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Abstract
A number of mathematical methods have been developed to determine the
complex rheological behavior of fluid’s models. Such mathematical models are
investigated using statistical, empirical, analytical, and iterative (numerical) methods.
Due to this fact, this manuscript proposes an analytical analysis and comparison
between Sumudu and Laplace transforms for the prediction of unsteady convective
flow of magnetized second grade fluid. The mathematical model, say, unsteady
convective flow of magnetized second grade fluid, is based on nonfractional
approach consisting of ramped conditions. In order to investigate the heat transfer
and velocity field profile, we invoked Sumudu and Laplace transforms for finding the
hidden aspects of unsteady convective flow of magnetized second grade fluid. For
the sake of the comparative analysis, the graphical illustration is depicted that reflects
effective results for the first time in the open literature. In short, the obtained profiles
of temperature and velocity fields with Laplace and Sumudu transforms are in good
agreement on the basis of numerical simulations.
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1 Introduction
The natural convection heat transfer from a vertical plate to a fluid has implementations in
many industrial processes. The investigators have applied different sets of thermal condi-
tions at the bounding plate. Ganesan et al. [1] have described the solutions for velocity and
temperature applying continuous and well-defined conditions at the wall. Samiulhaq et al.
[2] have presented the influence of radiation and porosity on the unsteady magnetohydro-
dynamic (MHD) flow. Chandran et al. [3] have worked on the unsteady free convection
flow of an incompressible viscous fluid near a vertical plate with ramped wall tempera-
ture. Seth et al. [4, 5] have obtained the exact solutions of the MHD natural convection
flow.
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Over the set of functions [6],

A =
{

r(t) | ∃N , τ1, τ2 > 0,
∣∣r(t)

∣∣ < N exp
(|t|/τj

)
, if t ∈ (–1)j × [0,∞)

}
, (1)

the Sumudu transform is defined as

R(u) = S
[
r(t)

]
=

∫ ∞

0
r(ut) exp(–t) dt, u ∈ (–τ1, τ2). (2)

The Sumudu transform method (STM) was started with Watugala [7] when he researched
the engineering control problems. The implementations of the Sumudu transform method
of the partial differential equations have been discussed in the literature [8]. Weerakoon
[9] has investigated a complex inversion formula for the Sumudu transform. This trans-
formation was initially discussed to be a theoretical dual of the Laplace transform. The
Sumudu transform has very valuable features in the implementations of sciences and engi-
neering. This transform has been utilized to investigate many problems without resorting
to a new frequency domain having scale and unit-preserving features. Integro-differential
equations have been investigated by Sumudu transform in [10]. Watugala [11] has investi-
gated the transform for two variables with the emphasis on solutions to partial differential
equations. Belgacem et al. [12, 13] have discussed the convolution-type integral equations
with the focus on production problems. For more details, see [14–18].

We construct our paper as follows: We present the mathematical modeling of the prob-
lem in Sect. 2. We discuss the solution of the problem in Sect. 3. We give an alternative
method in Sect. 4. We present the discussion in Sect. 5. We give the conclusion in the last
section.

2 Mathematical modeling
Let us assume that the unsteady MHD, natural convection, time dependent, incompress-
ible viscous flow of second grade fluid near an infinite vertical plate is embedded in a
porous medium with ramped wall temperature. In this case, we consider the Cartesian
coordinate system. The plate is placed in the (x, y) plane with x-axis oriented vertically
and the y-axis in the normal direction. At the end of the wall, velocity and temperature
are time dependent with certain limits of time identified as the characteristic time; velocity
and temperature after that time attain constant values V0 and T∞, respectively. The fun-
damental governing partial differential equations with small Reynolds number and usual
Boussinesq’s approximation are given as [19–22]:

∂V (y, t)
∂t

= υ

(
1 +

α1

μ

∂

∂t

)
∂2V (y, t)

∂y2 + gβ
(
T(y, t) – T∞

)

–
[

σ0M2
0

ρ
+

υφ

k0

(
1 +

α1

μ

∂

∂t

)]
V (y, t), (3)

∂T(y, t)
∂t

=
k

ρCp

(
1 +

16σ1T3∞
3kK1

)
∂2T(y, t)

∂y2 , (4)

where V (y, t), T(y, t), ρ , υ , α1, βT , g , k, and Cp denote the fluid velocity, temperature of
the fluid, density, kinematic viscosity, second grade parameter, coefficient of volumetric
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thermal expansion, gravitational acceleration, thermal conductivity, and heat capacity at
constant pressure, respectively.

