimbo–Miwa equation are obtained, and then by using the Lie symmetry
analysis all of the geometric vector fields of this equation are given. Also, the
non-classical symmetries of the Jimbo–Miwa equation have been determined by
applying nonclassical schemes. Eventually, the ansatz solutions of the Jimbo–Miwa
equations utilizing the tanh technique have been offered.
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1 Introduction
Differential equations play a significant and key role in all sciences and disciplines; by
using the analysis of these differential equations, the physical behaviors and manner of
interaction and communication with the surrounding world can be discovered. So far,
researchers have made great efforts to solve differential equations, including linear and
nonlinear equations, and so on. One of the methods of achieving the solution is the con-
joint analysis of the differential equations [14]. A study on Lie groups in the late nineteenth
century was conducted by Sophus Lie [21], the Norwegian mathematician, inspired by the
methodology of variate Galois, the French mathematician, an algebraist who had studies
and articles on group theory, and used it for the analysis of polynomial equations. By using
symmetries and applying them to the group’s work field, Lie was very interested in simpli-
fying and eliminating the ambiguities of partial differential equations (PDEs) and was able
to make a great revolution in science. Thus, Lie’s group analysis method is considered as
one of the systematic methods employed to achieve the nonlinear differential equations’
solutions and plays an important role in this regard [26]. This method not only takes a
big step toward obtaining differential equations by providing the appropriate tools, but
also has approved its applicability by linking concepts such as conservation law and Lie’s
symmetries in physics, mechanics, and other sciences [24, 25].

The conservation law in physics is the constancy of a physical quantity associated with
a specific system during the evolution of it. Conservation laws of a differential equation
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have a very effective role in analyzing the properties of differential equations, more specif-
ically finding exact solutions and expanding numerical methods to obtain more accurate
answers and also finding nonlocal dependent devices [15, 16]. One of the most popular
methods for obtaining conservation laws is Noether’s theorem method that expresses the
relation between symmetries of a differential equation and its conservation laws by using
Euler–Lagrange operator [13].

Although it is a very important result, there are limitations to the existence/nonexistence
of any desired variations. Therefore, many efforts have been recently made to resolve this
problem, and numerous other methods have been proposed to calculate the conservation
law. Regardless of finding a variational problem, Ibragimov [15, 16] presented a method
which is a generalization of the more fundamental theorem and obtained the conservation
law formally based on the symmetries of the given system.

The conservation laws of differential equations can be obtained from different methods,
including the classic method of Lie groups using Lie symmetries, in which one or more
conservative laws can be constructed using asymmetry obtained from a system of differ-
ential equations. To achieve this, different techniques such as the direct technique, the
Noether technique, the Boyer technique, the Ibragimov technique, the variational sym-
metries techniques, and the Herman–Pole technique can be used. The Hermann–Pole
method provided in 2010 can largely remove the weaknesses of the direct method and
calculate the density and flow of the conservation law in more systematic relations [13].

The JM equation was first introduced by Jimbo and Miwa [18] and then examined by a
lot of scholars in various fields for obtaining its solutions [24, 25], integrability properties
[11], symmetries [27], and so on. Scientists used the Jimbo–Miwa [18] equation to explain
certain interesting (3 + 1)-dimensional waves in physics, and it is the second equation in
the well-known Painlev’e hierarchy of integrable systems. Most recently, many researchers
have investigated this equation. In the [28] Wazwaz obtained multiple-soliton solutions
of the JM equation and its extended version.

Tang in [28] received its Pfaffian solution and extended Pfaffian solutions with applying
the Hirota bilinear frame. Tang and Liang in [27] gained two kinds of variable separa-
tion solutions and plentiful nonlinear coherent structures with the aid of a multi-linear
variable separation approach. By using the generalized Riccati equation mapping method,
researchers presented rational solutions of (3 + 1)-JM equation [20]. In this paper, we uti-
lize the conservation law and the symmetry method to get the solution of the (3 + 1)-
dimensional partial differential equation in the following form:

