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Abstract
The main purpose of this paper is to present some fixed-point results for a pair of
fuzzy dominated mappings which are generalized V-contractions in modular-like
metric spaces. Some theorems using a partial order are discussed and also some
useful results to graphic contractions for fuzzy-graph dominated mappings are
developed. To explain the validity of our results, 2D and 3D graphs have been
constructed. Also, applications are provided to show the novelty of our obtained
results and their usage in engineering and computer science.
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1 Introduction and preliminaries
The fixed-point theory becomes essential in analysis (see [1–66]). In [19], Chistyakov
firstly introduced the notion of a modular metric and discussed thoroughly its con-
vergence, convexity, relation with metrics, convex cones, and the structure of semi-
groups on such spaces. The modular metric spaces generalize classical modulars over lin-
ear spaces, like Orlicz, Lebesgue, Musielak–Orlicz, Lorentz, Calderon–Lozanovskii, and
Orlicz–Lorentz spaces. The main idea behind this new concept is the physical interpre-
tation of the modular. We look at these spaces as the nonlinear version of the classical
modular spaces. Padcharoen [42] initiated the idea of rational type F-contractions in mod-
ular metric spaces and proved some important results. Additional results in such spaces
proved by different authors can be seen in [18, 31, 33, 37]. Nadler [39] presented a fixed-
point theorem for multivalued mappings and generalized its analogues for single-valued
mappings. Fixed-point results of multivalued mappings have several applications in en-
gineering, control theory, differential equations, games and economics; see [11, 16]. In
this paper, we are using multivalued mappings. Wardowski [66] introduced a new type
of contractions, named F-contractions, to obtain a fixed-point result. For more results in
this direction, see [2, 3, 6, 8, 15, 32, 33, 38, 55]. Here, we have used a weak family of map-
pings instead of the function F introduced by Wardowski. In [9] the authors observed that
there are mappings which possess fixed points. Namely, they introduced a condition on
closed balls to achieve common fixed points for such mappings. For further results on
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closed balls, see [50, 51, 63]. In this paper, we are using a sequence instead of a closed
ball. Ran and Reurings [49] and Nieto and Rodríguez-López [41] gave fixed-point theory
results in partially ordered sets. For more results in ordered spaces, see [20, 21, 23]. Asl et
al. [10] gave the notion of α∗-admissible mappings and α–ω-contractive set-valued map-
pings (see also [5, 26, 29, 56]) and generalized the restriction of order. Rasham et al. [53]
introduced the concept of α∗-dominated mappings to establish a new condition of order
and obtained some results (see also [52, 54, 59, 62]). They proved that there are mappings
which are α∗-dominated, but not α∗-admissible. The notion of fuzzy sets is introduced
by Zadeh [67] and then a lot of researchers did their research work in this field. Weiss
[68] and Butnariu [17] firstly discussed the concept of fuzzy mappings and showed many
related results. Heilpern [16] discussed a result on fuzzy mappings, which was a further
generalization of Nadler’s set-valued result [39] using a Hausdorff metric. Due to impor-
tance of the Heilpern’s results, fixed-point theory for fuzzy contractions using a Hausdorff
metric has become more important, see [44–48, 51, 61, 62]. In this article, we prove fixed
point results for a pair of fuzzy dominated maps which are generalized V -contractions
and provide related graphs for 2D and 3D. An application for the solution of electric cir-
cuit equations is also presented. Moreover, a fractional differential equation is solved. Our
obtained results generalize those presented in [54, 57, 59, 61, 66].

We start with the following statements which are helpful to prove our results.

Definition 1.1 ([56]) Let A be a nonempty set. A function u : (0, 1) × A × A → [0, 1) is
called a modular-like metric on A if for all a, b, c ∈ A; l, n > 0, and ul(a, b) = u(l, a, b), the
following hold:

(i) ul(a, b) = ul(b, a);
(ii) ul(a, b) = 0, then a = b;

(iii) ul+n(a, b) ≤ ul(a, c) + un(c, b).
(A, u) is called a modular-like metric space. If we replace (ii) by ul(a, b) = 0 if and only

if a = b, then (A, u) becomes a modular metric space. If we replace (ii) by ul(a, b) = 0 for
some l > 0 then a = b, then (A; u) becomes a regular modular-like metric on A. For e ∈ A
and ε > 0, Bul (e, ε) = {p ∈ A : |ul(e, p) – ul(e, e)| ≤ ε)} is the closed ball. We abbreviate by
“m.l.m. space” a modular-like metric space.

Definition 1.2 ([56]) Let (A, u) be an m.l.m. space.
(i) A sequence (an)n∈N in A is u-Cauchy for some l > 0, if and only if

limn,m→+∞ ul(am, an) exists and is finite.
(ii) A sequence (an)n∈N in A u-converges to a ∈ A for some l > 0, if and only if

limn→+∞ ul(an, a) = ul(a, a).
(iii) E ⊆ A is called u-complete if any u-Cauchy sequence {an} in E is u-convergent to

some a ∈ E, so that for some l > 0,

lim
n→+∞ ul(an, a) = ul(a, a) = lim

n,m→+∞ ul(am, an).

Definition 1.3 ([57]) Let (A, u) be an m.l.m. space and E ⊆ A. An element p0 of A is the
closest to E if it provides the finest estimate in E for e ∈ A, i.e.,

ul(e, E) = inf
p∈E

ul(e, p) = ul(e, p0).
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If every e ∈ A has a greatest estimate in E, then E is identified as a proximal set. For
example, let A = R

+ ∪ {0} and ul(e, p) = 1
l (e + p) for all l > 0. Define a set E = [4, 6], then for

each y ∈ A,

ul(y, E) = ul
(
y, [4, 6]

)
= inf

n∈[4,6]
ul(y, n) = ul(y, 4).

Hence, 4 is the finest estimate in E for very y ∈ A. Also, [4, 6] is a proximal set.
From now on, denote by P(A) the set of compact proximinal subsets in A.

Definition 1.4 ([56]) Let (A, u) be an m.l.m. space. The function Hul : P(A) × P(A) →
[0,∞), given as

Hul (N , M) = max
{

sup
n∈N

ul(n, M), sup
m∈M

ul(N , m)
}

,

is ul-Hausdorff metric like. The pair (P(A), Hul ) is named as a ul-Hausdorff metric like
space.

