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Abstract
The aim of the present paper is to obtain new generalizations of an inequality for
n-convex functions involving Csiszár divergence on time scales using the Green
function along with Fink’s identity. Some new results in h-discrete calculus and
quantum calculus are also presented. Moreover, inequalities for some divergence
measures are also deduced.

Keywords: Csiszár divergence; Time scale calculus; Fink’s identity; Green function

1 Introduction
The development of the theory of time scales was initiated by Hilger in 1988 as a theory ef-
ficient to contain both difference and differential calculus in a steady approach. The books
of Bohner and Peterson [8, 9] related to time scales are compact and resolve a lot of time
scales calculus. This theory allows one to get some insight into and right understanding
of the precise differences between discrete and continuous systems.

In the past years, new developments in the theory and applications of dynamic deriva-
tives on time scales have emerged. Many results from the continuous case are carried over
to the discrete one very easily, but some seem to be completely different. The study on
time scales comes to reveal such discrepancies and to make us understand the difference
between the two cases. The results in time scale calculus are unified and extended. This
hybrid theory is also extensively used on dynamic inequalities.

Various linear and nonlinear integral inequalities on time scales have been established
by many authors [3, 4, 32, 35].

Quantum calculus or q-calculus is usually called calculus without limits. In 1910, Jack-
son [18] described q-analogue of derivative and integral operator along with their applica-
tions. He was the first to establish q-calculus in an organized form. It is important to note
that quantum integral inequalities are more significant and constructive than their clas-
sical counterparts. It has been primarily for the reason that quantum integral inequalities
can interpret the hereditary properties of the fact and technique under consideration.

Recently, there has been a rapid development in q-calculus. Consequently, new general-
izations of the classical approach of quantum calculus have been proposed and analyzed
in various literature works, see [10, 17, 27, 44] and the references therein. The concepts
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of quantum calculus on finite intervals were given by Tariboon and Ntouyas [37, 38], and
they obtained certain q-analogues of classical mathematical objects, which motivated nu-
merous researchers to explore the subject in detail. Subsequently, several new results re-
lated to quantum counterpart of classical mathematical results have been established, see
[7, 29, 34].

Divergence measure is the measure of distance between two probability distributions.
The idea of divergence measure is used to solve a variety of problems in probability theory.
In the literature, several types of divergence measures exist that compare two probability
distributions and are used in statistics and information theory. Information and diver-
gence measure are very useful and play a vital part in various areas, namely sensor net-
works [24], testing the order in a Markov chain [26], finance [33], economics [39], and ap-
proximation of probability distributions [14]. Shannon entropy and the related measures
are often used in different fields such as information theory, molecular ecology, popula-
tion genetics, statistical physics, and dynamical systems (see [13, 25]). Kullback–Leibler
divergence is one of the best known among information divergences. The well-known di-
vergence measure is used in information theory, mathematical statistics, and signal pro-
cessing (see [42]). Jeffreys distance and triangular discrimination have many applications
in statistics, information theory, and pattern recognition (see [23, 40, 41]).

Recently, various types of bounds on the distance, divergence, and information measures
have been obtained (see [2, 6, 12, 15, 19, 22, 36] and the references therein). In [1], Adeel et
al. generalized Levinson’s inequality for 3-convex function by using two Green functions.
Moreover, the obtained results are applied to information theory via f -divergence, Rényi
divergence, and Shannon entropy. In [21], Khan et al. introduced a new functional based
on a classical f -divergence functional and obtained some estimates for the new function-
als, the f -divergence, and Rényi divergence. In [11], Butt et al. established new refinements
of Popoviciu’s inequality for higher order convex functions utilizing Abel–Gontscharoff
interpolation in combination with new Green functions. New inequalities are obtained
for n-convex functions. They also gave applications in information theory by finding new
estimates for relative, Shannon, and Zipf–Mandelbrot entropies.

Motivated by the above discussion, we generalize an inequality involving Csiszár diver-
gence on time scales for n-convex functions by using the Green function along with Fink’s
identity. In addition, we estimate Kullback–Leibler divergence, differential entropy, Shan-
non entropy, Jeffreys distance, and triangular discrimination on time scales by using the
obtained results.

2 Preliminaries
Throughout this paper, assume that T is a time scale, a, b ∈ T with a < b. The following
definitions and results are given in [8].

For ζ ∈ T, the forward jump operator σ : T → T is defined as follows:

σ (ζ ) = inf{λ ∈ T : λ > ζ }.

A function g : T → R is known as right-dense continuous (rd-continuous), provided it
is continuous at right-dense points in T and its left-sided limit exists (finite) at left-dense
points in T. The set of all rd-continuous functions will be denoted in this paper by Crd . Tk
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is defined as follows:

T
k =

⎧
⎨

⎩

T\(ρ(supT), supT] if supT < ∞,

T if supT = ∞.