The appropriate initial and boundary conditions are presented as:

V (y, 0) = 0, T(y, 0) = T∞,
∂V (y, 0)

∂t
= 0, y ≥ 0, (5)

V (0, t) = f1(t), T(0, t) = f2(t), (6)

where

f1(t) =

⎧
⎨

⎩
V0

t
t0

, 0 < t ≤ t0,

V0, t > t0,
and f2(t) =

⎧
⎨

⎩
T∞ + (Tw – T∞) t

t0
, 0 < t ≤ t0,

T(0, t) = Tw, t > t0,
(7)

V (y, t) → 0, T(y, t) → ∞, as y → ∞. (8)

Introducing the following dimensionless variables:

ψ =
V0

υ
y, t∗ =

V 2
0

υ
t, V ∗ =

V
V0

, θ =
T – T∞
Tw – T∞

, Gr =
gβt0(T – T∞)

V 3
0

,

Nr =
16σ1T3∞

3kK1
, M =

σ0M2
0υ

ρV 2
0

, Pr =
υCp

k
, Pr0 =

Pr
1 + Nr

,

α =
α1ρV 2

0
μ2 ,

1
K

=
υ2φ

k0V 2
0

, a = M +
1
K

, b =
α

K
,

and removing the star notation, the required dimensionless momentum and energy equa-
tions are obtained as:

∂V (ψ , t)
∂t

=
∂2V (ψ , t)

∂ψ2 + Grθ (ψ , t) – aV (ψ , t) – b
∂V (ψ , t)

∂t
+ α

∂3V (ψ , t)
∂t∂ψ2 , (9)

∂θ (ψ , t)
∂t

=
1

Pr0

∂2θ (ψ , t)
∂ψ2 , (10)

and the corresponding initial and boundary conditions are presented as

V (ψ , 0) = 0, θ (ψ , 0) = 0,
∂V (ψ , t)

∂t

∣∣∣∣
t=0

= 0, (11)

V (0, t) = f (t), θ (0, t) = f (t), where f (t) =

⎧
⎨

⎩
t, 0 < t ≤ 1,

1, t > 1,
(12)

V (ψ , t) → 0, θ (ψ , t) → 0 as ψ → ∞. (13)

Also, a new version of Sumudu transform definition in modified form due to Watugala [7]
is presented as

R(u) = S
[
r(t)

]
=

∫ ∞

0

r(t)e– t
u

u
dt. (14)
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Theorem 1 ([14]) If R(u) is the Sumudu transform of r(t), then the Sumudu transform of
the derivatives with integer order is as follows:

S

[
dnr(t)

dtn

]
= u–n

[

R(u) –
n–1∑

η=0

uη dnr(t)
dtn

∣∣∣∣
t=0

]

. (15)

Proof The Sumudu transform of the first derivative of r(t), r′(t) = dr(t)/dt, is given by

S

[
dr(t)

dt

]
=

∫ ∞

0
e–t dr(ut)

dt
dt = lim

ξ→∞

∫ ξ

0
e–t dr(ut)

dt
dt

= lim
ξ→∞

[
1
u

e– t
u r(t)

∣∣∣∣

ξ

0
+

1
u2

∫ ξ

0
e– t

u r(t) dt
]

= lim
ξ→∞

[
1
u

e– t
u r(t)

∣∣∣∣

ξ

0
+

1
u

(
1
u

∫ ξ

0
e– t

u r(t) dt
)]

= lim
ξ→∞

[
–

1
u

r(0) +
1
u

(
1
u

∫ ξ

0
e– t

u r(t) dt
)]

= –
1
u

r(0) +
1
u

R(u). (16)

To get the Sumudu transformation for the second order derivative of the function r(t),
proceeding in the same way, we obtain

S

[
d2r(t)

dt2

]
=

1
u2

[
R(u) – r(0) – u

dr(t)
dt

∣∣∣∣
t=0

]
. (17)

To derive the general formula from this theorem for Sumudu transform of any integer
order n, using mathematical induction, we get

S

[
dnr(t)

dtn

]
= u–n

[

R(u) –
n–1∑

η=0

uη dnr(t)
dtn

∣∣∣∣
t=0

]