For examples, take A = R+ ∪ {0}. Let

ul(e, p) =
1
l

(e + p) for all l > 0.

If N = [3, 5], R = [7, 8], then Hul (N , R) = 13
l .

Definition 1.5 ([56]) Let (A, u) be an m.l.m. space. We will say that u satisfies the �M-
condition if limn,m→∞ up(en, em) = 0, where p ∈N implies limn,m→∞ ul(en, em) = 0, for some
l > 0.

Definition 1.6 ([62]) Let A be a nonempty set, G : A → P(A), B ⊆ A, and α : A × A →
[0, +∞). Then G is said to be α∗-admissible on B if

α∗(Gp, Gc) = inf
{
α(u, v) : u ∈ Gp, v ∈ Gc

} ≥ 1,

whenever α(p, c) ≥ 1, for all p, c ∈ B.

Definition 1.7 ([53]) Let A be a nonempty set, G : A −→ P(A), M ⊆ A, and α : A × A →
[0, +∞). Then G is named as α∗-dominated on M, if for any b ∈ M,

α∗(b, Gb) = inf
{
α(b, w) : w ∈ Gb

} ≥ 1.

Example 1.8 ([53]) Let B = (–∞,∞). Define γ : B × B → [0,∞) and K , L : B → P(B), re-
spectively, by

γ (e, r) =

{
1 if e > r,
1
4 if e ≯ r,

}

and

Ku = [–4 + u, –3 + u] and Lr = [–2 + r, –1 + r].
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Then K and L are not γ∗-admissible, but they are γ∗-dominated.

Definition 1.9 ([66]) Consider a metric space (M, d). A mapping G : M → M is called an
F-contraction if for all b, c ∈ M,∃τ > 0 such that d(Gb, Gc) > 0 we have

τ + F
(
d(Gb, Gc)

) ≤ F
(
d(b, c)

)
,

where F : R+ →R is such that:
(F1) There is k ∈ (0, 1) such that limσ→0+ σ kF(σ ) = 0;
(F2) F is strictly increasing;
(F3) limn→+∞ σn = 0 if limn→+∞ F(σn) = –∞, for each sequence {σn}∞n=1 of positive num-

bers.
The family of functions verifying (F1)–(F3) is denoted by R.

Lemma 1.10 Let (Q, u) be an m.l.m. space. Let (P(Q), Hu1 ) be a u1-Hausdorff metric like
space. Then, for any e ∈ C and for all C, D ∈ P(Q), there is ye ∈ D such that

Hu1 (C, D) ≥ u1(e, ye).

Definition 1.11 ([60]) A fuzzy set U is a function from G to [0, 1] and F(G) is the family
of all fuzzy sets in G. If U is a fuzzy set and e ∈ G, then U(e) is said to be the grade of
membership of e in U . The β-level set of the fuzzy set U is denoted by [U]β , and is given
as

[U]β =
{

e : U(e) ≥ β
}

where 0 < β ≤ 1,

[U]0 =
{

e : U(e) > 0
}

.

Now, we select a subset of the family F(G) of all fuzzy sets, which is a subfamily with
stronger properties, i.e., the subfamily of the approximate quantities, denoted by W (G).

Definition 1.12 ([24]) A fuzzy subset U of G is an approximate quantity iff its β-level set
is a compact convex subset of G for each β ∈ [0, 1] and supe∈G U(e) = 1.

Definition 1.13 ([24]) Let R be an arbitrary set and G be any metric space. A fuzzy map is
a mapping from R to W (G). We can view a fuzzy mapping T : R → W (G) as a fuzzy subset
of R × G, T : R × G → [0, 1] in the sense that T(c, y) = T(c)(y).

Definition 1.14 ([60]) A point c ∈ M is called a fuzzy fixed point of a fuzzy mapping
T : M → W (M) if there exists 0 < β ≤ 1 such that c ∈ [Tc]β .

Definition 1.15 Let A be a nonempty set, ξ : A → W (A) be a fuzzy mapping, M ⊆ A, and
α : A × A → [0, +∞). Then ξ is named as fuzzy α∗-dominated on M, if for each a ∈ M and
0 < β ≤ 1,

α∗
(
a, [ξa]β

)
= inf

{
α(a, l) : l ∈ [ξa]β

} ≥ 1.

Now, we are ready to prove our main theorems for a pair of fuzzy mappings which are a
generalized rational type contraction.
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2 Main results
Let (L, u) be an m.l.m. space, x0 ∈L and S, T : L→ W (L) be fuzzy mappings on L. More-
over, let γ ,β : L→ [0; 1] be two real functions. Let x1 ∈ S[x0]γ (x0) be an element such that
u1(x0, [Sx0]γ (x0)) = u1(x0, x1). Let x2 ∈ [Tx1]β(x1) be such that u1(x1, [Tx1]β(x1)) = u1(x1, x2).
Let x3 ∈ [Sx2]γ (x2) be such that u1(x2, [Sx2]γ (x2)) = u1(x2, x3). Continuing this process, we
construct a sequence {xn} of points in L such that

x2n+1 ∈ [Sx2n]γ (x2n) and x2n+2 ∈ [Tx2n+1]β(x2n+1), for n = 0, 1, 2, . . .

Also,

u1
(
x2n, [Sx2n]γ (2n)

)
= u1(x2n, x2n+1), u1

(
x2n+1, [Tx2n+1]β(x2n+1)

)
= u1(x2n+1, x2n+2).

We use {TS(xn)} to denote this sequence. We say that {TS(xn)} is a sequence in L gen-
erated by x0.

Definition 2.1 Let (L, u) be a complete m.l.m. space. Suppose that u is regular and the
�M-condition holds. Let x0 ∈ L,α : L × L → [0,∞) and S, T : L → W (L) be two fuzzy
α∗-dominated mappings on {TS(xn)}. The pair (S, T ) is called a rational fuzzy dominated
V -contraction if there exist τ > 0,γ (x),β(x) ∈ (0, 1] and V ∈ R such that

τ + V
(
Hu1

(
[Sx]γ (x), [Tg]β(g)

))

≤ V
(

max

{
u1(x, g), u1(x, Sx),

u2(x, [Tg]β(g))
2

,
u2

1(x, [Sx]γ (x)).u1(g, [Tg]β(g))
1 + u2

1(x, g)

})
(2.1)

whenever, x, g ∈ {TS(xn)},α(x, g) ≥ 1, and Hu1 ([Sx]γ (x), [Tg]β(g)) > 0.