Suppose that g : T → R and ζ ∈ T
k . Delta derivative g�(ζ ) is defined to be the number

(provided it exists) if for each ε > 0 there exists a neighborhood U of ζ such that

∣
∣g

(
σ (ζ )

)
– g(λ) – g�(ζ )

(
σ (ζ ) – λ

)∣
∣ ≤ ε

∣
∣σ (ζ ) – λ

∣
∣

holds for all λ ∈ U . Then g is said to be delta differentiable at ζ .
For T = R, g� is the usual derivative g ′, and g� turns into the forward difference operator

�g(ζ ) = g(ζ + 1) – g(ζ ) for T = Z. If T = qZ = {qn : n ∈ Z}⋃{0}, the so-called q-difference
operator q > 1,

g�(ζ ) =
g(qζ ) – g(ζ )

(q – 1)ζ
, g�(0) = lim

λ→0

g(λ) – g(0)
λ

.

Theorem A (Existence of antiderivatives) Every rd-continuous function has an an-
tiderivative. If x0 ∈ T, then F defined by

F(ζ ) :=
∫ x

x0

f (ζ )�ζ for x ∈ T
k

is an antiderivative of f .

For T = R, we obtain
∫ b

a f (ζ )�ζ =
∫ b

a f (ζ )dζ , and if T = N, then
∫ b

a f (ζ )�ζ =
∑b–1

ζ=a f (ζ ),
where a, b ∈ T with a ≤ b.

3 Improvement of the inequality involving Csiszár divergence
Assume T to be a time scale and consider the set of all probability densities on T to be

� :=
{

p|p : [a, b]T → [0,∞),
∫ b

a
p(x)�x ≤ 1

}

.

Let ζ1, ζ2 ∈ R, where ζ1 < ζ2. Consider the Green function G : [ζ1, ζ2] × [ζ1, ζ2] → R de-
fined by

G(x, s) =

⎧
⎨

⎩

(x–ζ2)(s–ζ1)
ζ2–ζ1

for ζ1 ≤ s ≤ x,
(s–ζ2)(x–ζ1)

ζ2–ζ1
for x ≤ s ≤ ζ2,

(1)

where G is convex and continuous corresponding to both x and s. It is notable that (see
for example [20, 28, 30, 43]) any function 	 ∈ C2([ζ1, ζ2],R) can be written as

	(x) =
ζ2 – x
ζ2 – ζ1

	(ζ1) +
x – ζ1

ζ2 – ζ1
	(ζ2) +

∫ ζ2

ζ1

G(x, s)	 ′′(s) ds, (2)

where G(x, s) is defined in (1).
In [5], Ansari et al. proved the following inequality.
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Theorem B Let 	 : [0,∞) → R be a convex function on the interval [ζ1, ζ2] ⊂ [0,∞) and
ζ1 ≤ 1 ≤ ζ2. If p1, p2 ∈ � with ζ1 ≤ p1(y)

p2(y) ≤ ζ2 for all y ∈ T, then

∫ b

a
p2(y)	

(
p1(y)
p2(y)

)

�y ≤ ζ2 – 1
ζ2 – ζ1

	(ζ1) +
1 – ζ1

ζ2 – ζ1
	(ζ2). (3)

Motivated by inequality (3), we initiate with the following result.

Theorem 1 Under the assumptions of Theorem B with
∫ b

a p1(y)�y =
∫ b

a p2(y)�y = 1, then
(3) and (4) are equivalent

∫ b

a
p2(y)G

(
p1(y)
p2(y)

, s
)

�y ≤ ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s), (4)

where G(·, s) is defined in (1) and s ∈ [ζ1, ζ2]. Moreover, if we reverse the inequality in both
(3) and (4), then again (3) and (4) are equivalent.

Proof Let (3) be valid. Since the function G(·, s)(s ∈ [ζ1, ζ2]) is continuous and convex,
therefore (4) holds.

Let (4) be valid. Let 	 ∈ C2([ζ1, ζ2],R). Then, by using (2), one can get

ζ2 – 1
ζ2 – ζ1

	(ζ1) +
1 – ζ1

ζ2 – ζ1
	(ζ2) –

∫ b

a
p2(y)	

(
p1(y)
p2(y)

)

�y

=
ζ2 – 1
ζ2 – ζ1

[
ζ2 – ζ1

ζ2 – ζ1
	(ζ1) +

ζ1 – ζ1

ζ2 – ζ1
	(ζ2) +

∫ ζ2

ζ1

G(ζ1, s)	 ′′(s) ds
]