JM : ux3y + 3uxuxy + 3uyux2 + 2uyt – 3uxz = 0, (1)

which is a so-called Jimbo–Miwa equation in its potential frame. Bibi and co-workers [8]
used the generalized Riccati equation mapping method for the space-time conformable
Caudrey–Dodd–Gibbon equation by implementing the conformable derivative. Atangana
and Araz [5] studied the spread of COVID-19 cases in Turkey and South Africa with an
exhaustive statistical analysis. Alkahtani et al. [3] utilized the different operators of frac-
tional differentiation with power law, exponential decay law, and Mittag-Leffler law to the
Klein–Gordon equation with mass parameter and also investigated stability and the con-
vergence of the used numerical scheme. Authors of [6] used the Crank–Nicholson scheme
and investigated the stability and the convergence to the space fractional variable-order
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Schrödinger equation. Halder and co-authors [12] worked on Lie symmetry analysis and
similarity solutions for the Jimbo–Miwa equation and generalizations. Also, Chauhan
and co-authors [10] used the Lie group theoretic method to the similarity reduction
and solitary wave solutions of (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa equa-
tion. Khalique and Moleleki [19] studied a generalized first extended (3 + 1)- dimen-
sional Jimbo–Miwa equation by using the (G′/G)-expansion method. In valuable works
of scholars the conservation laws for a generalized Ito-type coupled KdV system [23],
a new fourth-order integrable nonlinear equation [7], and a (3 + 1)-dimensional B-type
Kadomtsev–Petviashvili equation [1], and fractional order coupled KdV system [17] were
constructed by increasing the order of partial differential equations. In what follows, we
show the Lie symmetry algebra for a JM equation by utilizing the Lie group analysis and
find non-classical symmetries of the equation.

2 Conservation laws for Jimbo–Miwa equation
There are various methods to obtain conservation laws. Herein, we employ the multiplier
method. Taking the equation system

Kσ [u] = Kσ
(
x, u, ∂u, . . . , ∂ku

)
= 0, σ = 1, . . . , N , (2)

via n-independent variables x = (x1, . . . , xn) and m-dependent variables.
The conservation law for a system of PDEs (2) is a divergence expression that is defined

as follows:

Diℵi[u] = D1ℵ1[u] + · · · + Dnℵn[u] = 0. (3)

It is valid for all of the solutions of (3) that here ℵi[u] = ℵi(x, u, ∂u, . . . , ∂ku) is named
the fluxes of the conservation law and the order of conservation law is considered.
The maximum degree of derivation in the flux expression. If �ν[u]Eν[u] ≡ Diℵi[u]
for arbitrary functions u, then a set of multipliers coefficient function {�ν[u]}l

ν=1 =
{�ν(x, u, ∂u, . . . , ∂ku)}l

ν=1 for the system Eν[u] = Eν(x, un), E(x, u) generates the divergence
expression.

The Euler operator for uJ is given by

Euj =
∂

∂uj – Di
∂

∂uj
i

+ · · · + (–1)sDi1 · · ·Dis
∂

∂uj
i1···is

+ · · ·

for j = 1, . . . , q. That is, it makes zero the divergence expression Diℵi[u]. Relationships
Euj F(x, u, ∂u, . . . , ∂ su) ≡ 0, j = 1, . . . , q hold for any free function u(x) if and only if diver-
gence equivalence

F
(
x, u, ∂u, . . . , ∂ su

) ≡ Diℵi(x, u, ∂u, . . . , ∂ s–1u
)

exists for ℵi(x, u, ∂u, . . . , ∂ s–1u), i = 1, . . . , n, functions.

Theorem 2.1 ([2]) A set of local multipliers �σ [u]N
σ=1 = �σ (x, u, ∂u, . . . , ∂ lu)N

σ=1 by arbi-
trary degree results in the conservation law for system (2) if and only if the following rela-
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tionship for every arbitrary function u(x) is maintained:

Ej
u
[(

�σ

(
x, u, ∂u, . . . , ∂ lu

))
Kσ

(
x, u, ∂u, . . . , ∂ku

)] ≡ 0, j = 1, . . . , m. (4)

The equations obtained from (2) are a set of linear characteristic equations that can be
solved by the set of all coefficients �σ [u]N

σ=1.

Now, we can obtain the functional coefficients of the conservation law for the JM equa-
tion.

