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1 Introduction

Carlitz [1, 2], Kim and Kim [14, 19, 21-23], Kim et al. [26, 28, 29, 31], Jang et al. [7, 8], Muhi-
uddin et al. [37-39], Khan et al. [10-13], Sharma et al. [41-43] introduced and studied
various degenerate versions of special polynomials and numbers like degenerate Bernoulli
polynomials, degenerate Euler polynomials, degenerate Daehee polynomials, degenerate
Fubini polynomials, and degenerate Stirling numbers of the first and second kinds.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other

third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by

L]
@ Sprlnger statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13662-021-03575-7
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03575-7&domain=pdf
https://orcid.org/0000-0002-4681-9885
mailto:wkhan1@pmu.edu.sa

Khan et al. Advances in Difference Equations (2021) 2021:420

For « € Z, the modified degenerate polyexponential function [30] is specified by Kim

and Kim to be
o0
. (1Dyp?
Eigp(0) =Y —2——, (o <1).

—~ (v -1~

Note that

Eij (o) = Z (l)l;iklwu =e,(w) - 1.

v=1

The degenerate polyexponential functions were introduced by Kim and Kim as

= (1)11 ka)u
ex(w,8)k) = ————  (see [21]),
* UX:(; vl(v + 8)€

where § € C and « € N U {0} with )(§) > 0.
From (1.3), we readily get

1
ek(a),8|0):e,\(a)), eg(a),1|1): ;1+§

(ex(a)) - 1) +

5.0

We note here that

_ 1
%gr})ek(a), 1]1) = 5(e‘” -1) =e(w,11),

which was defined by Hardy (see [5, 6]).

(1.1)

(1.2)

(1.3)

The degenerate poly-Genocchi polynomials [30] were considered by Kim and Kim and

given as

2Ei, ;. (log, (1 + 2))
— =h e

0] = i ZU
e (z)+1 7 (2) = Z Gf),i(w)— (k €Z).

v!
v=0

When w =0, Gg(j\ = Gfﬁ(O) are called degenerate poly-Genocchi numbers.

From (1.1) and (1.5), we see that Gf},i(a)) = Gy (w), (U > 0) which are called degenerate

Genocchi polynomials.

For A € R, the degenerate exponential function is defined as follows (see [14—16, 18—

34]):

@) =(1+12)%, e =elz)=1+rz)k
and

¢/(2) = g(w)v,%,

where (w)gs = 1, (@)y = (@ — A) (@ —21) -+ (@ — (v = 1)A), (v > 1).

(1.6)
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The degenerate Bernoulli polynomials considered by Carlitz [1, 2] are given by

D) =) Bual0) . (18)

e(z) -1 e

When w =0, B, = Bu,1(0) denotes degenerate Bernoulli numbers.
In 2019, Jang and Kim [7] introduced type 2 degenerate Bernoulli polynomials as follows:

oo v

@)=Y Bual) (1.9)

1 _ 1
e;(z)— e (2) v=0 v

NI

When w =0, B, = B,,,(0) are type 2 degenerate Bernoulli numbers.
We note that

z > z¥

lim ———€}(2) = E lim B, 3 (w)—

A—>0 5 -3 2—0 !
e’ (z)—e (2 v=0 v
7y 7y

__F gem_ ZBU(Q,)Z_, (1.10)

are called type 2 Bernoulli polynomials B, (w), (v > 0).
The degenerate form of central Bell polynomials is given as (see [20])

>

_1 o v
—e. 2 Z
e®lesl (@€, % (2) _ ZBelz(f,))\(w); (1.11)
v=0

Forw=1, Belif, ),\ = Belff‘)A(l) denotes degenerate central Bell numbers.
For A € R, Kim and Kim [15] defined the degenerate version of the logarithm function
denoted by log, (1 + t) as follows:
[e¢] ZU
log; (1+2) = Z AT D o (1.12)

v=1

being the inverse of the degenerate version of the exponential function e, (z) as has been

shown below:

e, (log, (2)) =log; (e.(2)) = z.
It is noteworthy to mention that
oo ZU
: _ 1wl _
ll_r)r(l)logk(l +2)= Z( 1) o log(1 + z).

