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Abstract
In this paper we propose a solution to the nonlinear Fredholm integral equations in
the context of w-distance. For this purpose, we also provide a fixed point result in the
same setting. In addition, we provide best proximity point results. We give examples
and present numerical results to approximate fixed points.
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1 Introduction and preliminaries
In nonlinear functional analysis, one of the most interesting topics is the fixed point the-
ory due to its wide application potential. Hundreds and even thousands of fixed point
theorems have been proved and published since Banach up to this date. This makes it al-
most impossible to follow the literature. To change this situation, there is a need to work
on more complementary and general results. For this purpose, recently, the concept of a
simulation function was defined by Kojasteh et al. [1] in order to combine some existing
metric fixed point results. This idea was improved and studied very densely, see e.g. [2–
10] and the references therein. This trend has been transformed in best proximity theory
by [11–14] and the works referenced therein.

For the sake of self-containment, the definition of simulation function [1] is recalled
here:

Definition 1.1 ([1]) A function σ : [0, +∞) × [0, +∞) → R is called simulation function
if

1. σ (t, s) < s – t for all t, s > 0;
2. For the positive sequences (an) and (bn),

lim
n→+∞ an = lim

n→+∞ bn > 0 implies that lim sup
n→+∞

σ (an, bn) < 0.

Note that we removed the superfluous condition σ (0, 0) = 0 from the simulation func-
tion definition in [1]. We shall use � to indicate the class of all simulation functions. An
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immediate example of simulation function is σ (t, s) = ks – t, where k ∈ [0, 1). A function
ψ : [0, +∞) → [0, +∞) is called origin-intersect if

ψ(s) = 0 if and only if s = 0.

The class of all origin-intersect functions will be denoted by � .
An example of origin-intersect functions is given below.

Example Define ψ1,ψ2 : [0, +∞) → [0, +∞) by

ψ1(s) =
s
4

and ψ2(s) = s2.

In what follows, we recall the concept of the quasi-altering distance function.

Definition 1.2 ([15]) We say that ϕ : [0, +∞) → [0, +∞) is quasi-altering distance func-
tion if

1. ϕ is continuous
2. ϕ is origin-intersect.

Remark 1.3 Deduce that ψ1 and ψ2 are quasi-altering distance functions.

The following are the examples for simulation functions.

Example Let θi : [0, +∞) → [0, +∞) be quasi-altering distance functions, and we define
the mappings σi : [0, +∞) × [0, +∞) →R for i = 1, 2, 3 as follows:

1. Let θ1(τ ) < τ ≤ θ2(τ ) for all τ > 0. Then

σ1(τ ,ν) = θ1(ν) – θ2(τ ) for all τ ,ν ∈ [0, +∞).

2. Suppose that the functions h, g : [0, +∞) × [0, +∞) → [0, +∞) are continuous with
respect to each component with h(τ ,ν) > g(τ ,ν) > 0 for all τ ,ν > 0. Then a function

σ2(τ ,ν) = ν –
h(τ ,ν)
g(τ ,ν)

τ for all τ ,ν ∈ [0, +∞).

3. σ3(τ ,ν) = ν – θ3(ν) – τ for all τ ,ν ∈ [0, +∞).

Clearly, each σi (i = 1, 2, 3) is a simulation function; also, see e.g. [1–7, 11–13].

Definition 1.4 ([15]) If a quasi-altering distance function ϕ : [0, +∞) → [0, +∞) is non-
decreasing, we say that it is an altering distance function.

Let 
 = {ϕ : [0, +∞) → [0, +∞)} be the collection of all altering distance functions.
In the following example ϕ2 and ϕ3 are defined in [16].

Example Let ϕ1, ϕ2, ϕ3 be self-mappings on [0, +∞) that are defined by

ϕ1(s) =
√

s, ϕ2(s) = se3s, ϕ3(s) = ln
(
s2 + 2s + 1

)
.
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It can be easily verified that ϕ1, ϕ2, and ϕ3 form an altering distance function. Indeed, they
are continuous, nondecreasing, and origin-intersect.

The notion of weaker Meir–Keeler function was defined and used effectively by Chen
[17]. It was reconsidered by Lakzian and Rhoades [18] as follows.

Definition 1.5 ([18]) A self-mapping ψ , defined on [0, +∞), is called weaker Meir–Keeler
if, for each � > 0, there exists χ > 0 such that, for s ∈ [0, +∞) with � ≤ s < � +χ , there exists
n0 ∈ N such that ψn0 (s) < �.

Due to [18], we also have:
(i) ψ(0) = 0 together with ψ(s) > 0 for s > 0 and;

(ii) {ψn(s)}n∈N is a decreasing sequence for each s > 0;
(iii) for a nonnegative sequence (sn), we have

(a) limn→+∞ sn = 0 if and only if limn→+∞ ψ(sn) = 0,
(b) if limn→+∞ sn = , then limn→+∞ ψ(sn) < .

Note that from the above definition we are taking only condition (i) for our ψ i.e. the col-
lection � covers a large number of mappings compared to weaker Meir–Keeler functions.
Therefore � is more general than the weaker Meir–Keeler functions.

On the other hand, Kada et al. [19] proposed a new concept that is called w-distance to
extend some well-known fixed point results. Indeed, w-distance is kind of a generalization
of metric. After that, many authors extended and generalized the fixed point results using
w-distance [16, 18, 20–27].

Definition 1.6 ([19]) For a metric space (X, d), a function q : X × X → [0, +∞) is called a
w-distance on X if

(i) q(x, y) ≤ q(x, z) + q(z, y);
(ii) if x ∈ X and yn → y in X , then q(x, y) ≤ lim infn→+∞ q(x, yn)

(i.e. q(x, ·) : X → [0, +∞) is lower semi-continuous);
(iii) for each ε > 0, there exists δ > 0 such that q(x, y) ≤ δ and q(x, z) ≤ δ imply d(y, z) ≤ ε

for all x, y, z ∈ X.

Note that each metric forms a w-distance. We shall use the triplet (X, d, q) to indicate
that q : X × X → [0, +∞) is a w-distance on a metric space (X, d). In addition, if the corre-
sponding metric is complete, we shall use (X∗, d, q). Furthermore, the pair (X∗, d) denotes
the complete metric space.

An example of w-distance is below.

Example For a positive real number k and a metric space (X, d), a function q : X × X →
[0, +∞), defined by q(a, b) = k, forms a w-distance on X. On the other hand, q fails to be a
metric since q(a, a) = k �= 0 for any a, b ∈ X.