Theorem 2.2 Let (L, u) be a complete m.l.m. space. Assume that S, T : L → W (L) are
two fuzzy α∗-dominated mappings on {TS(xn)}. If (S, T ) is a rational fuzzy dominated V -
contraction, then {TS(xn)} is a Cauchy sequence in L and {TS(xn)} → k ∈L.

Proof As S, T : L→ W (L) are two fuzzy α∗-dominated mappings on {TS(xn)}, so, by def-
inition, we have

(
α∗{x2i, [Sx2i]γ (x2i)

) ≥ 1 and (α∗
(
x2i+1, [Tx2i+1]β(x2i+1)

) ≥ 1

for all i ∈ N. As α∗(x2i, [Sx2i]γ (x2i)) ≥ 1, this implies that inf{α(x2i, b) : b ∈ [Sx2i]γ (x2i)} ≥ 1
and therefore, α(x2i, x2i+1) ≥ 1. Now, by using Lemma 1.10, we have

τ + V
(
u1(x2i+1, x2i+2)

)

≤ τ + V
(
Hu1

(
[Sx2i]γ (x2i)

)
, [Tx2i+1]β(x2i+1)

)
)

≤ V

⎛

⎝max

⎧
⎨

⎩

u1(x2i, x2i+1), u1(x2i, [Sx2i]γ (x2i)),
u2(x2i ,[Tx2i+1]β(x2i+1))

2 ,
u2

1(x2i ,[Sx2i]γ (x2i)).u1(x2i+1,[Tx2i+1]β(x2i+1))
1+u2

1(x2i ,x2i+1)

⎫
⎬

⎭

⎞

⎠

≤ V

⎛

⎝max

⎧
⎨

⎩

u1(x2i, x2i+1), u1(x2i, x2i+1), u1(x2i ,x2i+1)+u1(x2i+1,x2i+2)
2 ,

u2
1(x2i ,x2i+1).u1(x2i+1,x2i+2)

1+u2
1(x2i ,x2i+1)

⎫
⎬

⎭

⎞

⎠



Rasham et al. Advances in Difference Equations        (2021) 2021:417 Page 6 of 22

≤ V
(
max

{
u1(x2i, x2i+1), u1(x2i+1, x2i+2)

})
.

This implies that

τ + V
(
u1(x2i+1, x2i+2)

) ≤ V
(
max

{
u1(x2i, x2i+1), u1(x2i+1, x2i+2)

})
. (2.2)

If max{u1(x2i, x2i+1), u1(x2i+1, x2i+2)}) = u1(x2i+1, x2i+2), then from (2.2), we have

V
(
u1(x2i+1, x2i+2)

) ≤ V
(
u1(x2i+1, x2i+2)

)
– τ .

It is a contradiction. Therefore,

max
{

u1(x2i, x2i+1), u1(x2i+1, x2i+2)
}

) = u1(x2i, x2i+1), for all i ∈ {0, 1, 2, . . . }.

Hence, from (2.2), we have

V
(
u1(x2i+1, x2i+2)

) ≤ V
(
u1(x2i, x2i+1)

)
– τ . (2.3)

Similarly, we have

V
(
u1(x2i, x2i+1)

) ≤ V
(
u1(x2i–1, x2i)

)
– τ . (2.4)

For all i ∈ {0, 1, 2, . . . .}. By (2.4) and (2.3), we have

V
(
u1(x2i+1, x2i+2)

) ≤ V
(
u1(x2i–1, x2i)

)
– 2τ .

Repeating these steps, we get

V
(
u1(x2i+1, x2i+2)

) ≤ V
(
u1(x0, x1)

)
– (2i + 1)τ . (2.5)

Similarly, we have

V
(
u1(x2i, x2i+1)

) ≤ V
(
u1(x0, x1)

)
– 2iτ . (2.6)

Inequalities (2.5) and (2.6) can jointly be written as

V
(
u1(xn, xn+1)

) ≤ V
(
u1(x0, x1)

)
– nτ . (2.7)

Taking the limit as n → ∞ in (2.7), we have

lim
n→∞ V

(
u1(xn, xn+1)

)
= –∞.

Since V ∈ R, one gets

lim
n→∞ u1(xn, xn+1) = 0. (2.8)
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Applying the property (F1), we have some k ∈ (0, 1), for which

lim
n→∞

(
u1(xn, xn+1)

)k(V
(
u1(xn, xn+1)

)
= 0. (2.9)

By (2.7), for all n ∈ N, we obtain

(
u1(xn, xn+1)

)k(
(
V

(
u1(xn, xn+1)

)
– V

(
u1(x0, x1)

)) ≤ –
(
u1(xn, xn+1)

)k
nτ

≤ 0. (2.10)

Considering (2.8), (2.9) and letting n → ∞ in (2.10), we have

lim
n→∞

(
n
(
u1(xn, xn+1)

)k) = 0. (2.11)

Since (2.11) holds, there exists n1 ∈N such that n(u1(xn, xn+1))k ≤ 1 for all n ≥ n1, or

u1(xn, xn+1) ≤ 1

n
1
k

for all n ≥ n1. (2.12)

Take p > 0 and m = n + p > n > n1, then

up(xn, xm) ≤ u1(xn, xn+1) + u1(xn+1, xn+2) + · · · + u1(xm–1, xm)

≤ 1

n
1
k

+
1

(n + 1)
1
k

+ · · · +
1

(m – 1)
1
k

.

As k ∈ (0, 1), then 1
k > 1 and, by the ratio test,

lim
m,n→∞ up(xn, xm) = 0. (2.13)

Since u satisfies the �M- condition, we have

lim
m,n→∞ u1(xn, xm) = 0. (2.14)

Hence, the sequence {TS(xn)} is Cauchy in the complete regular modular-like type met-
ric space (L, u), hence there is k ∈L so that {TS(xn)} → k as n → ∞. �

Theorem 2.3 Let (L, u) be a complete m.l.m. space. Assume that S, T : L → W (L) are
two fuzzy α∗-dominated mappings on {TS(xn)}. If (S, T ) is a rational fuzzy dominated V-
contraction and k is the limit of the sequence {TS(xn)}. If α(xn, k) ≥ 1∀n ∈ {0, 1, 2, . . .}, then
k belongs to both [Tk]β(k) and [Sk]γ (k).