v=1

The degenerate Daehee polynomials of order r are defined by (see [28, 41])

log, (1 ’ o N ) 2
(OgAZ+Z)> (1+2) :UZ(;DS")*(CU)%' (1.13)
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Ifw=0, Df}r)A = Dg)A (0), (v = 0) denotes degenerate Daehee numbers of order r.
For r =1, (1.13) reduces to

w ZDM(w ) (1.14)

Ifw=0,D,; =D,;(0), (v>0) denotes degenerate Daehee numbers.
The degenerate Bernoulli polynomials of the second kind are specified by

z o _ z
PSR =D o) (see[18]). (1.15)

When w =0, b,,; = b,,,(0) (v > 0) denotes degenerate Bernoulli numbers of the second
kind.
The degenerate form of first kind Stirling numbers is defined by

(logk(l +2))" ZSM v, K)— (k > 0), (see [21, 30]). (1.16)

Note here that lim; ¢ S1,, (v, k) = S1(v, k), where S1 (v, k) are first kind Stirling numbers
given by

1
log(l +2))" ZSl(u K)— (k > 0), (see [1-14, 17, 21, 26, 28]).
The degenerate form of second kind Stirling numbers is defined by
1
ek(z) Zsz (v, K) (see [17]). (1.17)

Here, lim; ¢ S, (v, k) = S»(v, k), where Sy(v, ) are second kind Stirling numbers given
by

o0 v
=Y Saw) s (see [1-43)). (118)
" v!
The degenerate form of second kind central factorial polynomials [3] is given as

%(e%(z)—ei%&) % (@)= ZTu(/KIw)— (k = 0). (1.19)

J=K

If =0, Ty,(,«) = T>,(j,k|0) denotes second kind degenerate central factorial num-
bers.

This article aims to present type 2 degenerate poly-Bernoulli numbers and polynomials
arising from moderated degenerate polyexponential functions. Certain explicit expres-
sions for these numbers and polynomials are derived. Also, we introduce type 2 degener-
ate unipoly-Bernoulli numbers and polynomials by utilizing unipoly functions and show
some basic properties of them.
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2 Type 2 degenerate poly-Bernoulli polynomials and numbers
For k € Z, and utilizing the modified degenerate polyexponential functions, we consider
type 2 degenerate poly-Bernoulli polynomials as

Eieallog1+2) o, )_Zﬁ (2.1)

ek 7 (z) - ex%(Z)

Ifw=0, ﬂi"; = ,B,(JK; (0) denotes type 2 degenerate poly-Bernoulli numbers.
For « = 1, by using (2.1) and (1.2), we see that

Ei; A(log,\(l +2)) ¢(2) = . z ()= ZBU,A((D)%U' (=0), (2.2)
ex 2(z)—e, -3 (z) el (z) —e,*(2) v=0 :

where B, ; (w) are called type 2 degenerate Bernoulli polynomials (see [3]).
First, we can write that

(1), (log; (1 + 2))!

Eics(log,(1+2) = ) (i— 1)l

i=1

o (1)iz (log, (1 +2))f
= Z i’(_lk : i
i=1

- Wirg 0,52 2.3)
L jx-1 v!

Zr
51 A (7 )) ,
r.
00 r+l

z Dip Sialr+1,0) \ 2
(B s

By (2.3), we see that (2.1) is equal to

(L.
i*

ol

e)(z)—e,*(2) el (z) —e, i-

Ei, 1 (log, (1 + 2)) _ 1 nd <
1 1 1 _ (z); Z

-1
e;(z)— e *(z) r=0 \i=1

r+1
(Din Spalr+1,0)
T (S )

Y =0
o0 v r+l
(1)in S1a(r+1,0) ad
=3 (Y) s, ) (2.4)
r) &~ r+1 v!
v=0 \ r=0 i=1

Therefore, by (2.1) and (2.4), we arrive at the following theorem.