Example For a normed linear space (X,‖ · ‖), a function q : X × X → [0, +∞) defined by
q(a, b) = ‖b‖ for any a, b ∈ X forms a w-distance.

Suppose that FT (X) denotes the set of all fixed points of T : X → X. The following the-
orem is a quote of Theorem 3.2 of Lakzian and Rhodes [18].



Dhivya et al. Advances in Difference Equations        (2021) 2021:398 Page 4 of 23

Theorem 1.7 ([18]) For (X∗, d, q), ϕ ∈ 
, and a weaker Meir–Keeler function ψ , assume
that a self-mapping T : X → X satisfies

ϕ
(
q(Tx, Ty)

) ≤ ψ
(
ϕ
(
M(x, y)

))
for all x, y ∈ X.

If 0 < ψ(t) < t for t > 0 and one of the following conditions holds:
(i) T is continuous,

(ii) for every w ∈ X \FT (X), inf{q(x, w) + q(x, Tx) : x ∈ X} > 0,
then T possesses a unique fixed point.

In the next section we use Lemma 2 in Lakzian and Rhodes [18].

Lemma 1.8 ([18]) For sequences (xn) and (yn) in (X, d, q), we have the following:
(i) If limn→+∞ q(xn, x) = limn→+∞ q(xn, y) = 0, then x = y. In particular, if

q(z, x) = q(z, y) = 0, then x = y, where x, y, z ∈ X .
(ii) For nonnegative sequences (an) and (bn), if q(xn, yn) ≤ an and q(xn, y) ≤ bn for any

n ∈N converging to 0, then (yn) converges to y ∈ X .
(iii) A sequence (xn) is Cauchy (or fundamental) if for each ε > 0 there exists Nε ∈ N such

that m > n > Nε implies q(xn, xm) < ε, which is equivalent to say
limn,m→+∞ q(xn, xm) = 0.

Definition 1.9 For (X∗, d, q), we say that q is ceiling distance of d if and only if

q(x, y) ≥ d(x, y)

for all x, y ∈ X.

The following examples for ceiling distance are given in [21].

Example ([16]) Each metric forms a ceiling distance of itself.

Example ([21]) Consider (R, d(x, y) = |x – y|). A mapping q : X × X → [0, +∞), defined by
q(x, y) = max{a(y – x), b(x – y)} for all x, y ∈ X, forms a ceiling distance of d, where a, b ≥ 1.

Example ([21]) Consider again the standard metric [0, +∞), d(x, y) = |x – y|. A mapping
q : X × X → [0, +∞), defined by q(x, y) = max{x, y} for all x, y ∈ X, forms a ceiling distance
of d.

Define

M(x, y) = max

{
q(x, y), q(x, Tx), q(y, Ty),

q(x, Ty) + q(Tx, y)
2

}
;

and

m(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(Tx, y)
2

}
.

Now we define a �-weighted contraction with respect to σ as follows.
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Definition 1.10 For (X∗, d, q), ϕ ∈ 
, and ψ ∈ � , σ ∈ �, a mapping T : X → X is called a
�-weighted contraction with respect to σ such that

σ
(
ϕ
(
q(Tx, Ty)

)
,ψ

(
ϕ
(
M(x, y)

))) ≥ 0 for all x, y ∈ X. (1.1)

In this manuscript, we generalize and unify Theorem 1.7 involving simulation functions.
Furthermore, motivated by the work in [13], we prove the best proximity theorem for w-
distances involving simulation functions. As an application for our fixed point result, we
propose a solution for a nonlinear Fredholm integral equation. Also we give examples and
numerical approximations to illustrate our main results.

2 Main results
Our first new result in this paper is the following.

Theorem 2.1 On (X∗, d, q), the function q forms a ceiling distance of d with q(x, x) = 0
for all x ∈ X. Assume that T : X → X is a �-weighted contraction with respect to σ . If
0 < ψ(t) < t for t > 0 and one of the following conditions holds, then T possesses a unique
fixed point:

(i) T is continuous;
(ii) for every w ∈ X \FT (X), inf{q(x, w) + q(x, Tx) : x ∈ X} > 0.

Proof Let x0 ∈ X and define (xn) by xn+1 = Txn for all n ≥ 0. Suppose that xn+1 = xn for some
n ∈N, then xn is a fixed point of T . Therefore we assume that xn+1 �= xn for all n ∈N∪ {0}.
This implies that d(xn, xn+1) > 0 for all n ∈ N ∪ {0}. Using the ceiling distance of d, we get
q(xn, xn+1) > 0 for all n ∈N∪ {0}. Now, since T is a �-weighted contraction, we get

σ
(
ϕ
(
q(xn, xn+1)

)
,ψ

(
ϕ
(
M(xn–1, xn)

))) ≥ 0, (2.1)

where

M(xn–1, xn) = max

{
q(xn–1, xn), q(xn–1, xn), q(xn, xn+1),

q(xn–1, xn+1) + q(xn, xn)
2

}

= max

{
q(xn–1, xn), q(xn, xn+1),

q(xn–1, xn+1)
2

}
.

Note that

q(xn–1, xn+1)
2

≤ q(xn–1, xn) + q(xn, xn+1)
2

≤ max
{

q(xn–1, xn), q(xn, xn+1)
}

.

Then we get M(xn–1, xn) = max{q(xn–1, xn), q(xn, xn+1)}. Now suppose that q(xn–1, xn) <
q(xn, xn+1), equation (2.1) implies that

0 ≤ σ
(
ϕ
(
q(xn, xn+1)

)
,ψ

(
ϕ
(
q(xn, xn+1)

)))

< ψ
(
ϕ
(
q(xn, xn+1)

))
– ϕ

(
q(xn, xn+1)

)
< 0,
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which is a contradiction. Therefore, for all n ∈ N, q(xn, xn+1) ≤ q(xn–1, xn). Hence the se-
quence (q(xn, xn+1)) is a decreasing sequence and bounded below by 0, then there exists
r ≥ 0 such that

lim
n→+∞ q(xn, xn+1) = r. (2.2)

Now suppose that r > 0; by the �-weighted contraction condition, we get

0 ≤ σ
(
ϕ
(
q(xn, xn+1)

)
,ψ

(
ϕ
(
q(xn–1, xn)

)))
(2.3)

< ψ
(
ϕ
(
q(xn–1, xn)

))
– ϕ

(
q(xn, xn+1)

)
,

ϕ
(
q(xn, xn+1)

)
< ψ

(
ϕ
(
q(xn–1, xn)

))
< ϕ

(
q(xn–1, xn)

)
.