(18)

which completes the proof. �

Next, defined for Re(s) > 0, the Laplace transform for the function r(t) is given by

F(s) = L
[
r(t)

]
=

∫ ∞

0
e–str(t) dt. (19)

In consideration of the definition in Eq. (14), the Laplace and Sumudu transforms exhibit
a duality relation which is expressed in the following way:

R
(

1
s

)
= sF(s), F

(
1
u

)
= uR(u), (20)

which referred as Sumudu–Laplace duality and illustrates the fact that Laplace and
Sumudu transformations interchange the images of Heaviside function H(t) and Dirac
function δ(t), since

L
[
δ(t)

]
= S

[
H(t)

]
= 1, L

[
H(t)

]
= S

[
δ(t)

]
=

1
u

. (21)
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Similarly, for the functions cos(t) and sin(t), we have

L
[
sin(t)

]
= S

[
cos(t)

]
=

1
1 + u2 , L

[
cos(t)

]
= S

[
sin(t)

]
=

u
1 + u2 , (22)

which is also consistent for the established result in Theorem 1 and integration formulas:

S
[
r′(t)

]
=
S[r(t)] – r(0)

u
, (23)

S

[∫ t

0
r(τ ) dτ

]
= uS

[
r(t)

]
. (24)

The next theorem is very helpful for finding the solution of differential equations involving
multiple integrals by using Sumudu transformation efficiently.

Theorem 2 ([13]) Let r(t) be in A. The Sumudu transform Rn(u) of the nth antiderivative
of r(t), obtained by n times successively integrating the function r(t),

Gn(t) =
∫ ∫ t

0
. . .

∫ t

0
r(τ )(dτ )n, (25)

can be obtained, for n ≥ 1, as

Rn(u) = S
(
Gn(t)

)
= unR(u). (26)

Proof For n = 1, Eq. (26) holds due to Eq. (24). To prove this theorem by induction, suppose
that Eq. (26) holds for some n, and we prove it also holds for n + 1. Again using Eq. (24),
we have

Rn+1(u) = S
(
Gn+1(t)

)
= S

[∫ t

0
Gn(τ ) dτ

]
= uS

(
Gn(t)

)
= u

[
unR(u)

]
= un+1R(u). (27)

This theorem generalizes the Sumudu convolution Theorem 4.1 as presented in Belgacem
et al. [12], which states that the convolution of two functions g and h, defined as

(g � h)(t) =
∫ t

0
g(τ )h(t – τ ) dτ , (28)

has its Sumudu transformation given by

S
(
(g � h)(t)

)
= uG(u)H(u). (29)

Similarly, the Sumudu transform of (h1 � h2 � h3), with h1, h2, h3 in A, is given by

S
(
(h1 � h2 � h3)(t)

)
= u2H1(u)H2(u)H3(u). (30)

�

3 Solution of the problem
In this section, the Sumudu transformation method is used to get the solution of the con-
sidered problem.
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3.1 Exact solution of heat profile by Sumudu transformation
Theorem 3 Let S be the Sumudu operator. Applying this operator on equation (10), along
with initial and boundary conditions (11), (12) and (13), the exact solution of heat profile
is

θ (ψ , t) = θ1(ψ , t) – θ2(ψ , t).

where

θ1(ψ , t) = S
–1(ue– a0√

u
)

=
∫ τ

0
f (t) d(t) with f (t) = erfc

(
a0

2
√

t

)
, a0 =

√
Pr0ψ ,

θ2(ψ , t) = θ1(ψ , τ – 1)H(τ – 1).

Proof Applying the Sumudu transformation technique to get the solution of Eq. (10) and
taking into consideration Eq. (18) with given boundary conditions yields

d2θ̄ (ψ , u)
dψ2 –

Pr0

u
θ̄ (ψ , u) = 0, (31)

with

θ̄ (ψ , u) → 0, as ψ → ∞ and θ̄ (0, u) = u
(
1 – e– 1

u
)
,

and its solution is given by

θ̄ (ψ , u) = u
(
1 – e– 1

u
)
e–ψ

√
Pr0

u . (32)

Further, it can be written as

θ̄ (ψ , u) =
(
ue– a0√

u
)

– e– 1
u
(
ue– a0√

u
)
, where a0 =

√
Pr0ψ . (33)