+
1 – ζ1

ζ2 – ζ1

[
ζ2 – ζ2

ζ2 – ζ1
	(ζ1) +

ζ2 – ζ1

ζ2 – ζ1
	(ζ2) +

∫ ζ2

ζ1

G(ζ2, s)	 ′′(s) ds
]

–
∫ b

a
p2(y)

[
ζ2 – p1(y)

p2(y)

ζ2 – ζ1
	(ζ1) +

p1(y)
p2(y) – ζ1

ζ2 – ζ1
	(ζ2)

+
∫ ζ2

ζ1

G
(

p1(y)
p2(y)

, s
)

	 ′′(s) ds
]

�y. (5)

Utilize Fubini’s theorem with
∫ b

a p1(y)�y =
∫ b

a p2(y)�y = 1 in (5) to obtain

ζ2 – 1
ζ2 – ζ1

	(ζ1) +
1 – ζ1

ζ2 – ζ1
	(ζ2) –

∫ b

a
p2(y)	

(
p1(y)
p2(y)

)

�y

=
∫ ζ2

ζ1

[
ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s)

]

	 ′′(s) ds

–
∫ ζ2

ζ1

	 ′′(s)
[∫ b

a
p2(y)G

(
p1(y)
p2(y)

, s
)

�y
]

ds.

For all s ∈ [ζ1, ζ2], if the function 	 is convex, then 	 ′′(s) ≥ 0, and thus for every convex
function 	 ∈ C2([ζ1, ζ2],R) inequality (3) holds. One can prove the last part of the theorem
analogously. �

Remark 1 Under the assumptions of Theorem 1, the following two statements are equiv-
alent:
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(c′
1) If the function 	 ∈ C([ζ1, ζ2],R) is concave, then the reverse inequality in (3) holds.

(c′
2) For all s ∈ [ζ1, ζ2], the reverse inequality in (4) holds.

In addition, if we reverse the inequality in both statements (c′
1) and (c′

2), then again (c′
1)

and (c′
2) are equivalent.

Theorem 2 Assume the conditions of Theorem 1, we define the following functional:

J1(	) :=
ζ2 – 1
ζ2 – ζ1

	(ζ1) +
1 – ζ1

ζ2 – ζ1
	(ζ2) –

∫ b

a
p2(y)	

(
p1(y)
p2(y)

)

�y (6)

if the inequality in (4) holds for all s ∈ [ζ1, ζ2].

Remark 2 Suppose that all the assumptions of Theorem 2 hold. If 	 is continuous and
convex, then J1(	) ≥ 0.

The following theorem is proved by Fink in [16].

Theorem 3 Let f : [ζ1, ζ2] →R, n ≥ 1, and f (n–1) is absolutely continuous on [ζ1, ζ2], where
ζ1, ζ2 ∈R. Then

f (x) =
n

ζ2 – ζ1

∫ ζ2

ζ1

f (t) dt

–
n–1∑

w=1

(
n – w

w!

)(
f (w–1)(ζ1)(x – ζ1)w – f (w–1)(ζ2)(x – ζ2)w

ζ2 – ζ1

)

+
1

(n – 1)!(ζ2 – ζ1)

∫ ζ2

ζ1

(x – t)n–1W [ζ1,ζ2](t, x)f (n)(t) dt, (7)

where

W [ζ1,ζ2](t, x) =

⎧
⎨

⎩

(t – ζ1), ζ1 ≤ t ≤ x ≤ ζ2,

(t – ζ2), ζ1 ≤ x < t ≤ ζ2.
(8)

4 Interpolation of the functional involving Csiszár divergence by Fink’s identity
Theorem 4 Assume n ∈ Z

+ and the function 	 : [ζ1, ζ2] → R with 	 (n–1) is absolutely
continuous and ζ1 ≤ 1 ≤ ζ2. If p1, p2 ∈ � with ζ1 ≤ p1(y)

p2(y) ≤ ζ2 for all y ∈ T, then we have the
following new identity:

J1
(
	(x)

)
=

(n – 2)(	 ′(ζ2) – 	 ′(ζ1))
ζ2 – ζ1

∫ ζ2

ζ1

J1
(
G(·, s)

)
ds

+
1

ζ2 – ζ1

∫ ζ2

ζ1

J1
(
G(·, s)

)
n–3∑

w=1

(
n – w – 2

w!