Proof As (S, T ) is a rational fuzzy dominated V-contraction, then, by Theorem 2.2, there
exists k ∈L such that {TS(xn)} → k as n → ∞ and so

lim
n→∞ u1(xn, k) = u1(k, k) = 0. (2.15)

Now, by Lemma 1.10, we have

τ + V (u1
(
x2n+1, [Tk]β(k)

) ≤ τ + V
(
Hu1

(
[Sx2n]γx2n , [Tk]β(k)

))
. (2.16)
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By supposition, α(xn, k) ≥ 1, so assume that u1(k, [Tk]β(k)) > 0, then there must be a pos-
itive natural number p so that u1(x2n+1, [Tk]β(k)) > 0, for every n ≥ p. Now, Hu1 ([Sx2n]γx2n ,
[Tk]β(k)) > 0, so inequality (2.1) implies for every n ≥ p,

τ + V (u1
(
x2n+1, [Tk]β(k)

)

≤ V

⎛

⎝max

⎧
⎨

⎩

u1(x2n, k), u1(x2n, [Sx2n]γx2n , u1(x2n ,x2n+1)+u1(x2n+1,[Tk]β(k))
2 ),

u2
1((x2n),[Sx2n]γp2n ).u1(k,[Tk]β(k))

1+u2
1(x2n ,k)

⎫
⎬

⎭

⎞

⎠ .

Letting n → ∞ and using (2.15), we get

τ + V (u1
(
x2n+1, [Tk]β(k)

) ≤ V (u1
(
k, [Tk]β(k)

) ≤ V
(

u1(k, [Tk]β(k))
2

)

≤ V
(
u1

(
k, [Tk]β(k)

))
.

Since V is strictly increasing, (2.16) implies that

u1
(
k, [Tk]β(k)

)
< u1

(
k, [Tk]β(k)

)
.

This is a contradiction. So, our supposition is not true. Hence u1(k, [Tk]β(k)) = 0 or k ∈
[Tk]β(k). Similarly, by proceeding Lemma 1.10 and inequality (2.1), we can prove that

u1
(
k, [Sk]γ (k)

)
= 0, so k ∈ (

[Sk]γ (k)
)
.

Hence, S and T have a common fuzzy fixed point k in L. �

Definition 2.4 Let L be a nonempty set, � be a partial order on B ⊆L. We say that a � B
whenever for all b ∈ B, we have a � b. A mapping S : L → W (L) is said to be fuzzy �-
dominated on B, if a � [Sa]γ for each a ∈Landγ ∈ (0, 1].

We have the following result for multi fuzzy �-dominated mappings on {TS(xn)} in an
ordered complete m.l.m. space.

Theorem 2.5 Let (L,�, u) be an ordered complete m.l.m. space. Suppose that u is regular
and the �M-condition holds. Take x0 ∈ L and let S, T : L → W (L) be fuzzy dominated
mappings on {TS(xn)}. Suppose there exist τ > 0,γ (x),β(g) ∈ (0, 1] and V ∈ R such that the
following holds:

τ + V
(
Hu1

(
[Sx]γ (x), [Tg]β(g)

))

≤ V

⎛

⎝max

⎧
⎨

⎩

u1(x, g), u1(x, [Sx]γ (x)),
u2[x,Tg]β(g)

2 ,
u2

1(x,[Sx]γ (x)).u1(g,[Tg]β(g))
1+u2

1(x,g)

⎫
⎬

⎭

⎞

⎠ (2.17)

whenever x, g ∈ {TS(xn)}, with either x � g or g � x, and Hu1 ([Sx]γ (x), [Tg]β(g)) > 0. Then
{TS(xn)} → k ∈ L. Also, if (2.17) holds for k, xn � k and k � xn for all n ∈ {0, 1, 2, . . .}, then
k belongs to both [Tk]β(k) and [Sk]γ (k).
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Proof Let α : L × L → [0, +∞) be a mapping defined by α(x, g) = 1 for all x ∈ L with
x � g , and α(x, g) = 0 for all other elements x, g ∈ L. As S and T are the fuzzy prevalent
mappings on L, so x � [Sx]γ (x) and x � [Tx]β(x) for all x ∈L. This implies that x � b for all
b ∈ [Sx]γ (x) and x � e for all x ∈ [Tx]β(x). So, α(x, b) = 1 for all b ∈ [Sx]γ (x) and α(x, e) = 1 for
all x ∈ [Tx]β(x). This implies that

inf
{
α(x, g) : g ∈ [Sx]γ (x)

}
= 1 and inf{α(x, g) : g ∈ [Tx]β(x) = 1.

Hence, α∗(x, [Sx]γ (x)) = 1,α∗(x, [Tx]β(x)) = 1 for all x ∈ L. So, S, T : L → W (L) are α∗-
dominated mappings on L. Moreover, inequality (2.17) holds and it can be written as

τ + V (Hu1

(
[Sx]γ (x), [Tg]β(g)

) ≤ V
(
u1(x, g)

)
,

for all elements x, g in {TS(xn)}, with either α(x, g) ≥ 1 or α(g, x) ≥ 1. Then, by Theo-
rem 2.2, {TS(xn)} is a sequence in L and {TS(xn)} → x∗ ∈ L. Now, xn, x∗ ∈ L and either
xn � x∗, or x∗ � xn implies that either α(xn, x∗), or α(x∗, xn) ≥ 1. So, all requirements of
Theorem 2.3 are satisfied. Hence, x∗ is the common fuzzy fixed point of both S and T in
L and ul(x∗, x∗) = 0. �

Example 2.6 Let L = Q+ ∪ {0} and ul(e, x) = 1
l (e + x). Now,

u2(e, x) =
1
2

(e + x) and u1(e, x) = e + x,

∀e, x ∈L. Define S, T : L−→ W (L) by

(Se)(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ if g
4 ≤ t < g

2 ,
γ

2 if g
2 ≤ t ≤ 3g

4 ,
γ

4 if 3g
4 < t ≤ g,

0 if g < t < ∞,

and (Tx)(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β if g
3 ≤ t < g

2 ,
β

4 if g
2 ≤ t ≤ 2g

3 ,
β

6 if 2g
3 < t ≤ g,

0 if g < t < ∞.