Theorem 2.1 For k € Z and v > 0, we have

v r+l
() (Din S1alr+1,0)
= e s
'Bu,)» ;(,)Z -1 I+1 -

i=1
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Corollary 2.1 Putting k = 1 in Theorem 2.1 yields

v

v\ <A S+ 1,0)
1A )
3 () St T

r=0 i=1
Remark 2.1 Letting A to 0 in Theorem 2.1 leads to
v r+l .
() _ v Sl(r+1,L)B =0
p=3 () > B w20,

Using (1.1), we have

d i (l)ux logx(l +2))"

d
—El,d(logA (1 +z = d—

dz

'UK

(1427 S (M)uallog,(1+2)Y
~log, (1 +2) ; (v—=1)lvr-t
(1+2)*!

=——Fi._1,(I 1 .
log, (1 + 2) ic-12 (log, (1+2)

By (2.5), for k > 2, we have

z (1 A=l pz 1 -1z, A-1

Ei, (log, (1+2)) = [ 2 / L 4+9) A+

o log,(1+2) log, (1 +2) Jy log,(1+2)
(k—2)-times

Then, from (2.1) and (2.6), we have

> zv 1

Zﬁf’lf))‘—l = liEiK,)\ (logk(l + Z))

o U el -6, (2)

— 1 /-z (1+2)1! Z.“ 1+2)*1! Z2(1 + 2!
= ) j(z) 0 ]ng(l +Z) 0 log}h(l_},z) 0 10g)‘(1+z)

I ,
el (z)—e

(k—2)-times

o0

Ly Y "
-1 -1 i+ + e

e} (2) — e, 2 (2) i=0 ig+-tip_1=i

bip =D bis(i=1) by (-1 2

il+1 i1+i2+1 i1+"'+iK_1+1i!

v=0 i=0 g i+t =i L
b (A =1) by (A —1) N bi_ 2 (-1) | i
ih+1 i1+ip+1 it ti g +1 v-ik

Therefore, by (2.7), we arrive at the following theorem.

(2.5)

(2.6)

(2.7)
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Theorem 2.2 For v > 0, then

(K)_ Y v l
ﬁ“'*_;(i), Z <i1+-~~+i,(_1>

i1+ +ip_1=i

y bijp (A =1) bipp(A=1) b 10(h-1)
i1+1 i1+ir+1 i+t +1

By_ip. (2.8)

By making use of (1.7) and (2.1), we note that

Zﬁux( ) El,(k(log;\(1+z)) e (2)

ex F(z)-e, X (2)

Z A 'Z( )UA_

r=0 r

S - K zv

) Z%(; (:) e w“‘”) o (2.9)

which on comparing the coefficients on both sides of the above equation yields the fol-
lowing theorem.

Theorem 2.3 For v > 0, we have

CHOEDS <:)ﬁﬁ§) (@)yor

r=0

Let ¥ > 1 be an integer. For s € C, the function 7, ,(s) can be defined as

1o
I3 =— ——Fi,.; (1 d
Ni2.(5) F(s)_/o el(z)_e;%(z) i (log; (1 +2)) dz
1 1 zs—l

- Ei,, (log, (1 + 2)) &
I'(s) Jo e%(z) %(z) hallon(1 +2) de

—— Ei, (1 1 2.10
s)/ e’ (z) alog L+ ) a2 1o

€, 2 (2)

Here, for any s € C, the second integral converges absolutely; hence, the second term on
the r.h.s. vanishes at nonpositive integers, i.e.,

lim

S§—>—n

1 [ 71 1
o) T B d . :
F(s)./ e (2) - %(z) ha{log (1 +2)) de| = [(-n ) -0 210

On the other hand, for 9(s) > 0, we can write the first integral in (2.10) as

100
r
F—Z

which defines an entire function of s. Therefore, we may say that 7, ,(s) can be continued
to an entire function of s.
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Further, from (2.10) and (2.11), we get

1 1 Zs—l

Tim e Ei,.(log; (1 +2)) dz

z)

ﬂm(—n) =

I
0 €y (2) - € (
1 oo plk), r

1 Bz 1 —
= lim — [ ! "7 dz = lim —Z
(8) =

—-nT(s) Jo o Pt

B 1

s+rr!