Applying the Sumudu inverse transformation gives the solution

θ (ψ , t) = θ1(ψ , t) – θ2(ψ , t), (34)

where

θ1(ψ , t) = S
–1(ue– a0√

u
)

=
∫ τ

0
f (t) d(t) and f (t) = erfc

(
a0

2
√

t

)
, (35)

θ2(ψ , t) = θ1(ψ , τ – 1)H(τ – 1). (36)
�

3.2 Exact solution of heat profile by Laplace transformation
Theorem 4 Let L be the Laplace operator. Applying this operator on equation (10), along
with initial and boundary conditions (11), (12), and (13), the exact solution of heat profile
is

θ (ψ , t) = θr(ψ , t) – θr(ψ , τ0)H(τ0),
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where

θr(ψ , t) =
(

Pr0

2
ψ2 + t

)
erfc

(√
Pr0

4t
ψ

)
–

(√
Pr0t
π

ψ

)
e

–Pr0ψ2
4t

and H(τ0) represents a standard Heaviside function with τ0 = t – 1.

Proof Applying Laplace transformation to get the solution of Eq. (10) and using appropri-
ate boundary conditions yields

∂2θ̄ (ψ , m)
∂ψ2 – mPr0θ̄ (ψ , m) = 0. (37)

The solution of above differential equation (37) is obtained as

θ̄ (ψ , m) = c1eψ
√

mPr0 + c2e–ψ
√

mPr0 . (38)

Applying the conditions to find unknowns c1 and c2 yields

θ̄ (ψ , m) → 0 as ψ → ∞ and θ̄ (0, m) =
(

1 – e–m

m2

)
.

We get

θ̄ (ψ , m) =
(

1 – e–m

m2

)
e–ψ

√
mPr0 , (39)

θ̄ (ψ , m) =
(

e–ψ
√

mPr0

m2

)
– e–m

(
e–ψ

√
mPr0

m2

)
= θ̄r(ψ , m) – e–mθ̄r(ψ , m). (40)

After applying inverse Laplace transformation on Eq. (40), we get

θ (ψ , t) = θr(ψ , t) – θr(ψ , τ0)H(τ0), (41)

θr(ψ , t) =
(

Pr0

2
ψ2 + t

)
erfc

(√
Pr0

4t
ψ

)
–

(√
Pr0t
π

ψ

)
e

–Pr0ψ2
4t , (42)

where H(τ0) represents a standard Heaviside function with τ0 = t – 1. �

3.3 Solution of velocity profile
Theorem 5 Let S be the Sumudu operator. Applying this operator on equation (9), along
with initial and boundary conditions (11), (12), and (13), the exact solution of velocity
profile is given in equation (62).

Proof The solution of Eq. (9) by using Sumudu transformation is obtained from

(
1 +

α

u

)
d2V̄ (ψ , u)

dψ2 –
(

1
u

+ a +
b
u

)
V̄ (ψ , u) = –Gr θ̄ (ψ , u). (43)

Its general solution can be written as

V̄ (ψ , u) = c1eψ

√
au+1+b

u+α + c2e–ψ

√
au+1+b

u+α –
(

Gru3(1 – e– 1
u )e–ψ

√
Pr0

u

(u + α)Pr0 – u(au + 1 + b)

)
. (44)
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Since V̄ (ψ , u) → 0 as ψ → ∞ and V̄ (0, u) = u(1 – e– 1
u ), we get

V̄ (ψ , u) = u
(
1 – e– 1

u
)
e–ψ

√
au+1+b

u+α

+
Gru3(1 – e– 1

u )
(u + α)Pr0 – u(au + 1 + b)

[
e–ψ

√
au+1+b

u+α – e–ψ

√
Pr0

u
]
, (45)

V̄ (ψ , u) = v̄1(ψ , u) + v̄2(ψ , u). (46)

Applying Sumudu inverse transformation gives

V (ψ , t) = S
–1(V̄ (ψ , u)

)
= S

–1(v̄1(ψ , u)
)

+ S
–1(v̄2(ψ , u)

)
, (47)

where

v̄1(ψ , u) = u
(
1 – e– 1

u
)
e–ψ

√ au+c
u+α , c = 1 + b, (48)

v̄2(ψ , u) =
Gru3(1 – e– 1

u )
(u + α)Pr0 – u(au + c)