)

× (
	 (w+1)(ζ1)(s – ζ1)w – 	 (w+1)(ζ2)(s – ζ2)w)

ds +
1

(n – 3)!(ζ2 – ζ1)

×
∫ ζ2

ζ1

	 (n)(t)
(∫ ζ2

ζ1

J1
(
G(·, s)

)
(s – t)n–3W [ζ1,ζ2](t, s) ds

)

dt, (9)
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where

J1
(
	(x)

)
=

ζ2 – 1
ζ2 – ζ1

	(ζ1) +
1 – ζ1

ζ2 – ζ1
	(ζ2) –

∫ b

a
p2(y)	

(
p1(y)
p2(y)

)

�y, (10)

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

∫ b

a
p2(y)G

(
p1(y)
p2(y)

, s
)

�y. (11)

Proof Use (2) in (6) and the linearity of J1(·) to obtain

J1
(
	(x)

)
=

∫ ζ2

ζ1

J1
(
G(·, s)

)
	 ′′(s) ds. (12)

Replacing n with n – 2 in (7), one gets

	 ′′(s) =
(n – 2)(	 ′(ζ2) – 	 ′(ζ1))

ζ2 – ζ1

–
n–3∑

w=1

(
n – w – 2

w!

)(
	 (w+1)(ζ1)(x – ζ1)w – 	 (w+1)(ζ2)(x – ζ2)w

ζ2 – ζ1

)

+
1

(n – 3)!(ζ2 – ζ1)

∫ ζ2

ζ1

(s – t)n–3W [ζ1,ζ2](t, s)	 (n)(t) dt. (13)

Use (13) in (12) and rearrange the indices to have

J1
(
	(s)

)
=

(n – 2)(	 ′(ζ2) – 	 ′(ζ1))
ζ2 – ζ1

∫ ζ2

ζ1

J1
(
G(·, s)

)
ds

+
n–3∑

w=1

(
n – w – 2

w!

)∫ ζ2

ζ1

J1
(
G(·, s)

)

×
(

	 (w+1)(ζ1)(x – ζ1)w – 	 (w+1)(ζ2)(x – ζ2)w

ζ2 – ζ1

)

ds +
1

(n – 3)!(ζ2 – ζ1)

×
∫ ζ2

ζ1

J1
(
G(·, s)

)
(∫ ζ2

ζ1

(s – t)n–3W [ζ1,ζ2](t, s)	 (n)(t) dt
)

ds. (14)

Utilize Fubini’s theorem on the last term of (14) to obtain (9). �

Example 1 Choose T = R in Theorem 4, to get the same result as one can obtain from [15,
(2.1)] by utilizing (1) and (7).

Example 2 Put T = hZ (h > 0) in Theorem 4 to obtain a new identity in h-discrete calculus
with the following values:

J1
(
	(x)

)
=

ζ2 – 1
ζ2 – ζ1

	(ζ1) +
1 – ζ1

ζ2 – ζ1
	(ζ2) –

b
h –1
∑

j= a
h

p2(jh)h	

(
p1(jh)
p2(jh)

)
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and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

b
h –1
∑

j= a
h

p2(jh)h G
(

p1(jh)
p2(jh)

, s
)

.

Remark 3 Choose h = 1 in Example 2. Suppose that a = 0, b = n, p1(j) = (p1)j, and p2(j) =
(p2)j to get a new identity in the discrete case with the following values:

J1
(
	(x)

)
=

ζ2 – 1
ζ2 – ζ1

	(ζ1) +
1 – ζ1

ζ2 – ζ1
	(ζ2) –

n∑

j=1

(p2)j	

(
(p1)j

(p2)j

)

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

n∑

j=1

(p2)j G
(

(p1)j

(p2)j
, s

)

.

Example 3 Use T = qN0 (q > 1), a = ql , and b = qn with l < n in Theorem 4 to obtain a new
identity in q-calculus with the following values:

J1
(
	(x)

)
=

ζ2 – 1
ζ2 – ζ1

	(ζ1) +
1 – ζ1

ζ2 – ζ1
	(ζ2) –

n–1∑

j=l

qj+1p2
(
qj)	

(
p1(qj)
p2(qj)

)

(15)

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

n–1∑

j=0

qj+1p2
(
qj)G

(
p1(qj)
p2(qj)

, s
)

.

As a result of the earlier obtained identities, the following theorem yields sublime gener-
alization of inequalities involving Csiszár divergence on time scales for n-convex (n ≥ 3)
functions.

Theorem 5 Assume the conditions of Theorem 4. Also suppose that 	 is an n-convex func-
tion with 	 (n–1) is absolutely continuous. If

∫ ζ2

ζ1

J1
(
G(·, s)

)
(s – t)n–3W [ζ1,ζ2](t, s) ds ≥ 0, t ∈ [ζ1, ζ2], (16)

then

J1
(
	(x)

) ≥ (n – 2)(	 ′(ζ2) – 	 ′(ζ1))
ζ2 – ζ1

∫ ζ2

ζ1

J1
(
G(·, s)

)
ds

+
1

ζ2 – ζ1

∫ ζ2

ζ1

J1
(
G(·, s)

)
n–3∑

w=1

(
n – w – 2

w!