We can obtain the characteristic equation (3) for the JM equation from the following
relation:

Eu
[
ξ (x, y, z, t, u)(ux3y + 3uxuxy + 3uyux2 + 2uyt – 3uxz)

] ≡ 0, (5)

where u(x, y, z, t) is an arbitrary function. By solving the characteristic equation obtained
from (5), we write ξ = a′(t)x + (k – 3a(t))ux + b(y, z) + c(z, t), where a(t), b(y, z) + c(z, t) are
arbitrary coefficients. Then local multipliers are determined in the following frame:

(i) a′(t)x – 3a(t)ux, (ii) ux, (iii) b(y, z), (iv) c(z, t).

Each of the functional coefficients �i = ξi is a conservation law Dx� +Dy�+Dz	+Dtθ = 0
with a determining form

Dx� + Dy� + Dz	 + Dtθ = ξ .(ux3y + 3uxuxy + 3uyux2 + 2uyt – 3uxz).

We use the four-dimensional homotopy operator (Hx
uf ,Hy

uf ,Hz
uf ,Ht

uf ) to calculate the � ,
�, 	, and θ , where x-component is defined as follows:

Hx
uf =

∫ 1

0

1
λ

( q∑

j=1

Ix
uj f

)

[λu] dλ. (6)

The t, y, and z- components can also be defined similar to (6). In (6), Ix
uj f is given by

∑

E

(∑

F

B(x)uj
xi1 yi2 zi3 ti4 Di1,i2,i3,i4

k1,k2,k3,k4

)
∂f

∂uj
xk1 yk2 zk3 tk4

, (7)

where

E :=
{

1 ≤ k1 ≤ Mj
1, 0 ≤ k2 ≤ Mj

2, 0 ≤ k3 ≤ Mj
3, 0 ≤ k4 ≤ Mj

4
}

,

F := {0 ≤ i1 ≤ k1 – 1, 0 ≤ i2 ≤ k2, 0 ≤ i3 ≤ k3, 0 ≤ i4 ≤ k4},
Di1,i2,i3,i4

k1,k2,k3,k4
:= (–Dx)k1–i1–1(–Dy)k2–i2 (–Dz)k3–i3 (–Dt)k4–i4 ,

and Mj
1, Mj

2, Mj
3, Mj

4 are the order of uj with respect to x, y, z, and t in f , which in the
(JM) equation j = 1, Mj

1 = 3, Mj
2 = 1, Mj

3 = 1, Mj
4 = 1. Also, the combinatorial coefficient is
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evaluated by

B(x) = B(i1, i2, i3, i4, k2, k3, k3)

= C(i1 + i2 + i3 + i4, i1)C(i2 + i3 + i4, i2)C(i3 + i4, i3)

× C(k1 + k2 + k3 + k4 – i1 – i2 – i3 – i4 – 1, k1 – i1 – 1)

× C(k2 + k3 + k4 – i2 – i3 – i4, k2 – i2)C(k3 + k4 – i3 – i4, k3 – i3)

÷ C(k1 + k2 + k3 + k4, k1)C(k2 + k3 + k4, k2)C(k3 + k4, k3).

Consider Iy
uj f , Iz

uj f , and I t
uj f same as Ix

uj f . Now, we determine conserved quantities ψ , φ,
	, and � which conclude of multiplier ε = a′(t)x – 3a(t)ux. So we consider

f =
(
a′(t)x – 3a(t)ux

)
(ux3y + 3uxuxy + 3uyux2 + 2uyt – 3uxz).

By using (6) and (7), we have

Ix
uj f =

3a
4

(
6uuxz – uyux3 – uux2y + 3ux2 uxy – 5uxux2y

– 18uyu2
x + 6uzux – 8uuyt

)
– at

(
3uuy +

1
2

uxy

)

+
3xat

2

(
1
2

ux2y – uz + 3uxuy – uuxy

)
,

Iy
uj f =

3xat

2

(
uux2 + u2

x +
1
6

ux3

)
+

3a
2

(
2uuxt – 2uxut – 3u3

x – uxux3
)

+
3a
4

(
uux4 + u2

x2
)

+
1
4

(3uux – ux2 + 4xut) – xuatt ,

Iz
uj f =

3at

2
(u – xux) –

3a
2

(
uux2 + u2

x
)
,

I t
uj f = 3a(uuxy – uxuy) + atuyx. (8)

Substituting (8) into (6), we have

� := Hx
uj f =

3a
8

(
6uuxz – uyux3 – uux2y + 3ux2 uxy – 5uxux2y – 6uyu2

x

+ 6uzux – 8uuyt
)

+
3xat

4
(ux2y – 2uz + 3uxuy – uuxy) –

1
2

(3uuy + uxy),

� := Hy
uj f =

xat

4
(
3uux2 + 3u2

x + ux3
)

+
at

4
(3uux – ux2 + 4xut)

+
3a
8

(
4uuxt – 4uxut – 4u3

x + uux4 – 2uxux3 + u2
x2

)
– xuatt ,

	 := Hz
uj f =

3at

2
(u – xux) –

9a
4

(
uux2 + u2

x
)
,

� := Ht
uj f =

3a
2

(uuxy – uxuy) + atuyx.