()
1
= 40+---+0+ lim L1 P

S S sen +0+0+--- (2.12)

F(l—s)sinm) IB(K) ﬁ(’()
= lim ud mh (1 + n) cos(mm) —2
s—>-n S+n n! n!

= 1B
Therefore, by (2.12), we arrive at the following theorem.

Theorem 2.4 Letk > 1and n e NU{0},s € C. Then

Mea(=m) = (<1)'B,).
By making use of (1.2), we note that

i (1), (log; (1 + 2))!

Ei; (log; (1 +2)) = f

o (1);;.(log, (1 + 2))’
- i?

v

= Z Z(l)i,ksl,k(vyi)%
= Z( (1)ixS1,2(v, i)) Z?l: (2.13)

On the other hand,
Ei1 s (log,(1+2)) =z (2.14)
Therefore, by (2.13) and (2.14), we arrive at the following theorem.

Theorem 2.5 For v € N, then
v
Z(l)i,xsl,x(v, i) =8u1

i=1

where 8., is the Kronecker delta.
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From (2.1), we note that

Ei, , (log, (1 + 2)) i ) 2"
e DLt (2.15)

e’ (z) - ek% (2)

On replacing z with e, (z) — 1 in (2.15), we get

> i D1
Eiy . (2)
0@~ - e 0-1)
en(z) -1 z  Eii(2)
e/\% (en(z)-1) - e;%(e,\(z) ~1) ene)-1 =z

=ZB,A (ex(2) - ZBM Zil'g:jrklz)

i=0

M.
;mzwl L)l, ZBM .Zﬁ

=0 i=0

(1v+1,22°

ZZB;ASZA (1,9 ;):B,x Z v j_kl),(
(S (a5
— LA 2,1 / /9N ' U + 1

=0 i v=

00 v j l s
(l)u—’+ s zv
Z(} ZZ()( > Bi3S2 (L )B;- “(_,’7111;)5‘ (2.16)

v=0 =0 i=0

On the other hand,
w0 @@ -D" L) — z¥
Z B o Z B Z S2,.(v,m) o
m=0 m=0 v=m
o0 v : o
= Z( B S2 (v, m)) - (2.17)
v=0 \m=0 ‘

Therefore, by (2.16) and (2.17), we arrive at the following theorem.

Theorem 2.6 For v € N, we have

2 vl
D BuiSualom =3 3 3 ( )( ) S2(L 0By “(()U%lf)x'
m=0 1=0 i=0
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The higher-order type 2 degenerate Bernoulli polynomials of order r € N are defined by
(see [7])

() -2 (2.18)
e (z)—¢ () v=0 :

For w =0, Bg,),\(O) = B") denotes higher-order type 2 degenerate Bernoulli numbers of
order r € N.

From (1.18) and (2.18), we get

v+K\
( . >BE}";):T2,)L(U+K,K),

where v, k are nonnegative positive integers
Replacing z with log(1 + z) in (2.18), we get

y (log(1 +2))"
Bm
% \

( log(1 + 2) )r
m! (1+2alog(1+ z))2k —(1+Xxlog(1+2)” b

1
X
S

)
N

(2.19)
On the other hand,

ZB ) (log(1 +2))" > it
m,A

- ZB( AZS(UWI

v ZU
( BY. (v, m)> =. (2.20)
v=0 \m=0 v

Therefore, by (2.19) and (2.20), we arrive at the following theorem
Theorem 2.7 For v > 0, we have

v
DY = ZB(V;),)»SI(U’ m).

m=0

Now, we introduce type 2 degenerate central poly-Bell polynomials as

Ei, (e 3(2) - exz(z) ZBelM (a)) Bel*Y(w)=0 (k€. (2.21)

When w =1, Belv"; = BelU Iy )(1) are called type 2 degenerate poly-Bell numbers.
From (2.21), we note that

EiK,A(a)(e% (Z) _ e;% (Z)) _ Z wm(ef (Z) - e;

— (m - 1)n«

NI

()"
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S (e} (2) - e;* @)"

(m - 1)lm~

(Z n‘;_l Ty (v, m)) % (2.22)

Thus, by (2.21) and (2.22), we obtain the following theorem.