)

× (
	 (w+1)(ζ1)(s – ζ1)w – 	 (w+1)(ζ2)(s – ζ2)w)

ds. (17)
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Proof Since 	 (n–1) is absolutely continuous on [ζ1, ζ2], therefore 	 (n) exists almost every-
where. Given that 	 is n-convex, hence for all x ∈ [ζ1, ζ2] we have 	 (n)(x) ≥ 0 (see [31, p.
16]). Thus use Theorem 4 to get the required result. �

Theorem 6 Suppose that all the assumptions of Theorem 4 hold. Let 	 ∈ Cn[ζ1, ζ2] be such
that 	 (n–1) is absolutely continuous. Moreover, for the functional J1(·) given in (6), we get
the following:

(i) Inequality (17) holds provided that n is even and (n ≥ 4).
(ii) Let inequality (17) be satisfied and

n–3∑

w=1

(
n – w – 2

w!

)
(
	 (w+1)(ζ1)(s – ζ1)w – 	 (w+1)(ζ2)(s – ζ2)w)

ds ≥ 0 (18)

for all s ∈ [ζ1, ζ2]. Then

J1
(
	(·)) ≥ 0. (19)

Proof It is obvious that the Green function G(·, s) given in (1) is convex. Therefore, by
applying Theorem 2 and by using Remark 2, one has J1G(·, s) ≥ 0.

(i) W [ζ1,ζ2](t, x) ≥ 0 for n = 4, 6, . . . , so (16) holds. As 	 is n-convex, hence by utilizing
Theorem 5, one gets (17).

(ii) Use (18) in (17) to get (19). �

Remark 4 Grüss, Cebyšev, and Ostrowski-type bounds corresponding to the obtained
generalizations can also be deduced.

5 Application to information theory
Shannon entropy is the fundamental term in information theory and is often dealt with
measure of uncertainty. The random variable, entropy, is characterized regarding its prob-
ability distribution, and it can appear as a better measure of uncertainty or predictability.
The Shannon entropy allows the estimation of the normal least number of bits essential
to encode a string of symbols based on alphabet size and frequency of symbols.

5.1 Differential entropy on time scales
Consider a positive density function p on time scale to a continuous random variable X
with

∫ b
a p(ζ )�ζ = 1, wherever the integral exists.

In [4], Ansari et al. defined the so-called differential entropy on a time scale by

hb̄(X) :=
∫ b

a
p(ζ ) log

1
p(ζ )

�ζ (b̄ > 1). (20)

Theorem 7 Let X be a continuous random variable and p1, p2 ∈ � with ζ1 ≤ p1(y)
p2(y) ≤ ζ2 for

all y ∈ T. If n is even (n = 6, 8, . . .), then

J1(·) ≥ (n – 2)
ζ1ζ2

∫ ζ2

ζ1

J1
(
G(·, s)

)
ds +

1
ζ2 – ζ1

∫ ζ2

ζ1

J1
(
G(·, s)

)
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×
n–3∑

w=1

(–1)w(n – w – 2)
[

–
(s – ζ1)w

(ζ1)w+1 +
(s – ζ2)w

(ζ2)w+1

]

ds, (21)

where

J1(·) =
ζ2 – 1
ζ2 – ζ1

(
– log(ζ1)

)
+

1 – ζ1

ζ2 – ζ1

(
– log(ζ2)

)
+

∫ b

a
p2(y) log p1(y)�y + h̃b̄(X) (22)

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

∫ b

a
p2(y)G

(
p1(y)
p2(y)

, s
)

�y.

Proof It is obvious that the Green function G(·, s) given in (1) is convex, therefore by using
Remark 2, J1G(·, s) ≥ 0. Let


(s) := (s – t)n–3W [ζ1,ζ2](t, s) =

⎧
⎨

⎩

(s – t)n–3(t – ζ1), ζ1 ≤ t ≤ s ≤ ζ2,

(s – t)n–3(t – ζ2), ζ1 ≤ s < t ≤ ζ2.

Consequently,



′′
(s) :=

⎧
⎨

⎩

(n – 3)(n – 4)(s – t)n–5(t – ζ1), ζ1 ≤ t ≤ s ≤ ζ2,

(n – 3)(n – 4)(s – t)n–5(t – ζ2), ζ1 ≤ s ≤ t ≤ ζ2.

Since 
 is n-convex for even n, where n > 4, (16) holds for even values of n ≥ 6. The
function 	(x) = – log x is n-convex n = 6, 8, . . . . Use 	(x) = – log x in Theorem 5 to get
(21), where h̃b̄(X) is given in (20). �

Example 4 ChooseT = R in Theorem 7 to have a new inequality with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(
– log(ζ1)

)
+

1 – ζ1

ζ2 – ζ1

(
– log(ζ2)

)
+

∫ b

a
p2(y) log p1(y) dy + hb̄(X),

where

hb̄(X) :=
∫ b

a
p2(y) log

1
p2(y)

dy

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

∫ b

a
p2(y)G

(
p1(y)
p2(y)

, s
)

dy.