Letting n → +∞, we get ϕ(q(xn, xn+1)) → ϕ(r), ψ(ϕ(q(xn–1, xn))) → ϕ(r), and note that by
condition (iii) of simulation function (2.3) becomes

0 ≤ lim sup
n→+∞

σ
(
ϕ
(
q(xn, xn+1)

)
,ψ

(
ϕ
(
q(xn–1, xn)

)))
< 0,

which is a contradiction. Therefore r = 0. Similarly, we can prove that q(xn, xn+1) → 0 as
n → +∞. Now we are going to prove that (xn) is a Cauchy sequence i.e.

lim
n,m→+∞ q(xn, xm) = 0. (2.4)

Suppose on the contrary that there are ε > 0 and subsequences (xmk ) and (xnk ) of (xn) with
mk > nk ≥ k such that

q(xnk +1, xmk +1) ≥ ε for all k ∈N. (2.5)

By choosing mk to be the smallest integer exceeding nk for which (2.5) holds, we get

q(xnk +1, xmk ) < ε. (2.6)

Using (2.5) and (2.6), we get

ε ≤ q(xnk +1, xmk +1) ≤ q(xnk +1, xmk ) + q(xmk , xmk +1),

and then q(xnk +1, xmk +1) → ε as k → +∞. Now,

q(xnk +1, xmk +1) – q(xmk +1, xmk ) ≤ q(xnk +1, xmk ) < ε,

and as k → +∞ we get q(xnk+1 , xmk ) → ε. On the other hand,

q(xnk +1, xmk ) – q(xnk +1, xnk ) ≤ q(xnk , xmk ) < q(xnk , xnk +1) + ε,

and then q(xnk+1 , xmk +1) → ε. Using the �-weighted contraction, we get

0 ≤ σ
(
ϕ
(
q(xnk+1 , xmk+1 )

)
,ψ

(
ϕ
(
M(xnk , xmk )

)))
. (2.7)
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From (2.5) we have ε ≤ M(xnk , xmk ) and observe that

M(xnk , xmk ) = max

{
q(xnk , xmk ), q(xnk , xnk+1 ), q(xmk , xmk+1 ),

q(xnk , xmk+1 ) + q(xnk+1 , xmk )
2

}

≤ max

{
q(xnk , xmk ), q(xnk , xnk+1 ), q(xmk , xmk+1 ),

q(xnk , xnk+1 ) + 2q(xnk+1 , xmk+1 ) + q(xmk+1 , xmk )
2

}
.

Therefore as k → +∞ we get M(xnk , xmk ) → ε, and note that from (2.7) we have

0 < ψ
(
ϕ
(
M(xnk , xmk )

))
– ϕ

(
q(xnk+1 , xmk+1 )

)
,

ϕ
(
q(xnk+1 , xmk+1 )

)
< ψ

(
ϕ
(
M(xnk , xmk )

))
< ϕ

(
M(xnk , xmk )

)
,

as k → +∞, we get ψ(ϕ(M(xnk , xmk ))) → ϕ(ε). Then, by condition (iii) of the simulation
function, we conclude that

0 ≤ lim sup
n→+∞

σ
(
ϕ
(
q(xnk+1 , xmk+1 )

)
,ψ

(
ϕ
(
M(xnk , xmk )

)))
< 0,

which is a contradiction. Therefore (2.4) holds, and by Lemma 1.8 we conclude that the
sequence (xn) is fundamental (Cauchy). Employing the completeness of X, one can find
s ∈ X such that xn → s as n → +∞.

Now, by (2.4), for every ε > 0, there exists Nε ∈ N such that for all n > Nε we get
q(xNε , xn) < ε. But xn → s and using the lower semi-continuity of T , we get

q(xNε , s) ≤ lim inf
n→+∞ q(xNε , Txn–1) ≤ ε.

Therefore q(xNε , s) ≤ ε. Letting ε = 1
k and Nε = nk , we get

lim
k→+∞

q(xnk , s) = 0. (2.8)

Case (i): Assume that s �= Ts. Accordingly, we have

0 < inf
{

q(x, s) + q(x, Tx) : x ∈ X
} ≤ inf

{
q(xn, s) + q(xn, xn+1) : n ∈N

}
,

which tends to 0 as n → +∞. We get a contradiction, therefore we conclude that s = Ts.
Case (ii): Suppose that inf{q(x, w) + q(x, Tx) : x ∈ X} = 0 for some w ∈ X such that w �= Tw.
Then there exists a sequence (xn) such that q(xn, w) + q(xn, Txn) → 0 as n → +∞. That is,

q(xn, w) → 0 and q(xn, Txn) → 0 as n → +∞. By Lemma 1.8, we have Txn → w as n → +∞.
Suppose that q(Txn, T2xn) = 0; then, by the ceiling distance of d, we get Txn = T2xn.

Since Txn → w implies that T2xn → w as n → +∞, by using the continuity of T , we have

Tw = T
(

lim
n→+∞ Txn

)
= lim

n→+∞ T2xn = w, (2.9)
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which is a contradiction. As a result, inf{q(x, w) + q(x, Tx) : x ∈ X} > 0 if w �= Tw. Then, by
case(i), we conclude the desired result.

Now, supposing that q(Txn, T2xn) > 0, then we have ϕ(q(Txn, T2xn)) > 0 and ψ(ϕ(M(xn,
Txn))) > 0. By the �-weighted contraction condition, we get

0 ≤ σ
(
ϕ
(
q
(
Txn, T2xn

))
,ψ

(
ϕ
(
M(xn, Txn)

)))

< ψ
(
ϕ
(
M(xn, Txn)

))
– ϕ

(
q
(
Txn, T2xn

))
,

ϕ
(
q
(
Txn, T2xn

))
< ψ

(
ϕ
(
M(xn, Txn)

))
< ϕ

(
M(xn, Txn)

)
,

then we get q(Txn, T2xn) → 0 as n → +∞. Using the triangular inequality, we have

q
(
xn, T2xn

) ≤ q(xn, Txn) + q
(
Txn, T2xn

)
.