Now, we consider

[Se] γ
2

=
[

e
4

,
3e
4

]
and [Tx] β

4
=

[
x
3

,
2x
3

]
.

Taking e0 = 1
2 , then we have

u1
(
e0, [Se0] γ

2

)
= u1

(
1
2

,
[

1
8

,
3
8

])
= u1

(
1
2

,
1
8

)
.

So, we obtain a sequence {TS(en)} = { 1
2 , 1

8 , 1
24 , 1

96 , . . . .} in L generated by e0.

α(e, x) =

⎧
⎨

⎩
1 if e, x ∈L,
1
2 otherwise.
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Now, for all e, x ∈ {TS(cn)} with either α(e, x) ≥ 1 or α(x, e) ≥ 1, we have

Hu1

(
[Se] γ

2
, [Tx] β

4

)

= max
{

sup
a∈[Se] γ

2

u1
(
a, [Tx] β

4

)
, sup

q∈[Tx] β
4

u1
(
[Se] γ

2
, q

)}

= max

{
sup

a∈[ e
4 , 3e

4 ]
u1

(
a,

[
x
3

,
2x
3

])
, sup

q∈[ x
3 , 2x

3 ]
u1

([
e
4

,
3e
4

]
, q

)}

= max

{
u1

(
3e
4

,
[

x
3

,
2x
3

])
, u1

([
e
4

,
3e
4

]
,

2x
3

)}

= max

{
u1

(
3e
4

,
x
3

)
, u1

(
e
4

,
2x
3

)}
= max

{
3e
4

+
x
3

,
e
4

+
2x
3

}
.

= max

{
u1(x, e), u1

(
x, [Sx]γ (x)

)
,

u2(x, [Te]β(e)

2
,

u2
1(x, [Sx)γ (x)).u1(e, [Te]β(e))

1 + u2
1(x, e)

}

= max

{
(x, e),

(
e +

e
4

)
,

1
2

(
e +

x
3

)
,

(e + e
4 )2.(x + x

3 )
1 + (e + x)2

}
= e + x.

i. Case (1): If max{( 3e
4 + x

3 ), ( e
4 + 2x

3 )} = ( 3e
4 + x

3 ) and τ = ln(1.2), then we have

9e
2

+ 2x ≤ 5e + 5x.

Then

6
5

(
3e
4

+
x
3

)
≤ e + x.

Therefore,

ln(1.2) + ln

(
3e
4

+
x
3

)
≤ ln(e + x).

This implies that

τ + V
(
Hu1

(
[Se] γ

2
, [Tx] β

4

))

≤ V

⎛

⎝max

⎧
⎨

⎩

u1(x, e), u1(x, [Sx]γ (x)),
u2(x,[Te]β(e))

2 . u2
1(x,[Sx]γ (x)).u1(e,[Te]β(e))

1+u2
1(x,e)

⎫
⎬

⎭

⎞

⎠

Figure 1 illustrates Case (i) of Example 2.6, where the graph in blue represents the
right side of the contractive inequality of Theorem 2.3 and that in red shows the left
side of the inequality of Theorem 2.3.

ii. Case (ii): If max{( 3e
4 + x

3 ), ( e
4 , 2x

3 )} = ( e
4 + 2x

3 ) and τ = ln(1.2), then we have

3e
2

+ 4x ≤ 5e + 5x.
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Figure 1 Comparison of the functions V(Hu1 ([Se] γ2
, [Tx] β

4
)) and E(N(e, x)).   = V(Hu1 ([Se] γ2

, [Tx] β
4
));

  = E(N(e, x))

That is,

6
5

(
e
4

+
2x
3

)
≤ e + x.

Then

ln(1.2) + ln

(
e
4

+
2x
3

)
≤ ln(e + x).

This implies that

τ + V
(
Hu1

(
[Se] γ

2
, [Tx] β

4

)) ≤ V

⎛

⎝max

⎧
⎨

⎩

u1(x, e), u1(x, [Sx]γ (x)),
u2(x,[Te]β(e))

2 , u2
1(β ,[Sx]γ (x)).u1(e,[Te]β(e)))

1+u2
1(x,e)

⎫
⎬

⎭

⎞

⎠

Figure 2 illustrates Case (ii) of Example 2.6, where the graph in blue represents the right
side of the contractive inequality of Theorem 2.3 and that in red shows the left side of the
inequality of Theorem 2.3 (See Figure 3).

Hence, all requirements of Theorem 2.3 are satisfied.

Corollary 2.7 Let (L, u) be a complete m.l.m. space. Assume that u is regular and the
�M-condition holds. Take x0 ∈ L,α : L × L −→ [0,∞) and let S : L −→ W (L) be a fuzzy
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Figure 2 Comparison of the functions E(Hu1 ([Se] γ2
, [Tx] β

4
)) and E(N(e, x)).   = E(Hu1 ([Se] γ2

, [Tx] β
4
));

  = E(N(e,p))

α∗-dominated mapping on {SS(xn)}. Suppose there exist τ > 0,γ (x),β(g) ∈ (0, 1], and V ∈ R
such that

τ + V
(
Hu1

(
[Sx]γ (x), [Sg]β(g)

))

≤ V

⎛

⎝max

⎧
⎨

⎩

u1(x, g), u1(x, [Sx]γ (x),
u2(x,[Sg]β(g))

2 ,
u2

1(x,[Sx]γ (x)).u1(g,[Sg]β(g))
1+u2

1(x,g)

⎫
⎬

⎭

⎞

⎠ , (2.18)

whenever x, g ∈ {SS(xn)},α(x, g) ≥ 1 and Hu1 ([Sx]γ (x), [Sg]β(g)) > 0. Then α(xn, xn+1) ≥ 1 for
all n ∈ {0, 1, 2, . . . } and {SS(xn)} → k ∈ L. Also, if either α(xn, k) ≥ 1 or α(k, xn) ≥ 1 for all
n ∈ {0, 1, 2 . . . }, then k ∈ [Sk]γ (k).

If we take multivalued α∗-dominated mappings from a ground set L to the proximinal
subsets of L instead of fuzzy α∗-dominated mappings from L to the approximate quanti-
ties W (L) in Theorem 2.3, we obtain the following result.