So, the conservation law of the JM equation for the case ε = a′(t)x – 3a(t)ux is Dx� +
Dy� + Dz	 + Dt� = 0. Now, by using a similar method for other cases, we can find all the



Manafian et al. Advances in Difference Equations        (2021) 2021:424 Page 6 of 13

conservation laws. Therefore, we obtain in the case ξ = ux:

Dx
(
uy

(
12u2

x + ux3
)

+ u(2uyt – 6uxz + ux3y) + 2ux(5ux2y – 3uz) – 3uxyux2
)

+ Dy
(
4ux(2ut + ux3 ) – 2u(2uxt + ux3 ) + 4u3

x – u2
x2

)

+ 6Dz
(
uux2 – u2

x
)

+ 4Dt(uxuy – uuxy) = 0,

and in the case ξ = b(y, z):

4Dx
(
3b(uuxy + 3uxuy – 2uz + ux2y) + by(ux2 + uux) – 6bzu

)

– Dy
(
3b

(
4uux2 + 3ut + 4u2

x + 12ux3
))

+ 24Dz(bux) + 16Dt(byu – buy) = 0,

and finally for ξ = c(z, t):

3Dx
(
c(uuxy + 3uxuy – 2uz + ux2y) + 2czu

)

– Dy
(
c
(
3uux2 + 4ut + 3u2

x + 9ux3
)

– 4ctu
)

+ 6Dz(cux) – 4Dt(cuy) = 0.

3 Classical symmetries of Jimbo–Miwa equation
The symmetry group of equation (1) is made of the vector field of the following form:

X = ξx∂x + ξy∂y + ξz∂z + ξt∂t + ηu∂u. (9)

The fourth order prolongation X is determined by the following vector field:

X(4) = X + ϕx∂ux + ϕy∂uy + ϕz∂uz + ϕt∂ut

+ ϕx2
∂ux2 + ϕxt∂uxt + · · · + ϕtttt∂utttt , (10)

where ϕι = DιQ + ξuxι + ηutι, ϕιj = Dı(Dj Q) + ξuxıj + ηutıj , Q = ϕ – ξux – ηut is the charac-
teristic of X given by (10) and Di indicates total derivative. Thus, equation (1) admits a Lie
point symmetry X if X(4)[ux3y + 3uxuxy + 3uyux2 + 2uyt – 3uxz] = 0, where X(4) denotes the
fourth prolongation of X. We can find the determining equations for the symmetry group
of the general JM equation as follows:

ξ 1
y , ξ 3

y , ξ 4
y , ξ 4

z , ξ 2
t , ξ 3

t , ξ 2
x , ξ 3

x , ξ 4
x , ξ 1

u , ξ 2
u , ξ 3

u , ξ 4
u , ξ 1

t2z, ξ 3
z2 ,η1

zu,η1
tu,η1

u2 = 0,

3ξ 2
z2 = 4ξ 1

tz, ξ 1
x = –η1

u, ξ 1
z = –η1

y , ξ 4
t = –3η1

u,

2ξ 1
t – 3ξ 2

z = 3η1
x , ξ 2

y – ξ 3
z = 2η1

u.