Example 5 Choose T = hZ, h > 0 in Theorem 7 to get a new inequality for the Shannon
entropy in h-discrete calculus with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(
– log(ζ1)

)
+

1 – ζ1

ζ2 – ζ1

(
– log(ζ2)

)
+

b
h –1
∑

j= a
h

p2(jh)h log
[
p1(jh)h

]
+ S̃,
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where

S̃ :=

b
h –1
∑

j= a
h

p2(jh)h log
1

p2(jh)h

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

b
h –1
∑

j= a
h

p2(jh)h G
(

p1(jh)
p2(jh)

, s
)

.

Remark 5 Choose h = 1 in Example 5. Suppose that a = 0, b = n, p1(j) = (p1)j, and p2(j) =
(p2)j to get a new inequality involving the discrete Shannon entropy with the following
values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(
– log(ζ1)

)
+

1 – ζ1

ζ2 – ζ1

(
– log(ζ2)

)
+

n∑

j=1

(p2)j log(p1)j + S,

where

S :=
n∑

j=1

(p2)j log
1

(p2)j

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

n∑

j=1

(p2)j G
(

(p1)j

(p2)j
, s

)

.

Example 6 Choose T = qN0 (q > 1), a = ql , and b = qn with l < n in Theorem 7 to obtain a
new inequality for the Shannon entropy in q-calculus with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(
– log(ζ1)

)
+

1 – ζ1

ζ2 – ζ1

(
– log(ζ2)

)
+

n–1∑

j=0

qj+1p2
(
qj) log

[
p1

(
qj)] + Sq,

where

Sq :=
n–1∑

j=l

qj+1p2
(
qj) log

1
p2(qj)

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

n–1∑

j=l

qj+1p2
(
qj) G

(
p1(qj)
p2(qj)

, s
)

.

5.2 Kullback–Leibler divergence
Kullback–Leibler divergence on time scales is defined in [5] as follows:

D(p1, p2) =
∫ b

a
p1(ζ ) ln

[
p1(ζ )
p2(ζ )

]

�ζ . (23)
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Theorem 8 Let X be a continuous random variable and p1, p2 ∈ � with ζ1 ≤ p1(y)
p2(y) ≤ ζ2 for

all y ∈ T. If n is even (n = 6, 8, . . .), then

J1(·) ≥ (n – 2)(ln ζ1 – ln ζ2)
ζ1ζ2

∫ ζ2

ζ1

J1
(
G(·, s)

)
ds +

1
ζ2 – ζ1

∫ ζ2

ζ1

J1
(
G(·, s)

)

×
n–3∑

w=1

(–1)w–1
(

n – w – 2
w

)[
(s – ζ1)w

ζ w
1

–
(s – ζ2)w

ζ w
2

]

ds, (24)

where

J1(·) =
ζ2 – 1
ζ2 – ζ1

(
ζ1 ln(ζ1)

)
+

1 – ζ1

ζ2 – ζ1

(
ζ2 ln(ζ2)

)
– D(p1, p2)

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

∫ b

a
p2(y)G

(
p1(y)
p2(y)

, s
)

�y,

where D(p1, p2) is given in (23).

Proof The function 	(x) = x ln x is n-convex for n = 6, 8, . . . . Use 	(x) = x ln x in Theorem
5 to get (24). �

Example 7 Choose T = R in Theorem 8 to have a new inequality in classical calculus with
the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(
ζ1 ln(ζ1)

)
+

1 – ζ1

ζ2 – ζ1

(
ζ2 ln(ζ2)

)
– DKL(p1, p2),

where

DKL(p1, p2) :=
∫ b

a
p1(y) ln

p1(y)
p2(y)

dy

is Kullback–Leibler divergence and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

∫ b

a
p2(y)G

(
p1(y)
p2(y)

, s
)

dy.

Example 8 Choose T = hZ (h > 1) in Theorem 8 to get a new inequality in h-discrete
calculus with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(
ζ1 ln(ζ1)

)
+

1 – ζ1

ζ2 – ζ1

(
ζ2 ln(ζ2)

)
– D̃KL(p1, p2),

where

D̃KL(p1, p2) :=

b
h –1
∑

j= a
h

p1(jh)h ln
p1(jh)
p2(jh)
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and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

b
h –1
∑

j= a
h

p2(jh)h G
(

p1(jh)
p2(jh)

, s
)

.