Corollary 2.8 Let (L, u) be a complete modular-like metric space. Assume that u is regular
and verifies the �M– condition. Let x0 ∈L,α : L×L→ [0,∞) and S, T : L→ W (L) be two
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Figure 3 Graph for ln x.   ln(x)

α∗-dominated mappings on {TS(xn)}. Suppose there exist τ > 0 and V ∈ R such that

τ + V
(
Hu1 (Sx, Tg)

) ≤ V

⎛

⎝max

⎧
⎨

⎩

u1(x, g), u1(x, Sx), u2(x,Tg)
2 ,

u2
1(x,Sx).u1(g,Tg)

1+u2
1(x,g)

⎫
⎬

⎭

⎞

⎠ (2.19)

whenever x, g ∈ {TS(xn)},α(x, g) ≥ 1, and Hu1 (Sx, xg) > 0. Then, α(xn, xn+1) ≥ 1 for all n ∈
{0, 1, 2, . . . } and {TS(xn)} → k ∈ L. Also, if either α(xn, k) ≥ 1 or α(k, xn) ≥ 1 for all n ∈
{0, 1, 2 . . . }, then k belongs to both Tk and Sk.

If we take S = T in Corollary 2.8, we obtain the following result.

Corollary 2.9 Let (L, u) be a complete modular-like metric space metric space. Assume
that u is regular and satisfies the �M-condition. Let x0 ∈ L,α : L × L → [0,∞) and S :
L→ W (L) be a multivalued α∗-dominated mapping on {SS(xn)}. Suppose there exist τ > 0
and V ∈ R such that

τ + V
(
Hu1 (Sx, Sg)

) ≤ V

⎛

⎝max

⎧
⎨

⎩

u1(x, g), u1(x, Sx), u2(x,Sg)
2 ,

u2
1(x,Sx).u1(g,Sg)

1+u2
1(x,g)

⎫
⎬

⎭

⎞

⎠ (2.20)

whenever x, g ∈ {SS(xn)},α(x, g) ≥ 1, and xu1 (Sx, Sg) > 0. Then α(xn, xn+1) ≥ 1 for all n ∈
{0, 1, 2, . . . } and {SS(xn)} → k ∈ L. Also, if either α(xn, k) ≥ 1 or α(k, xn) ≥ 1 for all n ∈
{0, 1, 2, . . . }, then k belongs to Sk.

3 Applications on graphic contractions
Jachymski [30] proved a relation between graph and fixed point theory by the orientation
of graphic contractions. Let A be a nonempty set. Let V (Y ) and L(Y ) denote the set of
vertices and the set of edges containing all loops, respectively, for a graph Y .
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Definition 3.1 Let A be a nonempty set and Y = (V (Y ), L(Y )) be a graph with A = V (Y ).
A fuzzy map F from A to W (A) is called fuzzy-graph dominated on A if (a, b) ∈ L(Y ), for
a ∈ A, b ∈ [Fa]β and 0 < β ≤ 1.

Theorem 3.2 Let (L, u) be a complete m.l.m. space equipped with a graph Y , x0 ∈ L so
that

(i) S, T : L→ W (L) are fuzzy-graph dominated functions on {TS(pn)};
(ii) τ + V (Hu1 ([St]γ (t), [Ty]β(y))), and τ > 0,γ (t),β(y) in [0, 1]

≤ V
(

max{
{

u1(t, y), u1
(
t, [St]γ (t)

)
,

u2(t, [Ty]β(y))
2

,
u2

1(t, [St]γ (t)).u1(y, [Ty]β(y)

1 + u2
1(t, y)

})
(3.1)

whenever t, y ∈ {TS}(xn)}, (t, y) ∈ L(Y ), and Hu1([St]γ (t), [Ty]β(y)) > 0. Suppose that L is
regular and the �M-condition holds. Then (xn,xn+1) ∈ L(Y ) and {TS(xn)} → k∗. Also, if
(xn, k∗) ∈ L(Y ) or (k∗, xn) ∈ L(Y ) for each n ∈ {0, 1, 2, . . . }, then k∗ belongs to both [Tk∗]β(k∗)

and k ∈ [Sk∗]γ (k∗).

Proof Define α : L × L → [0,∞) by α(t, y) = 1, if t ∈ L and (t, y) ∈ L(Y ). Otherwise, take
α(t, y) = 0. The graph dominated notion on L gives that (t, y) ∈ L(Y ) for all y ∈ [St]γ (t) and
(t, y) ∈ L(Y ) for each y ∈ [Ty]β(y). So, α(t, y) = 1 for all y ∈ [St]γ (t) and α(t, y) = 1 for every
y ∈ [Ty]β(y). This means that

inf{α(t, y) : y ∈ [St]γ (t) = 1 and inf
{
α(t, y) : y ∈ [Ty]β(y)

}
= 1.

Hence, α∗(t, [St]γ (t)) = 1,α∗(t, [Ty]β(y)) = 1, for every t ∈ L. So, the mappings are α∗-
dominated on L. Furthermore, inequality (3.1) can be expressed as

τ + V
(
Hu1

(
[St]γ (t), [Ty]β(y)

)) ≤ V

⎛

⎝max

⎧
⎨

⎩

u1(t, y), u1(t, [St]γ (t)),
u2(t,[Ty]β(y))

2 , u2
1(t,[St]γ (t)).u1 (y,[Ty]β(y)

1+u2
1(t,y)

⎫
⎬

⎭

⎞

⎠

whenever t, y ∈ {TS(xn)},α(t, y) ≥ 1 and Hu1 ([St]γ (t), [Ty]β(y)) > 0. Also, (ii) holds. Using
Theorem 2.2, we have {TS(xn)} is a sequence in L and {TS(xn)} → k∗ ∈L. Now, xn, k∗ ∈L
and either (xn, k∗) ∈ L(Y ), or (k∗, xn) ∈ L(Y ) implies that either α(xn, k∗) ≥ 1 or α(k∗, xn) ≥
1. So,all conditions of Theorem 2.2 are checked. Hence, k∗ belongs to both [Tk∗]β(k∗) and
k ∈ [Sk∗]γ (k∗). �

4 Applications to electric circuit equations
In this section, we discuss the solution of the electric circuit equation (see [7]) which is a
second-order differential equation. The electric circuit (as in Fig. 4) contains an electro-
motive force E, a resistor R, an inductor L, a capacitor C, and a voltage V in series. If the
current I is the rate of change of q with respect to time t, we have I = dq

dt and

V = IR,

V = qC,

V = L
dI
dt

.
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Figure 4 Electric circuit

By Kirchhoff’s law, the sum of these voltage drops is equal to supplied voltage, i.e.,

IR +
q
c

+ L
dI
dt

= V (t),

or

IR +
q
c

+ L
dI
dt

= V (t), q(0) = 0, q′(0) = 0. (ECE)

The Green function associated to (ECE) is given by

G(t, s) =

⎧
⎨

⎩
–seτ (s–t) if 0 ≤ s ≤ t ≤ 1,

–teτ (s–t) if 0 ≤ t ≤ s ≤ 1,

where the constant τ > 0 is calculated in terms of R and L. Let L = C[0, 1] be the set of all
continuous functions defined on [0, 1]. The modular-like metric u on L is defined as

u(t, g) =
1
2

sup
k∈[0,1]

{∣∣t(k) + g(k)
∣∣e–τk} =

1
2
‖t + g‖τ .

Moreover, we define the graph with the partial order relation: for u, g ∈ C[0, 1],

u ≤ g ↔ u(t) ≤ g(t)

for all t ∈ [0, 1]. Let Y (G) = {(u, g) ∈L×L : u ≤ g}. Note that (u,L) is a complete modular-
like metric space, including a direct graph G; � = (L×L) ∈ Y (G) and (u,L, G) has a prop-
erty (E∗).

Theorem 4.1 Let S, T : C[0, 1] → C[0, 1] be self-mappings of the modular-like metric
space (C[0, 1), u). Assume that

(i) There exist continuous and nondecreasing functions H , Q : C[0, 1] ×R →R such
that for all b, c ∈ C[0, 1], with b ≤ c, there exists τ > 0 so that

H
(
t, b(s)

)
+ Q

(
t, c(s)

) ≤ τE(b, c)
τE(b, c) + 1

,
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where

E(b, c) = max

(
1
2

{‖b + c‖τ ,‖b + Sb‖τ , ‖b+Sb‖τ +‖c+Tc‖τ

2 ,
‖b+Sb‖2

τ .‖c+Tc‖τ

1+‖b+c‖2
τ

})

for all t, s ∈ [0, 1] and b, c ∈ C([0, 1],R+).
(ii) There are b0, c0 ∈ C([0, 1])

b0(t) ≤
∫ t

0
G(t, s)H

(
t, b0(s)

)
ds for all t ∈ [0, 1]

and

c0 ≤
∫ t

0
G(t, s)Q

(
t, c0(s)

)
ds for all t ∈ [0, 1].

Then the differential equation arising in the electric circuit (ECE) has a solution.

Proof The problem (ECE) is equivalent to integral forms given as

b(t) =
∫ 1

0
G(t, s)H

(
t, b(s)

)
ds (4.1)

and

c(t) =
∫ 1

0
G(t, s)Q

(
t, c(s)

)
ds, (4.2)

where t ∈ [0, 1]. Consider S, T : L→L defined by

(Sb)(t) =
∫ t

0
G(t, s)H

(
t, b(s)

)
ds (4.3)

and

(Tc)(t) =
∫ t

0
G(t, s)Q

(
t, c(s)

)
ds, (4.4)

where t ∈ C[0, 1]. Then b∗ is the solution of (4.1) and (4.2) if and only if b∗ is a common
fixed point of S and T . From condition (ii), it is very easy to show that for every u, g ∈ L,
we have u ≤ Su and g ≤ Tg , i.e.,

(
b, S(b)

) ∈ Y (G) �= ∅ and
(
g, T(g)

) ∈ Y (G) �= ∅.

Let b, g ∈L, then from condition (i), we have

|Sb + Tc| ≤
∫ t

0
G(t, s)

∣
∣H

(
t, b(s)

)
+ Q

(
t, c(s)

)∣∣ds ≤
∫ t

0

τE(b, c)
τE(b, c) + 1

e–τ sG(t, s) ds

≤ τE(b, c)
τE(b, c) + 1

∫ t

0
e–τ sG(t, s) ds ≤ τE(b, c)

τE(b, c) + 1
eτ t[1 – 2tr + tτe–τ t – e–τ t].
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This implies that

|Sb + Tc|eτ t ≤ τE(b, c)
τE(b, c) + 1

[
1 – 2tr + tτe–τ t – e–τ t].

Since 1 – 2tr + tτe–τ t – e–τ t ≤ 1, we get that

‖Sb + Tc‖τ ≤ τE(b, c)
τE(b, c) + 1

,

τE(b, c) + 1
τE(b, c)

≤ 1
‖Sb + Tc‖τ

,

τ +
1

E(b, c)
≤ 1

‖Sb + Tc‖τ

,

which further implies

τ –
1

‖Sb + Tc‖τ

≤ –1
E(b, c)

.

So, all the requirements of Theorem 2.2 are satisfied for R(f ) = –1
f , f > 0, and u(b, c) =

1
2‖b + c‖τ . Hence, the mappings S and T have a common fixed point. Consequently, the
differential equation arising in the electric circuit (ECE) has a solution. �

5 Applications to fractional differential equations
Lacroix (1819) established and proved many important properties of fractional differen-
tials. Later, many authors proved some new fixed-point results involving their applications
related to fractional differential and integral equations, see [4, 7, 34]. Recently, a large num-
ber of new models relevant to Caputo–Fabrizio derivative (CFD) were introduced and in-
vestigated, see [15, 40, 65, 69–72]. In this section, we investigate one of these models in
modular-like metric spaces.

Let C[0, 1] be the space of continuous functions. Consider

d(w, g) =
|w + g|

2
for all w, g ∈ C[0, 1].