Theorem 2.8 For k € Z and v € N, we have

m

v
w
Bely @) =)

m=1

Ty (v, m).

3 Type 2 degenerate unipoly-Bernoulli polynomials and numbers
The unipoly function attached to polynomials p(w) was defined by Kim and Kim [14] as

U (wlp) = pl(, ) (e, (3.1)

v=1

where p denotes any arithmetic real or complex-valued function defined on N.

Moreover,
w1 = 3 2 =iy, (see 9D (32
v=1

is the ordinary polylogarithm function.
Dolgy and Khan [4] introduced the degenerate unipoly function attached to polynomials
p(w) as follows:

oo

tepwlp) = Y p) (l)”‘“ (3.3)

i=1

It is worthy to see that

Ua (4%) — Eie, (), (see [30]) (3.4)

is the moderated degenerate polyexponential function.
Now, we define type 2 degenerate unipoly-Bernoulli polynomials which are given by the
generating function as follows:

e (108, (1 + D) o Z B (@)= (3.5)

(D)6 ()

For w = 0, ﬁff\)]p = ﬁiﬁp(O) denotes type 2 degenerate unipoly-Bernoulli numbers at-
tached to p.

Page 11 0f 18
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By (3.5), we see that
oo
z¥ 1 1
Z z(J ST 1 e <10gx(1 +Z)’F>
TV () - €2 ()
~ 1 o (1), (log, (1 +2))"
-1 _1 (o
ef (z) — e}\z (z) =1 ré(r—1)!
1 v
i S e— P (Ing(l + Z)) Z,B AT (3.6)
e;(z)—e (2) =0 :
Thus, by (3.6), we have
B\ =Bl (3.7)
T

By making use of (3.5), we see that

o0 v 1
Z :31(;’3,19% =Tl »(log; (1 +2)) |p)
v=0 " oe(2)-e’(2)
_ 1 p(r)(Kl)r,A (log, (1 +2)Y

el(z) - e;%(z) r=1

1 Z p(r)r(l(l)r,k (]ng(l n Z))rr_!

1 _ 1
e; (z) — e, (z) r=1 r

_ 1 1 ZP(V el ZSMH”)

e; (z)—ek (2) r=1

[T

oo i+l i

i ZZP rkr Sl,)L(i+ 1,1")%

ek(z)—ekz(z) i=0 r=1 rei+

oo i+l
(L3 ) (E 2002 )
j=0 r=1

L\ p(r)(Q), ! %
Z(ZZ() rKl+r1>» S+, r)B,,,\)] (3.8)

j=0 \i=0 r=1

which yields the following theorem.

Theorem 3.1 Let j be a nonnegative integer and k € 7.. Then

&L\ p) (D)t
A .
/W ZZ () (i+1) S12(i+1,7)Bj .
i=0 r=1

Recalling from (3.5), we have

Zﬁ;‘(’;)p(w)i] _ u, 1 (log; (1 +2))|p) & (2)

() -e ()
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MKA(IOgA(l +2) Ip) Z( )M_

(z)—ekz(z) 5=0

o .
_ (x) Vi z
= By i Z(w)m l

j=0 T s=0
- ZO (ZO ({q ) ﬁ,gfs),x,p(w)s,/\> f—, (39)
j=0 \s=

By Eq. (3.9), we get the following theorem.

Theorem 3.2 Let j be a nonnegative integer and k € 7. Then

B (@) = Z (s)ﬂ}f;mw)s,k.
s=0
From (3.5), we have

Z ﬁ,xp(a))— 71@1 (log, (1 +2)Ip)(er(z) =1 +1)”

e;(z)—e,’(2)

K 1 - -1y
u ,xl( ogx(l_z 2)p) 3 () (ex(zz‘ 1)
e (z)—e*(z) =0 ’

I BB SRS
q=i ’

J: i=0

Z '31’;»)17 Z; Z Z(w) Szlx(q,

'qOZO

00 j q . j
- Z(ZZ <f] ) (©)S2,.(4, i)ﬁ}f,),,x,,,> f— (3.10)
=0 \g=0 i=0

which yields the following theorem.