Hence q(xn, T2xn) → 0 as n → +∞, and Lemma 1.8 implies that T2xn → w as n → +∞.
Taking the continuity of T into account together with (2.9), we get a contradiction. There-
fore we conclude that if w �= Tw then inf{q(x, w) + q(x, Tx) : x ∈ X} > 0, and using case(i) we
get the result.

For any fixed point s ∈ X, suppose that q(s, s) > 0, and by the �-weighted contraction
condition, we get

0 ≤ σ
(
ϕ
(
q(Ts, Ts)

)
,ψ

(
ϕ
(
M(s, s)

)))

= σ
(
ϕ
(
q(Ts, Ts)

)
,ψ

(
ϕ
(
q(s, s)

)))

< ψ
(
ϕ
(
q(s, s)

))
– ϕ

(
q(Ts, Ts)

)
,

ϕ
(
q(Ts, Ts)

)
< ψ

(
ϕ
(
q(s, s)

))
< ϕ

(
q(s, s)

)
,

a contradiction. Therefore q(s, s) = 0.
To prove the uniqueness of the fixed point, suppose that t is another fixed point of T

and q(s, t) > 0.
Now, using the �-weighted contraction condition, we have

0 ≤ σ
(
ϕ
(
q(Ts, Tt)

)
,ψ

(
ϕ
(
q(s, t)

)))

= σ
(
ϕ
(
q(s, t)

)
,ψ

(
ϕ
(
q(s, t)

)))

< ψ
(
ϕ
(
q(s, t)

))
– ϕ

(
q(s, t)

)
,

ϕ
(
q(s, t)

)
< ψ

(
ϕ
(
q(s, t)

))
< ϕ

(
q(s, t)

)
,

which implies a contradiction. Therefore we get q(s, t) = 0, hence by Lemma 1.8 we get
s = t. �

Example Consider the standard metric (R, d(x, y) = |x – y|). Let T : X → X be a mapping
defined by

Tx =

⎧
⎨

⎩

x2

4 if x ∈ [0, 1],

0 if x > 1.
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Note that T is not continuous and hence the Banach contraction principle is not applica-
ble. On the other hand, T satisfies condition (i) of Theorem 2.1. Consider ϕ,ψ : [0, +∞) →
[0, +∞) by

ϕ(t) =
t2

4

and

ψ(t) =
t
2

.

It is easy to verify that ϕ ∈ 
, ψ ∈ � , and ψ(t) < t for all t > 0.
Now we define a w-distance q : X × X → [0, +∞) by

q(x, y) =

⎧
⎨

⎩
max{x, y} if x �= y,

0 if x = y

for all x, y ∈ X, and also we define the simulation function σ : [0, +∞) × [0, +∞) →R such
that

σ (t, s) =
s
2

– t

for all s, t > 0. We can easily verify that q is a ceiling distance of d, and by example (1) of
simulation function, we conclude that σ ∈ �. Now we have to show that T satisfies (1.1).
Note that

M(x, y) =

⎧
⎨

⎩
max{x, y} = q(x, y) if x �= y,

x if x = y.

Case (i): If x, y ∈ [0, 1] with x �= y, then we have

ϕ
(
q(x, y)

)
= ϕ

(
max{x, y}) = max

{
x2

4
,

y2

4

}
,

ψ
(
ϕ
(
q(x, y)

))
= max

{
x2

8
,

y2

8

}
, (2.10)

ϕ
(
q(Tx, Ty)

)
= ϕ

(
max

{
x2

4
,

y2

4

})
= max

{
x4

64
,

y4

64

}
. (2.11)

Then, by (2.10) and (2.11), equation (1.1) becomes

σ
(
ϕ
(
q(Tx, Ty)

)
,ψ

(
ϕ
(
M(x, y)

)))
=

1
2
(
ψ

(
ϕ
(
M(x, y)

)))
– ϕ

(
q(Tx, Ty)

)

= max

{
x2

16
,

y2

16

}
– max

{
x4

64
,

y4

64

}
≥ 0.

Case (ii): If x, y > 1 with x �= y, then we have

ϕ
(
q(x, y)

)
= ϕ

(
max{x, y}) = max

{
x2

4
,

y2

4

}
,
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ψ
(
ϕ
(
q(x, y)

))
= max

{
x2

8
,

y2

8

}
, (2.12)

ϕ
(
q(Tx, Ty)

)
= 0. (2.13)

Then, by (2.12) and (2.13), equation (1.1) becomes

σ
(
ϕ
(
q(Tx, Ty)

)
,ψ

(
ϕ
(
M(x, y)

)))
=

1
2
(
ψ

(
ϕ
(
M(x, y)

)))
– ϕ

(
q(Tx, Ty)

)

= max

{
x2

16
,

y2

16

}
≥ 0.

Case (iii): Suppose, without loss of generality, that x ∈ [0, 1], y > 1, then we have

ϕ
(
q(x, y)

)
= ϕ

(
max{x, y}) = max

{
x2

4
,

y2

4

}
,

ψ
(
ϕ
(
q(x, y)

))
= max

{
x2

8
,

y2

8

}
, (2.14)

ϕ
(
q(Tx, Ty)

)
= ϕ

(
max

{
x2

4
, 0

})
=

x4

64
. (2.15)

Then, by (2.12) and (2.13), equation (1.1) becomes

σ
(
ϕ
(
q(Tx, Ty)

)
,ψ

(
ϕ
(
M(x, y)

)))
=

1
2
(
ψ

(
ϕ
(
M(x, y)

)))
– ϕ

(
q(Tx, Ty)

)

= max

{
x2

16
,

y2

16

}
≥ 0.

Case (iv): If x, y ∈ X with x = y implies that

ϕ
(
M(x, x)

)
=

x2

4
,

ψ
(
ϕ
(
M(x, x)

))
=

x2

8
,

ϕ
(
q(Tx, Tx)

)
= ϕ(0) = 0. (2.16)

Then equation (1.1) becomes

σ
(
ϕ
(
q(Tx, Tx)

)
,ψ

(
ϕ
(
M(x, x)

)))
=

1
2
(
ψ

(
ϕ
(
M(x, x)

)))
– ϕ

(
q(Tx, Tx)

)

=
x2

16
– 0 ≥ 0.

Therefore, the hypotheses of Theorem 2.1 are satisfied, and hence T has a unique fixed
point. Here σ (0, 0) = 0, then we get that x = 0 is the unique fixed point of T .