[
e–ψ

√ au+c
u+α – e–ψ

√
Pr0

u
]
, (49)

v̄1(ψ , u) = v̄11(ψ , u) – v̄12(ψ , u), (50)

S
–1(v̄1(ψ , u)

)
= v11(ψ , t) – v12(ψ , t), (51)

where ∗ denotes the convolution. Then, we have

v11(ψ , t) = S
–1(ue–ψ

√ au+c
u+α

)
=

∫ t

0
f2(τ ) dτ , (52)

v12(ψ , t) = S
–1[e

–1
u

(
ue–ψ

√ au+c
u+α

)]
(53)

= v11(ψ , t – 1)H(t – 1), (54)

F2(u) = e–ψ
√ au+c

u+α . (55)

It is complicated to find the Sumudu inverse of F2(u) in exponential form, so we have to
express it in its equivalent form as

F2(u) =
∞∑

n1=0

∞∑

n2=0

∞∑

n3=0

(–1)n3 a
n1
2 –n2 (–ψ)n1 dn2�( n1

2 + 1)�(n2 + n3)
n1!n2!n3!(α)n2+n3�( n1

2 + 1 – n2)�(n2)
un3 , and

d = c – aα.

(56)

Applying Sumudu inverse transformation gives

f2(t) = S
–1(F2(u)

)
=

∞∑

n1=0

∞∑

n2=0

∞∑

n3=0

(–1)n3 a
n1
2 –n2 (–ψ)n1 dn2�( n1

2 + 1)�(n2 + n3)
n1!n2!(n3!)2(α)n2+n3�( n1

2 + 1 – n2)�(n2)
tn3 , (57)

v̄2(ψ , u) =
Gr
a

u
[

–1 +
D

1 – a2u
+

E
1 + b2u

](
1 – e– 1

u
)[

e–ψ
√ au+c

u+α – e–ψ

√
Pr0

u
]
, (58)

v̄2(ψ , u) =
Gr
a

u
[
–1 + DF3(u) + EF4(u)

](
1 – e– 1

u
)[

F2(u) – F1(u)
]
, (59)
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v̄2(ψ , u) =
Gr
a

[
–uF2(u) + uF1(u) + e– 1

u
(
uF2(u)

)
– e– 1

u
(
uF1(u)

)]

+
GrD

a
[
uF2(u)F3(u) – uF1(u)F3(u)

– e– 1
u
(
uF2(u)F3(u)

)
+ e– 1

u
(
uF1(u)F3(u)

)]

+
GrE

a
[
uF2(u)F4(u) – uF1(u)F4(u)

– e– 1
u
(
uF2(u)F4(u)

)
+ e– 1

u
(
uF1(u)F4(u)

)]
, (60)

with

j =
Pr0 – c

a
, r =

αPr0

a
, g =

j
2

, h =
√

r + g2, a2 =
1

h + g
,

b2 =
1

h – g
, D =

a2r + j
(a2 + b2)(h2 – g2)

, E =
b2r – j

(a2 + b2)(h2 – g2)
,

F1(u) = e–ψ

√
Pr0

u , F2(u) = e–ψ
√ au+c

u+α ,

F3(u) =
1

1 – a2u
, F4(u) =

1
1 + b2u

. (61)

After applying the Sumudu inverse transformation, we obtain

v2(ψ , t) =
Gr
a

[
–�1(ψ , t) + �2(ψ , t) + �1(ψ , t – 1)H(t – 1) – �2(ψ , t – 1)H(t – 1)

]

+
GrD

a
[
�3(ψ , t) – �4(ψ , t) – �3(ψ , t – 1)H(t – 1)

+ �4(ψ , t – 1)H(t – 1)
]

+
GrE

a
[
�5(ψ , t) – �6(ψ , t) – �5(ψ , t – 1)H(t – 1)

+ �6(ψ , t – 1)H(t – 1)
]
, (62)

where

�1(ψ , t) =
∫ t

0
f2(τ ) d(τ ), (63)

�2(ψ , t) =
∫ t

0
f1(τ ) d(τ ), (64)

�3(ψ , t) = (f2 ∗ f3)(t) =
∫ t

0
f2(τ )f3(t – τ ) d(τ ), (65)

�4(ψ , t) = (f1 ∗ f3)(t) =
∫ t

0
f1(τ )f3(t – τ ) d(τ ), (66)

�5(ψ , t) = (f2 ∗ f4)(t) =
∫ t

0
f2(τ )f4(t – τ ) d(τ ), (67)