The space (C[0, 1], d) is a complete modular-like metric space and V (t) = ln t.
Let K1,K2 : [0, 1] × R → R be continuous mappings. We will investigate the CFD equa-

tions:

Dβq(ν) = K1
(
ν, q(ν)

)
(5.1)

with boundary conditions q(0) = 0, Iq(1) = q′(0), and

Dβg(u) = K2
(
u, g(u)

)
(5.2)

with boundary conditions g(0) = 0, Ig(1) = g ′(0).
Here, Dβ is the CFD of order β defined by

DβK1(v) =
1

�(n – β)

∫ v

0
(v – n)n–β–1Kn

1(v) dv
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where n – 1 < β < n and n = [β] + 1, and IβK1 is given by

IβK1(v) =
1

�(β)

∫ v

0
(v – n)β–1K1(v) dv with β > 0.

Then Eq. (5.1) can be modified to

q(v) =
1

�(β)

∫ v

0
(v – n)β–1K1

(
ω, q(ω)

)
dω +

2v
�(β)

∫ 1

0

∫ ω

0
(n – u)β–1K1

(
u, q(u)

)
du dω.

Similarly, Eq. (5.2) can be modified to

g(l) =
1

�(β)

∫ l

0
(l – n)β–1K2

(
ω, g(ω)

)
dω +

2l
�(β)

∫ 1

0

∫ ω

0
(n – p)β–1K2

(
p, q(p)

)
dp dω.

Theorem 5.1 Suppose that:
(I) there exists τ > 0 such that for all e, s ∈ C[0, 1], we have

∣∣K1
(
u, e(u)

)
du + K2

(
u, s(u)

)
du

∣∣ ≤ e–τ�(β + 1)
4V

∣∣e(u) + s(u)
∣∣;

(II) there exist h, g ∈ C[0, 1] such that for every v, z ∈ C[0, 1],

h(v) =
1

�(β)

∫ v

0
(v – n)β–1K1

(
ω, q(ω)

)
dω +

2v
�(β)

∫ 1

0

∫ ω

0
(n – u)β–1K1

(
u, q(u)

)
du dω

and

g(z) =
1

�(β)

∫ v

0
(v – n)β–1K2

(
ω, q(ω)

)
dω +

2v
�(β)

∫ 1

0

∫ ω

0
(n – u)β–1K2

(
u, q(u)

)
du dω.

Then Eqs. (5.1) and (5.2) have a solution in C[0, 1].

Proof Define the mappings S, T : C[0, 1] → C[0, 1] by

S
(
q(v)

)
=

1
�(β)

∫ v

0
(v – n)β–1K1

(
ω, q(ω)

)
dω

+
2v

�(β)

∫ 1

0

∫ ω

0
(n – u)β–1K1

(
u, q(u)

)
du dω

and

T
(
g(z)

)
=

1
�(β)

∫ v

0
(v – n)β–1K2

(
ω, q(ω)

)
dω

+
2v

�(β)

∫ 1

0

∫ ω

0
(n – u)β–1K2

(
u, q(u)

)
du dω.

By (II), there exist h, g ∈ C[0, 1] such that hn = Sn(h) and gn = Tn(g). The continuity of
K1 and K2 leads to the continuity of the mappings S and T on C[0,1]. It is easy to verify
the assumptions of Theorem 2.2 hold. For this, we have that

∣∣S
(
q(v)

)
+ T

(
g(z)

)∣∣
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=

∣
∣∣∣
∣∣
∣

1
�(β)

∫ v
0 (v – n)β–1K1(ω, q(ω)) dω + 1

�(β)
∫ v

0 (v – n)β–1K2(ω, q(ω)) dω

+ 2v
�(β)

∫ 1
0
∫ ω

0 (n – u)β–1K1(u, q(u)) du dω

+ 2v
�(β)

∫ 1
0
∫ ω

0 (n – u)β–1K2(u, q(u)) du dω

∣
∣∣∣
∣∣
∣

implies

∣
∣S

(
q(v)

)
+ T

(
g(z)

)∣∣

≤
∣
∣∣
∣

∫ v

0

(
1

�(β)
(v – n)β–1K1

(
ω, q(ω)

)
+

1
�(β)

(v – n)β–1K2
(
ω, q(ω)

)
)

dω

∣
∣∣
∣

+
∣∣
∣∣

∫ 1

0

∫ ω

0

(
2v

�(β)
(n – u)β–1K1

(
u, q(u)

)
+

2v
�(β)

(n – u)β–1K2
(
u, q(u)

))
du dω

∣∣
∣∣

≤ 1
�(β)

.
e–τ�(β + 1)

4V
.
∫ v

0
(v – n)β–1(h(z) + g(z)

)
dz

+
2

�(β)
.
e–τ�(β + 1)

4V
.
∫ 1

0

∫ ω

0
(n – u)β–1(h(u) + g(u)

)
du dω

≤ 1
�(β)

.
e–τ�(β + 1)

4V
.d(h, g).

∫ v

0
(v – n)β–1 dz

+
2

�(β)
.
e–τ�(β + 1).�(β + 1)

�(s).4V .�(β + 1)
.d(h, g).

∫ 1

0

∫ ω

0
(n – u)β–1 du dω

≤
(

e–τ�(β).�(β + 1)
�(β).4V .�(β + 1)

)
.d(h, g) + 2e–τ B(β + 1, 1)

�(β).�(β + 1)
�(β).4V .�(β + 1)

.d(h, g)

≤ e–τ

4V
d(h, g) +

e–τ

2V
d(h, g) <

e–τ

V
d(h, g),

where B is the beta mapping. The last inequality can be written as

V
∣
∣S

(
h(v)

)
+ T

(
g(z)

)∣∣ ≤ e–τ d(h, g) ≤ e–τ E(h, g), (5.3)

for all h, g ∈ C[0, 1]. Define the mapping V (h(v)) = ln(h(v)). Then the inequality (5.3) can
be written as

τ + V
(
d(Sh, Tg)

) ≤ V (E(h, g).

All the hypotheses of Theorem 2.2 are verified. The mappings S and T admit a unique
fixed point, hence Eqs. (5.1) and (5.2) have a unique solution. �

6 Conclusion
In this article, we have given some new results for a pair of fuzzy mappings which are
Ciric and Wardowski type contractions. Dominated mappings are used to prove such
fixed-point results. Further, results in ordered modular-like spaces involving graphic con-
tractions equipped with graph dominated mappings are presented. The results have been
demonstrated graphically by 2D and 3D graphs. This provides justification for our ob-
tained results. In the end, we applied our results to solve electric circuit equations and
fractional differential equations.
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