Remark 6 Choose h = 1 in Example 8. Suppose that a = 0, b = n, p1(j) = (p1)j, and p2(j) =
(p2)j to get a new inequality involving discrete Kullback–Leibler divergence with the fol-
lowing values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(
ζ1 ln(ζ1)

)
+

1 – ζ1

ζ2 – ζ1

(
ζ2 ln(ζ2)

)
– KL(p1, p2),

where

KL(p1, p2) :=
n∑

j=1

(p1)j ln
(p1)j

(p2)j

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

n∑

j=1

(p2)j G
(

(p1)j

(p2)j
, s

)

.

Example 9 Choose T = qN0 (q > 1), a = ql , and b = qn with l < n in Theorem 8 to have a new
inequality involving Kullback–Leibler divergence in q-calculus with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(–ζ1) ln(ζ1) +
1 – ζ1

ζ2 – ζ1
(–ζ2) ln(ζ2) – KLq(p1, p2),

where

KLq(p1, p2) :=
n–1∑

j=l

qj+1p1
(
qj) ln

p1(qj)
p2(qj)

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

n–1∑

j=l

qj+1p2
(
qj) G

(
p1(qj)
p2(qj)

, s
)

.

5.3 Jeffreys distance
Jeffreys distance on time scale is defined in [5] as follows:

DJ (p1, p2) :=
∫ b

a

(
p1(ζ ) – p2(ζ )

)
ln

[
p1(ζ )
p2(ζ )

]

�ζ . (25)

Theorem 9 Let X be a continuous random variable and p1, p2 ∈ � with ζ1 ≤ p1(y)
p2(y) ≤ ζ2 for

all y ∈ T. If n is even (n = 6, 8, . . .), then

J1(·) ≥
(

(n – 2)(ln ζ2 – ln ζ1)
ζ2 – ζ1

+
1

ζ1ζ2

)∫ ζ2

ζ1

J1
(
G(·, s)

)
ds +

1
ζ2 – ζ1

∫ ζ2

ζ1

J1
(
G(·, s)

)
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×
n–3∑

w=1

(–1)w+1
(

n – w – 2
w

)[(
w

ζ w+1
1

+
1
ζ w

1

)

(s – ζ1)w

–
(

w
ζ w+1

2
+

1
ζ w

2

)

(s – ζ2)w
]

ds, (26)

where

J1(·) =
ζ2 – 1
ζ2 – ζ1

(ζ1 – 1) ln(ζ1) +
1 – ζ1

ζ2 – ζ1
(ζ2 – 1) ln(ζ2) – DJ (p1, p2)

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

∫ b

a
p2(y)G

(
p1(y)
p2(y)

, s
)

�y,

where DJ (p1, p2) is given in (25).

Proof The function 	(x) = (x – 1) ln x is n-convex for n = 6, 8, . . . . Use 	(x) = (x – 1) ln x in
Theorem 5 to get (26). �

Example 10 Choose T = R in Theorem 9 to have a new inequality in classical calculus
with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(ζ1 – 1) ln(ζ1) +
1 – ζ1

ζ2 – ζ1
(ζ2 – 1) ln(ζ2) – DJa (p1, p2),

where

DJa(p1, p2) :=
∫ b

a

[
p1(y) – p2(y)

]
ln

p1(y)
p2(y)

dy,

is Jeffreys distance and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

∫ b

a
p2(y)G

(
p1(y)
p2(y)

, s
)

dy.

Example 11 Choose T = hZ (h > 1) in Theorem 9 to get a new inequality in h-discrete
calculus with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(ζ1 – 1) ln(ζ1) +
1 – ζ1

ζ2 – ζ1
(ζ2 – 1) ln(ζ2) – D̃Ja (p1, p2),

where

D̃Ja (p1, p2) :=

b
h –1
∑

j= a
h

(p1 – p2)(jh)h ln
p1(jh)
p2(jh)

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

b
h –1
∑

j= a
h

p2(jh)h G
(

p1(jh)
p2(jh)

, s
)

.
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Remark 7 Put h = 1 in Example 11. Suppose that a = 0, b = n, p1(j) = (p1)j, and p2(j) = (p2)j

to get a new inequality involving discrete Jeffreys distance with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(ζ1 – 1) ln(ζ1) +
1 – ζ1

ζ2 – ζ1
(ζ2 – 1) ln(ζ2) – DJa (p1, p2),

where

Ja(p1, p2) :=
n∑

j=1

(p1 – p2)j ln
(p1)j

(p2)j

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

n∑

j=1

(p2)j G
(

(p1)j

(p2)j
, s

)

.

