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Abstract
The aim of this paper is to introduce the degenerate generalized Laguerre
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1 Introduction
The generalized Laguerre polynomials are classical orthogonal polynomials which are or-
thogonal with respect to the gamma distribution e–xxα dx on the interval (0,∞). The gen-
eralized Laguerre polynomials are widely used in many problems of quantum mechanics,
mathematical physics and engineering. In quantum mechanics, the Schrödinger equation
for the hydrogen-like atom is exactly solvable by separation of variables in spherical co-
ordinates. The radial part of the wave function is a generalized Laguerre polynomial [14].
In mathematical physics, vibronic transitions in the Franck–Condon approximation can
also be described by using Laguerre polynomials [6]. In engineering, the wave equation is
solved for the time domain electric field integral equation for arbitrary shaped conducting
structures by expressing the transient behaviors in terms of Laguerre polynomials [4].

The aim of this paper is to introduce the degenerate generalized Laguerre polynomi-
als as the degenerate version of the generalized Laguerre polynomials and to derive some
properties related to those polynomials and Lah numbers. In more detail, we obtain an
explicit formula and a Rodrigues type formula for the degenerate Laguerre polynomials.
We also get explicit expressions for the degenerate generalized Laguerre polynomial for
α = –1, an identity involving Lah numbers, the falling factorial moment of the degener-
ate Poisson random variable with parameter α, and expressions for the derivatives of the
degenerate generalized Laguerre polynomials.

We should mention here that degenerate versions of many special numbers and polyno-
mials have been explored and many interesting results have been obtained in recent years
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[8, 11, 12]. Furthermore, these have been done not only for special numbers and polyno-
mials but also for transcendental functions like gamma functions [10]. The novelty of the
present paper is that this is the first paper which treats degenerate versions of orthogonal
polynomials. For the rest of this section, we will recall some necessary facts that will be
used throughout this paper.

The Laguerre polynomial Ln(x) satisfies the second-order linear differential equation

xy′′ + (1 – x)y′ + ny = 0 (see [16]),

while the generalized Laguerre polynomial (or the associated Laguerre polynomial) L(α)
n (x)

satisfies the second-order linear differential equation

xy′′ + (α + 1 – x)y′ + ny = 0, (α ∈ R).

The Rodrigues formula of the Laguerre polynomial Ln(x) is given by

Ln(x) =
ex

n!
dn

dxn

(
e–xxn) =

1
n!

(
d

dx
– 1

)n

xn, (1)

while that of the generalized Laguerre polynomial L(α)
n (x) is given by

L(α)
n (x) =

1
n!

x–αex dn

dxn

(
e–xxn+α

)
(2)

= x–α 1
n!

(
d

dx
– 1

)n

xn+α (see [2, 9, 16, 17]).

The generating function of generalized Laguerre polynomials is given by

∞∑

n=0

L(α)
n (x)tn =

1
(1 – t)α+1 e–x t

1–t (see [9, 16, 17]). (3)

From (3), we get

L(α)
n (x) =

n∑

i=0

(–1)i
(

n + α

n – i

)
xi

i!
(see [9, 17]). (4)

Note that

L(α)
0 (x) = 1

L(α)
1 (x) = –x + (α + 1)

L(α)
2 (x) =

x2

2
– (α + 2)x +

(α + 1)(α + 2)
2

,

L(α)
3 (x) = –

x3

6
+

α + 3
2

x2 –
(α + 2)(α + 3)

2
x +

(α + 1)(α + 2)(α + 3)
6

, . . . .

The rising factorial sequence is defined as

〈x〉0 = 1, 〈x〉n = x(x + 1) · · · (x + n – 1), (n ≥ 1),
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while the falling factorial sequence is defined as

(x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1), (n ≥ 1), (see [1–3, 5, 7–13, 15–18]).

We note that the Lah numbers are defined by

〈x〉n =
n∑

k=0

L(n, k)(x)k , (n ≥ 0), (see [3, 5, 8, 13, 15]). (5)

From (5), we can easily derive the following equation:

1
k!

(
t

1 – t

)k

=
∞∑

n=k

L(n, k)
tn

n!
(see [3, 5, 13, 17]). (6)

For any λ ∈R, the degenerate exponential function is defined by

ex
λ(t) =

∞∑

n=0

(x)n,λ
tn

n!
(see [10, 11]), (7)

where (x)0,λ = 1, (x)n,λ = x(x–λ) · · · (x–(n–1)λ), (n ≥ 1). For x = 1, we use the brief notation
eλ(t) = e1

λ(t).