We have given the numerical results for the above example in Table 1, and also the con-
vergence behavior of the above iterations is shown in Fig. 1.

Taking q = d in Theorem 2.1, we obtain the following result.
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Table 1 Picard iterations

xn x0 = 0.25 x0 = 0.5 x0 = 0.75 x0 = 1

x1 1.5625e–02 6.2500e–02 1.4062e–01 2.5000e–01
x2 6.1035e–05 9.7656e–04 4.9438e–03 1.5625e–02
x3 9.3132e–10 2.3842e–07 6.1104e–06 6.1035e–05
x4 2.1684e–19 1.4211e–14 9.3343e–12 9.3132e–10
x5 1.1755e–38 5.0487e–29 2.1782e–23 2.1684e–19
x6 3.4545e–77 6.3724e–58 1.1862e–46 1.1755e–38
x7 2.9833e–154 1.0152e–115 3.5174e–93 3.4545e–77
x8 2.2251e–308 2.5765e–231 3.0930e–186 2.9833e–154
x9 0 0 0 2.2251e–308
x10 0 0 0 0
...

...
...

...
...

Figure 1 Convergence behavior

Corollary 2.2 Let T be a self-mapping on (X∗, d). If T satisfies

σ
(
ϕ
(
d(Tx, Ty)

)
,ψ

(
ϕ
(
m(x, y)

))) ≥ 0 for all x, y ∈ X,

where ϕ ∈ 
 and ψ ∈ � . If 0 < ψ(t) < t for t > 0 and either assumption (i) or (ii) defined in
Theorem 2.1 holds, then T possesses a unique fixed point.

In Theorem 2.1 and Corollary 2.2, taking σ (t, s) = λs – t, where λ ∈ [0, 1), then we obtain
the following results.

Corollary 2.3 On (X∗, d, q), the function q forms a ceiling distance of d with q(x, x) = 0 for
all x ∈ X. Assume that T : X → X satisfies

ϕ
(
q(Tx, Ty)

) ≤ λψ
(
ϕ
(
M(x, y)

))
for all x, y ∈ X,

where λ ∈ [0, 1), ϕ ∈ 
, and ψ ∈ � . If 0 < ψ(t) < t for t > 0 and either assumption (i) or (ii)
defined in Theorem 2.1 holds, then T possesses a unique fixed point.

Corollary 2.4 Let T be a self-mapping on (X∗, d). If T satisfies

ϕ
(
d(Tx, Ty)

) ≤ λψ
(
ϕ
(
m(x, y)

))
for all x, y ∈ X,
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where λ ∈ [0, 1), ϕ ∈ 
, and ψ ∈ � . If 0 < ψ(t) < t for t > 0 and either assumption (i) or (ii)
defined in Theorem 2.1 holds, then T possesses a unique fixed point.

Remark 2.5 Suppose that λ ∈ (0, 1) in Corollary 2.3 and Corollary 2.4, and define ψ∗(t) :=
λψ(t). Note that ψ∗ ∈ � , therefore from Corollary 2.3 and Corollary 2.4 we get Theo-
rem 3.2 and Corollary 4 of [18] respectively.

This implies that our results generalize and unify the results of Lakzian and Rhoades
[18].

In Corollary 2.3 and Corollary 2.4, let ψ(t) = st where s ∈ [0, 1), and taking k = λs, we
derived the following results and noted that k ∈ [0, 1).

Corollary 2.6 On (X∗, d, q), the function q forms a ceiling distance of d with q(x, x) = 0 for
all x ∈ X. Assume that T : X → X satisfies

ϕ
(
q(Tx, Ty)

) ≤ kϕ
(
M(x, y)

)
for all x, y ∈ X,

where k ∈ [0, 1), ϕ ∈ 
, and ψ ∈ � . If 0 < ψ(t) < t for t > 0 and either assumption (i) or (ii)
defined in Theorem 2.1 holds, then T possesses a unique fixed point.

Corollary 2.7 Let T be a self-mapping on (X∗, d) satisfying

ϕ
(
d(Tx, Ty)

) ≤ kϕ
(
m(x, y)

)
for all x, y ∈ X,

where k ∈ [0, 1), ϕ ∈ 
, and ψ ∈ � . If 0 < ψ(t) < t for t > 0 and either assumption (i) or (ii)
defined in Theorem 2.1 holds, then T possesses a unique fixed point.

Taking ϕ(t) = t in Corollary 2.6 and Corollary 2.7, we obtain the following results.

Corollary 2.8 On (X∗, d, q), the function q forms a ceiling distance of d with q(x, x) = 0 for
all x ∈ X. Assume that T : X → X satisfies

q(Tx, Ty) ≤ kM(x, y) for all x, y ∈ X,

where k ∈ [0, 1). If 0 < ψ(t) < t for t > 0 and either assumption (i) or (ii) defined in Theo-
rem 2.1 holds, then T possesses a unique fixed point.

Corollary 2.9 Let T be a self-mapping on (X∗, d) satisfying

d(Tx, Ty) ≤ km(x, y) for all x, y ∈ X,

where k ∈ [0, 1). If 0 < ψ(t) < t for t > 0 and either assumption (i) or (ii) defined in Theo-
rem 2.1 holds, then T possesses a unique fixed point.
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3 Best proximity point theorems
Let A, B be a nonempty subset of a metric space (X, d). Suppose that T : A → B is a non-self
mapping. A point z ∈ A is called a best proximity point if

d(z, Tz) = d(A, B) := inf
{

d(x, y) : x ∈ A, y ∈ B
}

.

It is evident that the case d(A, B) = 0 turns the best proximity point problem into the fixed
point problem.

In the field of optimization theory the best proximity point is an interesting topic for
researchers [28–35]. Now let A0 = {x ∈ A : d(x, y) = d(A, B) for some y ∈ B} and B0 = {y ∈
B : d(x, y) = d(A, B) for some x ∈ A}. The necessary and sufficient condition for A0 and B0

to be nonempty is given in [34].

Definition 3.1 On (X∗, d, q), a mapping T : A → B is called a �-weighted proximal con-
traction with respect to σ if there is σ ∈ � such that

d(v, Ty) = d(A, B)

d(u, Tx) = d(A, B)

⎫
⎬

⎭
implies σ

(
ϕ
(
q(u, v)

)
,ψ

(
ϕ
(
q(x, y)

))) ≥ 0 (3.1)

for all x, y, u, v ∈ A, where ϕ ∈ 
 and ψ ∈ � .