Theorem 3.3 Let j be a nonnegative integer and k € 7. Then

j q .
]Ap ZZ( )(w iSo(q, i )IB] —gp*

q=0 i=0
Using (3.5), we have
> (%) zv 1
Z ’BU,)»,IJJ =71 1 Ue,n (]ng(l + Z) |p)
v=0 Toel(r)—e (2
1 o p(m) (1),
-7 " A(ogk(1+z))m

e; (z)—eA (z) m=1

_ 1 ZP(”” + 1)(1)m+1,A (logx(l n Z))WH-I
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log, (1 +2) ad pm + 1)(1)ps1,,m! (log, (1 + 2))"
(m + 1)« m!

I 1
e} (z) — e, * (z) m=0

_ logk(l + Z) p(Vl’I + 1 (1)m+1 Al Zsl A(l }’ﬂ)

e’(z) - e;% (2) m=0 (m +1)¢

o]

1
_log; (1 +2) z pm +1)(1)41,,.m!
z

!

z
Syl m)—
(m + 1)« 1a(bm) I

1 -1
e;(z) — e, (z) 1=0 m=0

!

= ZDM ZBM Zzp(m +nlq illwum Sl m)%
" j=0 )

=0 m=0

1

_ 0 v v p(m m+1)\m! ,
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Therefore, by (3.5) and (3.11), we obtain the following theorem.

Theorem 3.4 For v > 0 and k € Z, we have

v

Ukp_

v-1
( ) < ) _j_l,ABj,Ap(m + 1)(1)m+1’AM!Sl,x(l,m).

!
= mod 10 (m + 1)<

4 Numerical computations
In this section, some numerical computations are done to calculate certain zeros of type
2 degenerate poly-Bernoulli polynomials and present certain interesting graphical repre-

sentations. The first five members of ﬂi’fi(w) are obtained and given as follows:

() = ———
B (@) = Tog3’
1 1 w
piilw) = 24(log 3)2 ’ 3log3 log3’
() 2 5 w 43 w ?
i (@) = — 3= >+ e + - ,
729(log3)3 72(log3)? 12(log3)> 108log3 log3 log3
£90) 8 20 151 o w? , 2
) = - -
3 729(log3)® 243(log3)®  864(log3)? 4(log3)? 8(log3)? 27log3
7w 20? w?

- 4log3 * log3 - log3’
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/34,)\(0)):_ 3t 3 3 2t 2
6561(log3)3 81(log3)® 243(log3)> 1296(log3)?> 8(log3)
7w? w® 63,667 3lw
- + - +
12(log3)?  6(log3)? 19,440log3 6log3
89w? 100 = o*

~ 18log3 ¥ 3log3 log3’

Next, we present some graphs showing the behavior of ﬁl(f; (w) for k =4 and A = z; these

1
3
graphs are given in Fig. 1.

The approximate solutions of ﬂé’& (w) =0 when k =4 and A =  are calculated and dis-

played in Fig. 2.
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Further, we calculate the approximate zeros of ﬁfﬁ(w) =0fork =4, A = % and n

1,2,...,20, and show the stacking structure of these zeros in Fig. 3.

5 Conclusions

In this paper, we have studied and introduced degenerate versions of type 2 Bernoulli
numbers and polynomials and derived some properties of these polynomials. We have
given some relationships between higher-order Bernoulli polynomials, degenerate type 2
Bernoulli polynomials, degenerate central Bell polynomials, degenerate Stirling numbers
of the first and second kind, degenerate central factorials numbers. Besides, we have in-
troduced degenerate type 2 unipoly-Bernoulli polynomials by using degenerate unipoly
polynomials and derived some identities of these polynomials. We have derived some re-

lationship between degenerate type 2 Bernoulli polynomials and degenerate Daehee poly-

nomials.
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