2 Degenerate generalized Laguerre polynomials
For any α ∈R, we consider the degenerate generalized Laguerre polynomials given by

1
(1 – t)α+1 eλ

(
–x

t
1 – t

)
=

∞∑

n=0

L(α)
n,λ(x)tn, |t| < 1. (8)

From (7), we note that

1
(1 – t)α+1 eλ

(
–x

t
1 – t

)
=

1
(1 – t)α+1

∞∑

m=0

(1)m,λ(–1)mxm 1
m!

(
t

1 – t

)m

(9)

=
∞∑

m=0

(1)m,λ(–1)mxm 1
m!

tm
(

1
1 – t

)m+α+1

=
∞∑

m=0

(1)m,λ(–1)mxm tm

m!

∞∑

l=0

(
m + α + l

l

)
tl

=
∞∑

n=0

( n∑

m=0

(1)m,λ(–1)mxm 1
m!

(
m + α + n – m

n – m

))

tn

=
∞∑

n=0

( n∑

m=0

(1)m,λ(–1)mxm 1
m!

(
n + α

n – m

))

tn.

Therefore, by (8) and (9), we obtain the following theorem.

Theorem 1 For n ≥ 0, we have

L(α)
n,λ(x) =

n∑

m=0

(
n + α

n – m

)
(–1)m(1)m,λ

1
m!

xm.



Kim et al. Advances in Difference Equations        (2021) 2021:421 Page 4 of 12

Now, by using Theorem 1, we observe that

dn

dxn

[
xαeλ

(
–

a
x

)]
(10)

=
dn

dxn

[ ∞∑

k=0

(1)k,λ(–a)k 1
k!

xα–k

]

=
∞∑

k=0

(1)k,λ
(–a)k

k!

n-times
︷ ︸︸ ︷
(α – k)(α – k – 1) · · · (α – k – n + 1) xα–k–n

= (–1)nxα–n
∞∑

k=0

(1)k,λ(–a)k 1
k!

(k – α)(k – α + 1) · · · (k – α + n – 1)x–k

= (–1)nxα–nn!
∞∑

k=0

(1)k,λ
(–1)k

k!

(
a
x

)k(k + n – α – 1
n

)

= (–1)nxα–nn!
∞∑

k=0

(1)k,λ
(–1)k

k!

(
a
x

)k n∑

l=0

(
n – α – 1

n – l

)(
k
l

)

= (–1)nxα–nn!
n∑

l=0

(
n – α – 1

n – l

) ∞∑

k=l

(1)k,λ
(–1)k

k!

(
a
x

)k k!
l!(k – l)!

= (–1)nxα–nn!
n∑

l=0

(
n – α – 1

n – l

) ∞∑

k=0

(1)k+l,λ(–1)k+l
(

a
x

)k+l 1
l!k!

= (–1)nxα–nn!
n∑

l=0

(
n – α – 1

n – l

)
(–1)l

(
a
x

)l 1
l!

(1)l,λ

∞∑

k=0

(1 – lλ)k,λ
(–1)k

k!

(
a
x

)k

= (–1)nxα–nn!
n∑

l=0

(
n – α – 1

n – l

)
(–1)l(1)l,λ

(
a
x

)l 1
l!

e1–lλ
λ

(
–

a
x

)

= (–1)nxα–nn!eλ

(
–

a
x

) n∑

l=0

(
n – α – 1

n – l

)
(–1)l(1)l,λ

(
a

x – aλ

)l 1
l!

= (–1)nxα–nn!eλ

(
–

a
x

)
L(–α–1)

n,λ

(
a

x – aλ

)
.

Therefore, by (10), we obtain the following theorem.

Theorem 2 For n ≥ 0, we have

dn

dxn

[
xαeλ

(
–

a
x

)]
= (–1)nxα–nn!eλ

(
–

a
x

)
L(–α–1)

n,λ

(
a

x – aλ

)
.

By using Leibniz rule and Theorem 1, we have

dn

dxn

[
eλ(–x)xn+α

]
(11)

=
n∑

m=0

(
n
m

)[
dm

dxm eλ(–x)
][

dn–m

dxn–m xn+α

]
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=
n∑

m=0

(
n
m

)
(–1)m(1)m,λe1–mλ

λ (–x) · (n + α)n–mxn+α–n+m

= n!eλ(–x)xα

n∑

m=0

(
n + α

n – m

)
(–1)m(1)m,λe–mλ

λ (–x)xm 1
m!