�6(ψ , t) = (f1 ∗ f4)(t) =
∫ t

0
f1(τ )f4(t – τ ) d(τ ), (68)

f1(t) = erfc

(
a1

2
√

t

)
, with a1 =

√
Pr0ψ , (69)
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f2(t) =
∞∑

n1=0

∞∑

n2=0

∞∑

n3=0

(–1)n3 a
n1
2 –n2 (–ψ)n1 dn2�( n1

2 + 1)�(n2 + n3)
n1!n2!(n3!)2(α)n2+n3�( n1

2 + 1 – n2)�(n2)
tn3 , (70)

f3(t) = ea2t , (71)

f4(t) = e–b2t . (72)
�

4 Alternative method to calculate v̄2(ψ , u) by using discrete convolution (the
Cauchy product)

v̄2(ψ , u) =
Gru3(1 – e– 1

u )
(u + α)Pr0 – u(au + c)

[
e–ψ

√ au+c
u+α – e–ψ

√
Pr0

u
]
, (73)

v̄2(ψ , u) =
Gr
a

[
–u – j +

1
h2 – g2

{
D

1 – a2u
+

E
1 + b2u

}]

× (
1 – e– 1

u
)[

e–ψ
√ au+c

u+α – e–ψ

√
Pr0

u
]
, (74)

v̄2(ψ , u) =
Gr
a

[
–u – j +

1
h2 – g2

{
DF4(u) + EF5(u)

}]
F1(u)

[
F2(u) – F3(u)

]
, (75)

v̄2(ψ , u) =
Gr
a

[
–uF1(u)F2(u) + uF1(u)F3(u) – j

(
1 – e– 1

u
)(

F2(u) – F3(u)
)]

+
GrD

a(h2 – g2)
(
1 – e– 1

u
)
F4(u)

[
F2(u) – F3(u)

]

+
GrE

a(h2 – g2)
(
1 – e– 1

u
)
F5(u)

[
F2(u) – F3(u)

]
, (76)

v̄2(ψ , u) =
Gr
a

[
–S1(u) + S2(u) – j

(
F2(u) – F3(u)

)
– e– 1

u F2(u) + e– 1
u F3(u)

]

+
GrD

a(h2 – g2)
[
F24(u) – F34(u) – e– 1

u F24(u) + e– 1
u F34(u)

]

+
GrE

a(h2 – g2)
[
F25(u) – F35(u) – e– 1

u F25(u) + e– 1
u F35(u)

]
, (77)

with

j =
Pr0 – c

a
, r =

αPr0

a
, z = j2 + r, e1 = j.r, g =

j
2

, h =
√

r + g2,

d = c – aα, a2 =
1

h + g
, b2 =

1
h – g

, D =
a2e1 + z
(a2 + b2)

, E =
b2e1 – z
(a2 + b2)

,

c = 1 + b, F1(u) = 1 – e– 1
u , F2(u) = e–ψ

√ au+c
u+α , F3(u) = e–ψ

√
Pr0

u ,

F4(u) =
1

1 – a2u
, F5(u) =

1
1 + b2u

. (78)

Employing the Sumudu inverse transformation, the solution is written as

v2(ψ , t) =
Gr
a

[
–S1(ψ , t) + S2(ψ , t) – j

[
f2(ψ , t) – f3(ψ , t) – f2(ψ , t – 1)H(t – 1)

+ f3(ψ , t – 1)H(t – 1)
]]
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+
GrD

a(h2 – g2)
[
f24(ψ , t) – f34(ψ , t) – f24(ψ , t – 1)H(t – 1)

+ f34(ψ , t – 1)H(t – 1)
]

+
GrD

a(h2 – g2)
[
f25(ψ , t) – f35(ψ , t) – f25(ψ , t – 1)H(t – 1)

+ f35(ψ , t – 1)H(t – 1)
]
, (79)

where

S1(ψ , t) = (f1 ∗ f2)(t) =
∫ t

0
f1(τ )f2(t – τ ) d(τ ), (80)

S2(ψ , t) = (f1 ∗ f3)(t) =
∫ t

0
f1(τ )f3(t – τ ) d(τ ), (81)

S
–1(e– 1

u F2(u)
)

= f2(t – 1)H(t – 1), (82)

S
–1(e– 1

u F3(u)
)

= f3(t – 1)H(t – 1), (83)

and

f3(t) = erfc

(
a1

2
√

t

)
, with a1 =

√
Pr0ψ , (84)

F24(u) = F2(u)F4(u) (85)

=

[ ∞∑

n1=0

∞∑

n2=0

∞∑

n3=0

(–1)n3 a
n1
2 –n2 (–ψ)n1 dn2�( n1

2 + 1)�(n2 + n3)
n1!n2!n3!(α)n2+n3�( n1

2 + 1 – n2)�(n2)
un3

]

×
[ ∞∑

l=0

(
a2(u)

)l
]

.