Our second main result in this paper is the following.

Theorem 3.2 On (X∗, d, q), assume that A, B are two subsets of X such that A0 is nonempty
and closed. Assume that T : A → B T is a �-weighted proximal contraction with respect
to σ and satisfies:

(i) T(A0) ⊆ B0 ;
(ii) q is a ceiling distance of d such that q(x, x) = 0 for each x ∈ X .

Suppose also that one of the following cases holds:
1. T is continuous;
2. inf{q(x, w) + q(x, y) : x ∈ X} > 0 for every w, y ∈ X with d(w, Tw) �= d(A, B) and

d(y, Tx) = d(A, B).
If 0 < ψ(t) < t for t > 0, then there exists a unique u ∈ A0 such that d(u, Tu) = d(A, B).
Moreover, for each x0 ∈ A0, there exists a sequence (xn) ⊆ A0 converging to x such that
d(xn+1, Txn) = d(A, B) for all n ∈N∪ {0}.

Proof Let x0 ∈ A0, since T(A0) ⊆ B0, there exists x1 ∈ A0 such that d(x1, Tx0) = d(A, B).
Similarly, for x1 ∈ A0 there exists x2 ∈ A0 such that d(x2, Tx1) = d(A, B).

Suppose that there exists n0 ∈N such that q(xn0–1, xn0 ) = 0. By using the ceiling distance
of d, we get xn0 = xn0–1, then we get d(xn0–1, Txn0–1) = d(A, B) i.e. xn0–1 is a best proximity
point of T .

Now suppose that q(xn–1, xn) > 0 for all n ∈ N, and using the �-weighted proximal con-
traction condition, we get

0 ≤ σ
(
ϕ
(
q(xn, xn+1)

)
,ψ

(
ϕ
(
q(xn–1, xn)

)))
(3.2)

< ψ
(
ϕ
(
q(xn–1, xn)

))
– ϕ

(
q(xn, xn+1)

)
,
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ϕ
(
q(xn, xn+1)

)
< ψ

(
ϕ
(
q(xn–1, xn)

))
< ϕ

(
q(xn–1, xn)

)
. (3.3)

Therefore, since ϕ is increasing, we get q(xn, xn+1) < q(xn–1, xn) for all n ∈ N. Thus the se-
quence (q(xn, xn+1)) is decreasing and bounded below by 0. Hence there exists r ≥ 0 such
that

lim
n→+∞ q(xn, xn+1) = r. (3.4)

Now suppose that r > 0, by (3.2) and (3.3) we have ϕ(r) < ϕ(r) as n → +∞, which is a
contradiction. Then we conclude that r = 0. Now we claim that (xn) is a Cauchy sequence,

lim
n,m→+∞ q(xn, xm) = 0. (3.5)

By using the proof of Theorem 2.1, we get

lim
k→+∞

q(xnk , xmk ) = ε (3.6)

and

lim
k→+∞

q(xnk+1 , xmk+1 ) = ε. (3.7)

Using the �-weighted proximal contraction condition and by (3.6) and (3.7) we have

0 ≤ σ
(
ϕ
(
q(xnk+1 , xmk+1 )

)
,ψ

(
ϕ
(
q(xnk , xmk )

)))
,

0 < ψ
(
ϕ
(
q(xnk , xmk )

))
– ϕ

(
q(xnk+1 , xmk+1 )

)
,

ϕ
(
q(xnk+1 , xmk+1 )

)
< ψ

(
ϕ
(
q(xnk , xmk )

))
< ϕ

(
q(xnk , xmk )

)
,

and as k → +∞ we get ψ(ϕ(q(xnk , xmk ))) → ϕ(ε). Then, by condition (iii) of the simulation
function, we conclude that

0 ≤ lim sup
n→+∞

σ
(
ϕ
(
q(xnk+1 , xmk+1 )

)
,ψ

(
ϕ
(
q(xnk , xmk )

)))
< 0,

which is a contradiction. As a result, (3.5) holds. Moreover, by Lemma 1.8 the sequence
(xn) is Cauchy in A0. Regarding the completeness of A0, there exists u ∈ A0 such that xn →
u as n → +∞.

Using the proof of Theorem 2.1, for every ε > 0, there exists Nε ∈ N such that for all
n > Nε we get q(xNε , xn) < ε. Also, by letting ε = 1

k and Nε = nk , we get

lim
k→+∞

q(xnk , u) = 0.

Case (i): Suppose that d(u, Tu) �= d(A, B). Then we have

0 < inf
{

q(x, u) + q(x, y) : x ∈ X
} ≤ inf

{
q(xn, u) + q(xn, xn+1)

}
,

which tends to 0 as n → +∞, which is a contradiction. Accordingly, we find d(u, Tu) =
d(A, B).
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Case (ii): We presume that there exists w ∈ X with d(w, Tw) �= d(A, B) and inf{q(x, w) +
q(x, y) : x ∈ X} = 0, where d(y, Tx) = d(A, B).

Then there exist two sequences (xn) and (yn) such that q(xn, w) + q(xn, yn) → 0 as n →
+∞, where d(yn, Txn) = d(A, B) for all n ∈ N.

That is q(xn, w) → 0 and q(xn, yn) → 0 as n → +∞. Then, by Lemma 1.8, we have yn → w
as n → +∞.

From the hypothesis note that q(xn, xn) = 0 for all n ∈N. Thus q(xn, xn) → 0 as n → +∞.
Consequently, by Lemma 1.8, we get xn → w as n → +∞. From the continuity of T , we
have Txn → Tw as n → +∞.

From d(yn, Txn) = d(A, B) we get d(w, Tw) = d(A, B), which is a contradiction. Therefore
if d(w, Tw) �= d(A, B) and d(y, Tx) = d(A, B), then inf{q(x, w) + q(x, y) : x ∈ X} > 0. Thus by
case(i) we get the desired result.