= n!eλ(–x)xα

n∑

m=0

(
n + α

n – m

)
(–1)m(1)m,λ

(
x

1 – λx

)m 1
m!

= n!eλ(–x)xαL(α)
n,λ

(
x

1 – λx

)
.

Thus, we obtain Rodrigues type formula for the degenerate generalized Laguerre polyno-
mials.

Theorem 3 (Rodrigues type formula) For n ≥ 0, we have

x–α

n!eλ(–x)
dn

dxn

[
eλ(–x)xn+α

]
= L(α)

n,λ

(
x

1 – λx

)
.

For α = –1, from Theorem 3, we have

x
n!eλ(–x)

dn

dxn

[
eλ(–x)xn–1] = L(–1)

n,λ

(
x

1 – x

)
. (12)

On the other hand, by (8), we get

eλ

(
–x

t
1 – t

)
=

∞∑

n=0

L(–1)
n,λ (x)tn. (13)

From (7), we can derive the following equation:

eλ

(
–x

t
1 – t

)
=

∞∑

k=0

(–1)k(1)k,λxk 1
k!

(
t

1 – t

)k

(14)

=
∞∑

k=0

(–1)k(1)k,λxk
∞∑

n=k

L(n, k)
tn

n!

=
∞∑

n=0

( n∑

k=0

(–1)k(1)k,λxkL(n, k)

)
tn

n!
.

Thus, by (13) and (14), we get

L(–1)
n,λ (x) =

1
n!

n∑

k=0

(–x)k(1)k,λL(n, k), (15)

where L(n, k) =
(n–1

k–1
) n!

k! is the Lah number.
Therefore, we obtain the following theorem.
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Theorem 4 For n ≥ 0, we have

L(–1)
n,λ (x) =

1
n!

n∑

k=0

(–x)k(1)k,λL(n, k) =
n∑

k=0

(1)k,λ(–x)k 1
k!

(
n – 1
k – 1

)
.

From Theorem 1, we note that

L(α)
n,λ(x) =

n∑

m=0

(1)m,λxm(–1)m 1
m!

(
n + α

n – m

)
(16)

=
n∑

m=0

(1)m,λ(–x)m (n + α)(n + α – 1) · · · (m + α + 1)
m!(n – m)!

=
n∑

m=0

(1)m,λ(–x)m (n + α)(n + α – 1) · · · (m + α + 1)(m + α) · · · (α + 1)
m!(n – m)!(m + α) · · · (α + 1)

=
n∑

m=0

(1)m,λ(–x)m 1
m!(n – m)!

(n + α)n

(m + α)m

=
n∑

m=0

(1)m,λ(–x)m 1
m!(n – m)!

(n + α)n

(m + α)m

�(α + 1)
�(α + 1)

= �(n + α + 1)
n∑

m=0

(1)m,λ
(–x)m

m!(n – m)!
1

�(m + α + 1)
.

Thus, by (16), we get

L(α)
n,λ(x) =

�(n + α + 1)
�(n + 1)

n∑

m=0

(1)m,λ

(
n
m

)
(–x)m 1

�(m + α + 1)
. (17)

In particular, α = –1, we have

L(–1)
n,λ (x) =

1
n

n∑

m=0

(1)m,λ

(
n
m

)
(–x)m 1

�(m)
(18)

=
n∑

m=1

(1)m,λ(–x)m 1
m!

(
n – 1
m – 1

)
.

Now, we observe that

dn

dxn eλ

(
1
x

)
=

dn

dxn

∞∑

k=0

(1)k,λ
1
k!

(
1
x

)k

(19)

=
∞∑

k=0

(1)k,λ
1
k!

(–1)n〈k〉nx–n–k

=
∞∑

k=0

(1)k,λ
(–1)n

k!

n∑

l=0

L(n, l)(k)lx–n–k

=
n∑

l=0

(–1)nL(n, l)
∞∑

k=0

(1)k,λ
(k)l

k!
x–n–k
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= (–1)nx–n
n∑

l=0

L(n, l)
∞∑

k=l

(1)k,λ

k!
(k)lx–k

= (–1)nx–n
n∑

l=0

L(n, l)
∞∑

k=l

k!
k!(k – l)!