By solving this system of PDEs, we find that

ξ1 = c1x + 3tF ′
1v + F2t + F3z, ξ2 = –4F1z + (3c3t – 2c1)y, ξ3 = 3c3z + c4,

ξ4 = 3c1t + c2, η1 = 3ytF ′′
1 z – yF ′

3z + 4xF ′
2t – 12xF ′

1z – 2c2 + F4(z, t),
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Table 1 The commutator table of g

[·, ·] X1 X2 X3 X4 Xf5 Xg6 Xh7 Xd8

X1 0 –3X2 0 0 2Xf5 X3tg
′–g

6 –Xh7 X3tdt+d8

X2 3X2 0 0 0 X3f
′/4

7 Xg
′

6 0 Xdt8
X3 0 0 0 –X4 Xzf

′–f
5 0 Xzh

′
7 Xzdz8

X4 0 0 X4 0 Xf
′
5 0 Xh

′
7 Xdz8

Xf̃5 –2Xf̃5 –X3f̃
′/4

7 –Xzf̃
′–f̃

5 –Xf̃
′
5 X3t(f f̃

′′–f̃ f ′′)/4
5 X8 X8 0

Xg̃6 –X3tg̃
′–g̃

6 –Xg̃
′

6 0 0 –X8 X8 X8 0

Xh̃7 Xh̃7 0 –Xzh̃
′

7 –Xh̃
′

7 –X8 –X8 0 0

Xd̃8 –X3td̃t+d̃8 –Xd̃t8 –Xzd̃z8 –Xd̃z8 0 0 0 0

where ci, i = 1, . . . , 4, are arbitrary constants and Fi(t), i = 1, . . . , 4, are arbitrary smooth
functions. Solving the above determining equations, we reach the following Lie point sym-
metry generators:

X1 = x∂x – 2y∂y + 3t∂t – u∂u, Xf
5 = 3tft∂x + 4f ∂y – (2xft + 3ytftt)∂u,

X2 = ∂t , Xg
6 = 3g∂x + 2xgt∂u,

X3 = y∂y + z∂z, Xh
7 = h∂x – yhz∂u,

X4 = ∂z, Xd
8 = d∂u,

where f = f (z), g = g(t), h = h(z), and d = d(z, t) are arbitrary smooth functions. Having
functional coefficients, these vector fields produce a Lie pseudo-group g = L(G). This Lie
pseudo-algebra g has a 4– sub-algebra L4 � af(1) × af(1) made by X1, . . . , X4 and an in-
finite dimensional ideal L∞ generated by Xf

5, Xg
6 , Xh

7 , Xd
8 . Therefore L � L4 � L∞. The

commutation relations satisfied by generators above are shown Table 1.
Consider Ad(exp(s.X).Y ) =

∑∞
k=0(–s)k(k!)–1adk

XY , where s is the group parameter. An
adjoint action is considered for Lie algebra g, so we consider the following theorem.

Theorem 3.1 The optimal system of 1-subalgebras for JM is

1) 〈X3〉, 2) 〈X4〉, 3) 〈X1 + X4〉, 4) 〈X1 – X4〉, 5) 〈X2 + X3〉,
6) 〈X2 – X3〉, 7) 〈X2 + X4〉, 8) 〈X2 – X4〉, 9) 〈a1X1 + a3X3〉.

Proof Let L4 be the symmetry algebra of Eq. (1) by applying adjoint and X = a1X1 + · · · +
a4X4, that is, it is a nonzero vector field of L4. We can simplify as many of the coefficients
a1, . . . , a4 as possible through proper adjoint applications on X. So we have the following:

• If we assume that a2 
= 0, by scaling X2 and then assuming a4 = 0 and scaling X1, X is
reduced to X3, X2 + X3, and X2 – X3. In this case if a4 
= 0 and by scaling X3, X is
reduced to X4, X2 + X4 and X2 – X4.

• If we assume that a2 = 0 and a4 
= 0, by scaling X4 and X3, X is reduced to X4, X1 + X4,
and X1 – X4. If we assume that a2 = a4 = 0, X is reduced to a1X1 + a3X3. �

Similarly, we can classify 2-sub-algebra and 3-sub-algebra. For convenience, we can use
the normal sub-algebra to make the sub-algebra.
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4 Group invariant solutions and similarity reduction of JM
Equation (1) can be considered as a sub-manifold of the jet space J4(R4,R3). Thus, ac-
cording to [26], we can obtain the most general group invariant solutions of (1). Since
group transformations are generated by infinitesimal generators Xi, we need to solve the
following system of differential equations:

gs
1 =

(
xes, ye–2s, z, te3s, u

)
, gs

2 = (x, y, z, t + s, u),

gs
3 =

(
x, yes, zes, t, u

)
, gs

4 = (x, y, z + s, t, u),

gs
5 =

(
x +

3st
4

fz, y + sf , z, t, u –
3st
8

(2y + sf )fzz –
3

s2t
f 2
z –

sx
2

fz

)
,

gs
6 =

(
x + sgt , y, z, t, u +

1
3

gt
(
s2g + 2sx

))
,

gs
7 = (x + sh, y, z, t, u – syhz), gs

8 = (x, y, z, t, u + sd),

where the transformed point is gs
1(x, y, z, t) := exp(sXi)(x, y, z, t). So, corresponding to the

above invariant transformations, the group invariant solutions result is expressed in the
following theorem.