To prove the uniqueness of the best proximity point, suppose that there exists v ∈ A0

such that d(v, Tv) = d(A, B). From the �-weighted proximal contraction condition we get

0 ≤ σ
(
ϕ
(
q(u, v)

)
,ψ

(
ϕ
(
q(u, v)

)))

< ψ
(
ϕ
(
q(u, v)

))
– ϕ

(
q(u, v)

)
,

ϕ
(
q(u, v)

)
< ψ

(
ϕ
(
q(u, v)

))
< ϕ

(
q(u, v)

)
,

a contradiction. Therefore u ∈ A0 is the unique best proximity point of T .
Also note that q(u, u) = 0. Supposing the contrary, we have q(u, u) > 0, and using the

�-weighted proximal contraction condition, we get

0 ≤ σ
(
ϕ
(
q(u, u)

)
,ψ

(
ϕ
(
q(u, u)

)))

< ψ
(
ϕ
(
q(u, u)

))
– ϕ

(
q(u, u)

)
,

ϕ
(
q(u, u)

)
< ψ

(
ϕ
(
q(u, u)

))
< ϕ

(
q(u, u)

)
,

which implies a contradiction, and hence q(u, u) = 0. �

Example Let X = R
2, with the metric d : X × X →R defined by

d(x, y) =
√

(x1 – x2)2 + (y1 – y2)2

for all x = (x1, y1), y = (x2, y2) ∈ X and the w-distance q defined by

q(x, y) =

⎧
⎨

⎩
‖y‖ if x �= y,

0 if x = y.

Let A = {(0, x) : 0 ≤ x ≤ 1} and B = { 1
8 (1, y) : 0 ≤ y ≤ 1}. Define a mapping T : A → B by

T(0, x) =
1
8

(1, x).

Note that A0 = { 1
8 (0, x) : 0 ≤ x ≤ 1} and B0 = B, and also we have d(A, B) = 1

8 .
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Let us define two functions ψ ,ϕ : [0, +∞) → [0, +∞) by

ϕ(t) =
t2

4

and

ψ(t) =
t
2

.

Now define the simulation function σ : [0, +∞) × [0, +∞) →R such that

σ (t, s) =
s
2

– t.

Suppose that x �= y where x = (0, y1) and y = (0, y2), then we have Tx = 1
8 (1, y1) and Ty =

1
8 (1, y2), also there exist u, v ∈ A0 such that u = 1

8 (0, y1) and v = 1
8 (0, y2). Thus, d(u, Tx) =

d(v, Ty) = d(A, B).

q(x, y) = ‖y‖ = y2,

ϕ
(
q(x, y)

)
=

y2
2

4
,

ψ
(
ϕ
(
q(x, y)

))
=

y2
2

8
, (3.8)

q(u, v) = ‖v‖ =
y2

8
,

ϕ
(
q(u, v)

)
=

y2
2

256
. (3.9)

Then, by (3.8) and (3.9), equation (3.1) becomes

σ
(
ϕ
(
q(u, v)

)
,ψ

(
ϕ
(
q(x, y)

)))
=

1
2
ψ

(
ϕ
(
q(x, y)

))
– ϕ

(
q(u, v)

)

=
y2

2
16

–
y2

2
256

≥ 0.

Also note that if x = y then we get u = v, which implies that σ (0, 0) = 0. Then the hypotheses
of Theorem 3.2 are satisfied, and hence T has a unique best proximity point. So, x = (0, 0)
is a unique best proximity point of T i.e. d((0, 0), 1

8 (1, 0)) = d(A, B) = 1
8 .

Taking q = d in Theorem 3.2, we get the following result.

Corollary 3.3 Let (X∗, d) and A, B be two nonempty subsets of X such that A0 is nonempty
and closed. Suppose that the mapping T : A → B satisfies:

(i) there exists σ ∈ � such that

d(u, Tx) = d(A, B)

d(v, Ty) = d(A, B)

⎫
⎬

⎭
⇒ σ

(
ϕ
(
d(u, v)

)
,ψ

(
ϕ
(
d(x, y)

))) ≥ 0 (3.10)

for all x, y, u, v ∈ A, where ϕ ∈ 
 and ψ ∈ � .
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(ii) T(A0) ⊆ B0;
(iii) Suppose that either

(a) inf{d(x, w) + d(x, y) : x ∈ X} > 0 for every w, y ∈ X with d(w, Tw) �= d(A, B) and
d(y, Tx) = d(A, B)
(or)

(b) T is continuous.
If 0 < ψ(t) < t for t > 0, then there exists unique u ∈ A0 such that d(u, Tu) = d(A, B).
Moreover, for each x0 ∈ A0, there exists a sequence (xn) ⊆ A0 converging to x such that
d(xn+1, Txn) = d(A, B) for all n ∈N∪ {0}.

4 Application to Fredholm integral equations
The solution of a nonlinear Fredholm (Volterra) integral equation has been one of the
hot topics in the last decades [36–40]. In this section, we shall provide a solution for the
nonlinear Fredholm integral equation via our observed fixed point result. We shall con-
sider C[a, b], the metric space of continuous real-valued functions defined on [a, b], and
examine

x(t) = ϕ(t) +
∫ b

a
K

(
t, x(s)

)
ds, (4.1)

where x ∈ C[a, b] with a, b ∈ R such that a < b and ϕ : [a, b] → R, K : [a, b] × R → R are
continuous functions.

Theorem 4.1 Let ψ ,ϕ : [0, +∞) → [0, +∞) with ψ ∈ � and ϕ ∈ 
 such that ψ(t) > ϕ(t)
for all t > 0 and ψ(t) < t for all t ≥ 0. If

∣
∣K(t1, w1)

∣
∣ +

∣
∣K(t2, w2)

∣
∣ ≤ ϕ(|w1| + |w2|)

2(b – a)
–

(|ϕ(t1)| + |ϕ(t2)|)
(b – a)

for all t1, t2 ∈ [a, b] and for all w1, w2 ∈R, then equation (4.1) possesses a unique solution.