Example 12 Choose T = qN0 (q > 1), a = ql , and b = qn with l < n in Theorem 9 to have a
new inequality involving Jeffreys distance in q-calculus with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(ζ1 – 1) ln(ζ1) +
1 – ζ1

ζ2 – ζ1
(ζ1 – 1) ln(ζ2) – DJq (p1, p2),

where

DJq (p1, p2) :=
n–1∑

j=l

qj+1[p1
(
qj) – p2

(
qj)] ln

p1(qj)
p2(qj)

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

n–1∑

j=l

qj+1p2
(
qj)G

(
p1(qj)
p2(qj)

, s
)

.

5.4 Triangular discrimination
Triangular discrimination on time scales is defined in [5] as follows:

D�(p1, p2) =
∫ b

a

[p2(ζ ) – p1(ζ )]2

p2(ζ ) + p1(ζ )
�ζ . (27)

Theorem 10 Let X be a continuous random variable and p1, p2 ∈ � with ζ1 ≤ p1(y)
p2(y) ≤ ζ2

for all y ∈ T. If n is even (n = 6, 8, . . .), then

J1(·) ≥ n – 2
ζ2 – ζ1

(
1

(ζ1 + 1)2 –
1

(ζ2 + 1)2

)∫ ζ2

ζ1

J1
(
G(·, s)

)
ds +

1
ζ2 – ζ1

∫ ζ2

ζ1

J1
(
G(·, s)

)

×
n–3∑

w=1

4(–1)w+1(w + 1)(n – w – 2)
[

(s – ζ1)w

(1 + ζ1)w+2 –
(s – ζ2)w

(1 + ζ2)w+2

]

ds, (28)

where

J1(·) =
ζ2 – 1
ζ2 – ζ1

(ζ1 – 1)2

ζ1 + 1
+

1 – ζ1

ζ2 – ζ1

(ζ2 – 1)2

ζ2 + 1
– D�(p1, p2)
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and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

∫ b

a
p2(y)G

(
p1(y)
p2(y)

, s
)

�y,

where D�(p1, p2) is given in (27).

Proof The function 	(x) = (x–1)2

x+1 is n-convex for n = 6, 8, . . . . Use 	(x) = (x–1)2

x+1 in Theorem
5 to get (28). �

Example 13 Choose T = R in Theorem 10 to have a new inequality in classical calculus
with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(ζ – 1)2

ζ + 1
+

1 – ζ1

ζ2 – ζ1

(ζ – 1)2

ζ + 1
– D�a (p1, p2),

where

D�a (p1, p2) :=
∫ b

a

[p2(y) – p1(y)]2

p1(y) + p2(y)
dy

is triangular discrimination and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

∫ b

a
p2(y)G

(
p1(y)
p2(y)

, s
)

dy.

Example 14 Choose T = hZ (h > 1) in Theorem 10 to get a new inequality in h-discrete
calculus with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(ζ1 – 1)2

ζ1 + 1
+

1 – ζ1

ζ2 – ζ1

(ζ2 – 1)2

ζ2 + 1
– D̃�a (p1, p2),

where

�a(p1, p2) :=

b
h –1
∑

j= a
h

h
[p2(hj) – p1(hj)]2

p1(hj) + p2(hj)

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

b
h –1
∑

j= a
h

p2(jh)h G
(

p1(jh)
p2(jh)

, s
)

.

Remark 8 Take h = 1 in Example 14 and consider a = 0, b = n, p1(j) = (p1)j, and p2(j) =
(p2)j to get a new inequality involving discrete triangular discrimination with the following
values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(ζ1 – 1)2

ζ1 + 1
+

1 – ζ1

ζ2 – ζ1

(ζ2 – 1)2

ζ2 + 1
– D�a (p1, p2),
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where

�(p1, p2) :=
n∑

j=1

[(p2)j – (p1)j]2

(p1)j + (p2)j

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

n∑

j=1

(p2)j G
(

(p1)j

(p2)j
, s

)

.

Example 15 Choose T = qN0 (q > 1), a = ql , and b = qn with l < n in Theorem 10 to have a
new inequality involving triangular discrimination in q-calculus with the following values:

J1(·) =
ζ2 – 1
ζ2 – ζ1

(ζ1 – 1)2

ζ1 + 1
+

1 – ζ1

ζ2 – ζ1

(ζ2 – 1)2

ζ2 + 1
– D�q (p1, p2),

where

D�q (p1, p2) :=
n–1∑

j=l

qj+1 [p2(qj) – p1(qj)]2

p1(qj) + p2(qj)

and

J1
(
G(·, s)

)
=

ζ2 – 1
ζ2 – ζ1

G(ζ1, s) +
1 – ζ1

ζ2 – ζ1
G(ζ2, s) –

n–1∑

j=l

qj+1p2
(
qj) G

(
p1(qj)
p2(qj)

, s
)

.
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