(1)k,λx–k

= (–1)nx–n
n∑

l=0

L(n, l)x–l
∞∑

k=0

(1)k+l,λ

k!
x–k

= (–1)nx–n
n∑

l=0

L(n, l)x–l(1)l,λ

∞∑

k=0

(1 – lλ)k,λ

k!
x–k

= (–1)nx–n
n∑

l=0

L(n, l)x–l(1)l,λe1–lλ
λ

(
1
x

)

= (–1)nx–neλ

(
1
x

) n∑

l=0

L(n, l)(1)l,λx–l
(

1 +
λ

x

)–l

= (–1)nx–neλ

(
1
x

) n∑

l=0

L(n, l)(1)l,λ

(
1

x + λ

)l

.

Therefore, by (19), we obtain the following theorem.

Theorem 5 For n ≥ 1, we have

dn

dxn eλ

(
1
x

)
= (–1)nx–neλ

(
1
x

) n∑

l=0

L(n, l)(1)l,λ

(
1

x + λ

)l

.

Since

L(n, k) =
(

n – 1
k – 1

)
n!
k!

=
(

n – 1
k – 1

)
n!

(n – k)!k!
(n – k)! =

(
n – 1
k – 1

)(
n
k

)
(n – k)!,

we have the following corollary.

Corollary 6 For n ≥ 1, we have

dn

dxn eλ

(
1
x

)
= x–n(–1)neλ

(
1
x

) n∑

l=1

(
n – 1
l – 1

)(
n
l

)
(1)l,λ(n – l)!

(
1

x + λ

)l

.

3 Degenerate Poisson random variables
Let X be the Poisson random variable with parameter α(> 0). Then the probability mass
function of X is given by

p(i) = P{X = i} =
αi

i!
e–α (i = 0, 1, 2, . . . ).

It is easy to show that

E
[
(X)n

]
=

∞∑

k=0

(k)np(k) = e–α

∞∑

k=n

αk

(k – n)!
= e–ααn

∞∑

k=0

αk

k!
= αn.
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Thus, we note that

E
[(

X
n

)]
=

αn

n!
(n = 0, 1, 2, . . . ).

Let Xλ be the degenerate Poisson random variable with parameter α(> 0). Then the prob-
ability mass function of Xλ is given by

p(i) = P{Xλ = i} = e–1
λ (α)

αi

i!
(1)i,λ (i = 0, 1, 2, . . . ), (see [12]).

Then the following falling factorial moment is given by

E
[
(Xλ)n

]
=

∞∑

k=0

(k)np(k) =
∞∑

k=0

(k)n
e–1
λ (α)
k!

αk(1)k,λ (20)

= e–1
λ (α)

∞∑

k=n

k(k – 1) · · · (k – n + 1)(k – n)!
k!(k – n)!

αk(1)k,λ

= e–1
λ (α)

∞∑

k=0

αk+n 1
k!

(1)k+n,λ

= αne–1
λ (α)

∞∑

k=0

(1)n,λ(1 – nλ)k,λ
αk

k!

= αne–1
λ (α)(1)n,λe1–nλ

λ (α) = αn(1)n,λ

(
1

1 + αλ

)n

.

Assume that Xλ is the Poisson random variable with parameter 1
α

(> 0). Then, by using
(20), we obtain

dn

dαn

(
eλ

(
1
α

))
= (–1)nα–n

n∑

l=0

L(n, l)
∞∑

k=0

(k)l

k!
(1)k,λα

–k

= (–1)nα–n
n∑

l=0

L(n, l)eλ

(
1
α

)
e–1
λ

(
1
α

) ∞∑

k=0

(k)l

k!
(1)k,λα

–k

= (–1)nα–n
n∑

l=0

L(n, l)eλ

(
1
α

)
E
[
(Xλ)l

]

= (–1)nα–neλ

(
1
α

) n∑

l=0

L(n, l)(1)l,λ

(
1

α + λ

)l

.

4 Derivatives of degenerate Laguerre polynomials
Let us consider the sequence yn,λ(x) which is given by

A(t)eλ

(
–x

t
1 – t

)
=

∞∑

n=0

yn,λ(x)tn, (21)

where A(t) is an invertible series.
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Note that y0,λ(x) = A(0) is a constant. We now set Fλ = Fλ(x, t) = A(t)eλ(– x
1–t t).

From (21), we note that

∂

∂x
Fλ = A(t)

(
–

t
1 – t

)
e1–λ
λ

(
–

xt
1 – t

)
(22)

= –
(

t
(1 – t) – xλt

)
A(t)eλ

(
–

xt
1 – t

)
.