(86)

Applying discrete convolution (the Cauchy product) with two truncated series, each of m
terms, yields:

=
∞∑

n1=0

∞∑

n2=0

m∑

n3=0

m∑

l=0

(–1)n3 a
n1
2 –n2 (–ψ)n1 dn2�( n1

2 + 1)�(n2 + n3)
n1!n2!n3!(α)n2+n3�( n1

2 + 1 – n2)�(n2)
un3

(
a2(u)

)m–l, (87)

f24(ψ , t) = S
–1(F24(u)

)
(88)

=
∞∑

n1=0

∞∑

n2=0

m∑

n3=0

m∑

l=0

(–1)n3 a
n1
2 –n2 (–ψ)n1 dn2�( n1

2 + 1)�(n2 + n3)
n1!n2!(n3!)2(α)n2+n3�( n1

2 + 1 – n2)�(n2)

· tn3+m–l

(n3 + m – l)!
(a2)m–l,

(89)

F34(u) = F3(u)F4(u) (90)

=

[ ∞∑

β=0

(
–a1√

u

)β 1
β !

][ ∞∑

η=0

(
a2(u)

)η

]

. (91)
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By using Cauchy product or discrete convolution, we get the product of the above two
series as a truncated double series

=
μ∑

β=0

μ∑

η=0

(–a1)β (a2)μ–η

β !
(u)

–β
2 (u)μ–η, (92)

=
μ∑

β=0

μ∑

η=0

(–a1)β (a2)μ–η

β !
(u)μ–η– β

2 , (93)

f34(ψ , t) = S
–1(F34(u)

)
, (94)

=
μ∑

β=0

μ∑

η=0

(–a1)β (a2)μ–η

β !�(μ – η – β

2 + 1)
(t)μ–η– β

2 , (95)

S
–1(e– 1

u F24(u)
)

= f24(t – 1)H(t – 1), (96)

S
–1(e– 1

u F34(u)
)

= f34(t – 1)H(t – 1), (97)

f25(ψ , t) =
∞∑

n1=0

∞∑

n2=0

i∑

n3=0

i∑

w=0

(–1)n3 a
n1
2 –n2 (–ψ)n1 dn2�( n1

2 + 1)�(n2 + n3)
n1!n2!(n3!)2(α)n2+n3�( n1

2 + 1 – n2)�(n2)
(98)

× tn3+i–w

(n3 + i – w)!
(–b2)i–w, (99)

f35(ψ , t) =
μ1∑

β1=0

μ1∑

η1=0

(–a1)β1 (–b2)μ1–η1

(β1)!�(μ1 – η1 – β1
2 + 1)

(t)μ1–η1– β1
2 , (100)

S
–1(e– 1

u F25(u)
)

= f25(t – 1)H(t – 1), (101)

S
–1(e– 1

u F35(u)
)

= f35(t – 1)H(t – 1). (102)

Figure 1 Temperature profile for different values of Pr via Laplace and Sumudu transformation
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5 Results and discussion
From Eqs. (34) and (41), we observe that the temperature profile has two different solution
expressions calculated by Sumudu transformation in (34) and by Laplace transformation
method in (41). These are graphically equivalent. Figure 1 presents the temperature illus-
tration for various values of Pr. It has been declared that when the values of Pr increase,
the temperature is falling in both cases.

6 Conclusion
We presented a new application of the Sumudu transform in this paper. The Sumudu
transform is able to keep the unity of the function, the parity of the function, and has many
other properties that are more valuable. Therefore, we investigated the Sumudu transform
in this work. We compared the results with the results obtained by the Laplace transform.
We proved the efficiency of the Sumudu transform for solutions of the unsteady convec-
tive flow of an MHD second grade fluid with ramped conditions.
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