Theorem 4.1 If u(t, x, y, z) is a solution of the JM equation, then the following functions are
solutions of the JM equation as well:

ϕ1 = e–sf
(
xe–s, ye2s, z, te–3s), ϕ2 = f (x, y, z, t – s),

ϕ3 = f
(
x, ye–s, ze–s, t

)
, ϕ4 = f (x, y, z – s, t),

ϕ5 = f
(

x –
3st
4

fz, y – sf , z, t
)

+ s2tffzz +
s2t
2

f 2
z – 2sytfzz –

3
4xs

fz,

ϕ6 = f (x – sg, y, z, t) –
s2

3
ggt +

2xs
3

gt , ϕ7 = f (x – sh, y, z, t) – syhz,

ϕ8 = f (x, y, z, t) + sd.

As the JM equation is expressed in the coordinates (x, y, z, t, u), we need to look for spe-
cific coordinates to reduce the equation. These coordinates, which are represented by
(r, q, w, f ), are obtained by finding independent invariants which correspond to the in-
finitesimal symmetry generators. Finally, we obtain the reduced equation by using the
new coordinates and applying the chain rule. We now obtain some invariant group so-
lutions for the JM equation. We must solve the PDEs X[I] = 0 to determine independent
invariants X, so we have

(X2 + X3 + X4)I = yIy + (z + 1)Iz + It = 0.

We must solve the associated characteristic ODE dt = dy/y = dx/0 = dz/(z + 1) = du/0 for
solving the above PDE. Hence, we obtain four functionally independent invariants r =
(z + 1)/y, q = – ln(y) + t, w = x and f = u, where v is a function of r, q, and w. By using the
chain rule and the fact that u = f (r, q, w) and then appending them into the JM equation,
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we obtain the following reduced equation:

rR(fw3 ) + 3fwR(fw) + 3fw2R(f ) + 2R(fq) + 3fr2 = 0, (11)

where R := r∂r +∂q. The polynomial solution of this equation (11) is f (w) = c1w2 + c2w + c3.
By a similar argument, for X1 + X2 + X3, we can obtain the reduced form of the equation

as follows:

8w3f 3(wf + 9) – w
(
8w2 + (f – 25)w – 1

)
f 2 = 48w2f ′2 + (5wf – 20w + 3)f ′,

and other polynomial solutions as f (r, w) = c1rw2 + c2w and

f (r, q) = c1q4 + (c2r + c3)q3 + (c4r + c5)q2 + (c6r + c7)q + c8r + c9,

where c1, . . . , c9 are arbitrary parameters.
Besides, we could use 3-sub-algebras for reducing the equation. We use 1-sub-algebra to

obtain 3-sub-algebras because 3-sub-algebras are vertical to 1-sub-algebras. For instance,
with the selection of several algebras of 3-sub-algebras, we reduce the equation. By choos-
ing 〈X4, X2, X1〉, the equation is reduced to

8k2f 3(kf + 3) + 6k
(
8kf ′ – f + 1

)
f ′′ – 3ff ′ = 0,

where k = yx2, and also selecting 〈X1, X3, X4〉 leads to f = ϕ(t/x3) and the equation becomes
zero. By selecting 〈X1, X2, X3〉, the equation is reduced to the following:

8f 3k3(kf + 9) = 6k
(
4k2f ′ + kf – 25k – 1

)
f ′′ + 48k2ff ′2 + 3(5kf – 20k – 3)f ′.

5 Non-classical symmetries of JM
Non-classic symmetry is another way to determine some other solutions for a PDE and
ODE system. Here, we use the conventional method to obtain the non-classical symmetry
of the JM equation according to the compatibility of the evolutionary equations [4, 9].