By (22), we get

∂

∂x
Fλ – (1 + xλ)t

∂

∂x
Fλ = –tFλ. (23)

From (21) and (23), we can derive the following equation:

∞∑

n=1

y′
n,λ(x)tn – (1 + xλ)

∞∑

n=1

y′
n–1,λ(x)tn = –

∞∑

n=1

yn–1,λ(x)tn. (24)

By comparing the coefficients on both sides of (24), we get

y′
n,λ(x) – (1 + xλ)y′

n–1,λ(x) = –yn–1,λ(x), (n ≥ 1), (25)

where y′
n,λ(x) = d

dx yn,λ(x).
Now, we observe that

–t
(1 – t) – xλt

= –
t

1 – t

(
1

1 – xλ
1–t t

)
= –

∞∑

l=0

xlλl
(

t
1 – t

)l+1

= –
∞∑

l=1

xl–1λl–1
(

t
1 – t

)l

(26)

= –
∞∑

l=1

xl–1λl–1tl
∞∑

m=0

(
m + l – 1

m

)
tm

= –
∞∑

k=1

( k∑

l=1

xl–1λl–1
(

k – 1
k – l

))

tk .

From (22) and (26), we can derive the following equation:

∞∑

n=1

y′
n,λ(x)tn =

∂

∂x
Fλ = –

(
t

1 – t – xλt

)
A(t)eλ

(
–

xt
1 – t

)
(27)

=
∞∑

k=1

(

–
k∑

l=1

xl–1λl–1
(

k – 1
k – l

))

tk
∞∑

m=0

ym,λ(x)tm

=
∞∑

n=1

(

–
n∑

k=1

k∑

l=1

xl–1λl–1
(

k – 1
k – l

)
yn–k,λ(x)

)

tn.
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Thus, by comparing the coefficients on both sides of (27), we get

y′
n,λ(x) = –

n∑

k=1

k∑

l=1

xl–1λl–1
(

k – 1
k – l

)
yn–k,λ(x). (28)

Therefore, we obtain the following theorem.

Theorem 7 Let

A(t)eλ

(
–

xt
1 – t

)
=

∞∑

n=0

yn,λ(x)tn,

where A(t) is an invertible series.
Then, for n ≥ 1, we have

y′
n,λ(x) = (1 + xλ)y′

n–1,λ(x) – yn–1,λ(x)

and

y′
n,λ(x) = –

n∑

k=1

k∑

l=1

xl–1λl–1
(

k – 1
k – l

)
yn–k,λ(x),

where y′
n,λ(x) = d

dx yn,λ(x).

From the definition of the degenerate generalized Laguerre polynomials in (8), we ob-
serve that

∞∑

n=0

d
dx

L(α)
n,λ(x)tn =

1
(1 – t)α+1

d
dx

eλ

(
–x

t
1 – t

)

= –t
1

(1 – t)α+2

(
1 –

λ

1 – λ
(1 – λ)x

t
1 – t

) 1–λ
λ

(29)

= –t
∞∑

n=0

L(α+1)
n, λ

1–λ

(
(1 – λ)x

)
tn

= –
∞∑

n=1

L(α+1)
n–1, λ

1–λ

(
(1 – λ)x

)
tn.

In Theorem 7, let us take A(t) = (1 – t)–α–1. Then we have

∞∑

n=0

yn,λ(x)tn = (1 – t)–α–1eλ

(
–

x
1 – x

t
)

=
∞∑

n=0

L(α)
n,λ(x)tn. (30)

Thus, we note that yn,λ(x) = L(α)
n,λ(x), (n ≥ 0).

Therefore, by Theorem 7, (29), and (30), we obtain the following corollary.

Corollary 8 For n ≥ 1, we have the following derivative formulas:

d
dx

L(α)
n,λ(x) = (1 + xλ)

d
dx

L(α)
n–1,λ(x) – L(α)

n–1,λ(x),
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d
dx

L(α)
n,λ(x) = –

n∑

k=1

k∑

l=1

xl–1λl–1
(

k – 1
k – l

)
L(α)

n–k,λ(x),

d
dx

L(α)
n,λ(x) = –L(α+1)

n–1, λ
1–λ

(
(1 – λ)x

)
.

Remark 9 The last derivative formula in Corollary 8 was drawn attention to by one of the
referees to whom we thank.

5 Conclusion
In this paper, we introduced the degenerate generalized Laguerre polynomials, which are
the first degenerate versions of the orthogonal polynomials, and derived some results re-
lated to those polynomials and Lah numbers. Some of the results are an explicit expres-
sion, Rodrigues type formula, and some expressions for the derivatives of the degenerate
generalized Laguerre polynomials.
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