In a non-classical way, first, we add the conditions of the invariance surface to the equa-
tion and then apply the classical symmetry method. So, we express X(4)�1 ≡ 0 mod �1 =
0, �2 = 0, where X is defined in (9) and �1 and �2 are given as �1 := ux3y + 3uxuxy +
3uyux2 + 2uyt – 3uxz and �2 := ηut + ξux + βuy + ζuz – ϕ. By using non-classical methods
on the JM, we consider the following equations:

ηx,ηy,ηt ,ηu, ζx, ζy, ζz, ζt , ζu, ξx, ξy, ξu, ξt2z,φu = 0,

η2
z = 4ξtz, φx = 2ξt – ηz, φy = –3ξz.

Therefore we have these solutions:

ξ = h + 3tgz + 3f , η = 4g + 3c1z + c2,

ζ = 3c1, φ = 2(ft – gz – c1) – hz + 3tygzz + d,

where c1 and c2 are free amounts and f = f (t), g = g(z), h = h(z), and d = d(z, t) are arbitrary
smooth functions.
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6 Some ansatz exact solutions of JM
Herein, we perform one of the most important ansatz methods (the tanh-function method
[22]) to gain exact traveling wave solutions of this nonlinear system of PDEs. For this, a new
variable τ = tanh(c1x + c2y + c3z + c4t + c5), where ci are arbitrary constants, is considered.
By placing this expression in equation (1), we get

c2
1c2

(
τ 2 – 1

)2(c1
(
τ 2 – 1

)
uτ4 + 12τc1uτ3 – 6uτ uττ

)

+
(
τ 2 – 1

)(
4c3

1c2
(
9τ 2 – 2

)
– 3c1c3 + 2c2c4

)
uττ

– 12τc2
1c2

(
τ 2 – 1

)
u2

τ + 2τ
(
4c3

1c2
(
3τ 2 – 2

)
– 3c1c3 + 2c2c4

)
uτ = 0.

Then, using the ansatz u = A0 + A1τ + A2τ
2 + A3τ

3, where Ai are arbitrary constants, we
obtain the exact solution by using required simplifications and linear algebra:

u = 2c1 tanh

(
c4t + c1x + c2y +

2c2(2c2
1 + c4)

3c1
z + c5

)
+ c0. (12)

In Figs. 1–4, the solutions have been plotted for some constant coefficients. By choosing
suitable amounts, the dynamical structures of hyperbolic wave solutions are presented
in Figs. 1 and 2 including three-dimensional, density, and y-curves plot in Fig. 1 and t-
curves plot in Fig. 2. Moreover, by choosing suitable amounts, the dynamical structures

Figure 1 The plot of solitary (12) with amounts c0 = 2, c1 = 1, c2 = 1, c3 = 1, c4 = 1, c5 = 1, t = 1, z = 1

Figure 2 The plot of solitary (12) with amounts c0 = 2, c1 = 1, c2 = 1, c3 = 1, c4 = 1, c5 = 1, x = 1, y = 1
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Figure 3 The plot of solitary (13) with amounts c0 = 2, c1 = 1, c2 = 1, c3 = 1, c4 = 1, c5 = 1, t = 1, z = 1

Figure 4 The plot of solitary (13) with amounts c0 = 2, c1 = 1, c2 = 1, c3 = 1, c4 = 1, c5 = 1, x = 1, y = 1

of periodic wave solutions are presented in Figs. 3 and 4 including three-dimensional,
density, and y-curves plot in Fig. 3 and t-curves plot in Fig. 4.

Similarly, ansatz τ = tan(c1x + c2y + c3z + c4t + c5), where ci are arbitrary constants, leads
to

u = –2c1 tan

(
c1x + c2y + c3z +

c1(4c2
1c2 + 3c3)
2c2

t + c5

)
+ c0. (13)

7 Conclusions
In this article, we obtained the conservation laws for JM equation that give unequivocal
expressions of conserved quantities. Then, we attempted to show the Lie symmetry alge-
bra for JM equation by utilizing the Lie group analysis. Further, we found non-classical
symmetries of the equation. Finally, we obtained the exact solitary wave solution of JM
equation by utilizing the tanh-function technique. The graphes were plotted containing
3D plot, density plot, and 2D plot. The results are beneficial to the study of the mathe-
matics physics, fluid dynamics, and applied mechanics. All calculations in this paper have
been made quickly with the aid of the Maple.
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