Proof Set T : C[a, b] → C[a, b] as

(Tx)(t) = ϕ(t) +
∫ b

a
K

(
t, x(s)

)
ds

for all x ∈ X := C[a, b] with the metric

d(x, y) = sup
t∈[a,b]

∣∣x(t) – y(t)
∣∣

for all x, y ∈ X. Note that the metric space (C[a, b], d) is complete. Now, we define the
function q : X × X → [0, +∞) by

q(x, y) =

⎧
⎨

⎩
supt∈[a,b]|x(t)| + supt∈[a,b]|y(t)| if x �= y,

0 if x = y

for all x, y ∈ X. Clearly, q is a w-distance on X and a ceiling distance of d. Now we have to
indicate that T satisfies the �-weighted contraction condition (1.1). Let σ (t, s) = s

2 – t in
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(1.1) and assume that x, y ∈ X and t1, t2 ∈ [a, b]. Thus we get

∣
∣(Tx)(t1)

∣
∣ +

∣
∣(Ty)(t2)

∣
∣

=
∣
∣∣
∣ϕ(t1) +

∫ b

a
K

(
t1, x(s)

)
ds

∣
∣∣
∣ +

∣
∣∣
∣ϕ(t2) +

∫ b

a
K

(
t2, y(s)

)
ds

∣
∣∣
∣

≤ ∣∣ϕ(t1)
∣∣ +

∣
∣∣∣

∫ b

a
K

(
t1, x(s)

)
ds

∣
∣∣∣ +

∣∣ϕ(t2)
∣∣ +

∣
∣∣∣

∫ b

a
K

(
t2, y(s)

)
ds

∣
∣∣∣

≤ ∣
∣ϕ(t1)

∣
∣ +

∣
∣ϕ(t2)

∣
∣ +

∫ b

a

∣
∣K

(
t1, x(s)

)∣∣ds +
∫ b

a

∣
∣K

(
t2, y(s)

)∣∣ds

=
∣∣ϕ(t1)

∣∣ +
∣∣ϕ(t2)

∣∣ +
∫ b

a

(∣∣K
(
t1, x(s)

)∣∣ +
∣∣K

(
t2, y(s)

)∣∣)ds

≤ ∣∣ϕ(t1)
∣∣ +

∣∣ϕ(t2)
∣∣ +

∫ b

a

(
ϕ(|x(s)| + |y(s)|)

2(b – a)
–

(|ϕ(t1)| + |ϕ(t2)|)
(b – a)

)
ds

≤ ∣∣ϕ(t1)
∣∣ +

∣∣ϕ(t2)
∣∣ +

1
b – a

[∫ b

a

ϕ(q(x, y))
2

ds –
∫ b

a

(∣∣ϕ(t1)
∣∣ +

∣∣ϕ(t2)
∣∣)ds

]

=
ϕ(q(x, y))

2
≤ ϕ(M(x, y))

2
.

From this we have

sup
t∈[a,b]

∣∣(Tx)(t)
∣∣ + sup

t∈[a,b]

∣∣(Ty)(t)
∣∣ ≤ ϕ(M(x, y))

2
,

which implies that

q(Tx, Ty) ≤ ϕ(M(x, y))
2

for all x, y ∈ X with x �= y. Therefore, we get

ϕ
(
q(Tx, Ty)

) ≤ ϕ(ϕ(M(x, y)))
2

≤ ψ(ϕ(M(x, y)))
2

,

ψ(ϕ(M(x, y)))
2

– ϕ
(
q(Tx, Ty)

) ≥ 0,

σ
(
ϕ
(
q(Tx, Ty)

)
,ψ

(
ϕ
(
M(x, y)

))) ≥ 0

for all x, y ∈ X with x �= y. For x = y, it is easy to verify that T satisfies the �-weighted
contraction condition (1.1). Hence T satisfies the �-weighted contraction condition (1.1).
Consequently, T fulfills all hypotheses of Theorem 2.1, then T possesses a unique fixed
point. From this we conclude that there is a unique solution for the nonlinear Fredholm
integral equation (4.1). Hence the proof. �

Example Consider the Fredholm integral equation such that

x(t) =
t
4

+
3
2

∫ 1

0

(
s2t + st2)x(s) ds, (4.2)
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where x ∈ C[0, 1] and satisfies the following condition:

∣
∣s2t1 + st2

1
∣
∣
∣
∣x(s)

∣
∣ +

∣
∣s2t2 + st2

2
∣
∣
∣
∣y(s)

∣
∣ ≤ (|x(s)| + |y(s)|)

12
–

(|t1| + |t2|)
6

for all t1, t2 ∈ [0, 1] and for all w1, w2 ∈R.
Now let X = C[0, 1] with the metric d : X × X → [0, +∞) given by

d(x, y) = sup
t∈[0,1]

∣∣x(t) – y(t)
∣∣ (4.3)

for all x, y ∈ X. It is clear that (X, d) is a complete metric space. Now, we define the function
q : X × X → [0, +∞) by

q(x, y) =

⎧
⎨

⎩
supt∈[0,1]|x(t)| + supt∈[0,1]|y(t)| if x �= y,

0 if x = y
(4.4)

for all x, y ∈ X. Clearly, q is a w-distance on X and a ceiling distance of d. Now, define a
mapping T : X → X by

(Tx)(t) =
t
4

+
3
2

∫ 1

0

(
s2t + st2)x(s) ds

for all x ∈ X. Next we define two functions ψ ,ϕ : [0, +∞) → [0, +∞) by

ψ(t) =
t
2

and

ϕ(t) =
t
4

.

It is easy to verify that ϕ ∈ 
 and ψ ∈ � . Note that ψ(t) < t for all t > 0 and ψ(t) > ϕ(t) for
all t > 0.

∣
∣(Tx)(t1)

∣
∣ +

∣
∣(Ty)(t2)

∣
∣

=
∣∣
∣∣
t1

4
+

3
2

∫ 1

0

(
s2t1 + st2

1
)
x(s) ds

∣∣
∣∣ +

∣∣
∣∣
t2

4
+

3
2

∫ 1

0

(
s2t2 + st2

2
)
y(s) ds

∣∣
∣∣

≤
∣
∣∣
∣
t1

4

∣
∣∣
∣ +

3
2

∫ 1

0

∣∣s2t1 + st2
1
∣∣∣∣x(s)

∣∣ds +
∣
∣∣
∣
t2

4

∣
∣∣
∣ +

3
2

∫ 1

0

∣∣s2t2 + st2
2
∣∣∣∣y(s)

∣∣ds

≤
∣∣
∣∣
t1

4

∣∣
∣∣ +

∣∣
∣∣
t2

4

∣∣
∣∣ +

3
2

∫ 1

0

(∣∣s2t1 + st2
1
∣
∣
∣
∣x(s)

∣
∣ +

∣
∣s2t2 + st2

2
∣
∣
∣
∣y(s)

∣
∣)ds

≤
∣
∣∣
∣
t1

4

∣
∣∣
∣ +

∣
∣∣
∣
t2

4

∣
∣∣
∣ +

3
2

∫ 1

0

(
(|x(s)| + |y(s)|)

12
–

(|t1| + |t2|)
6

)
ds

≤
∣∣
∣∣
t1

4

∣∣
∣∣ +

∣∣
∣∣
t2

4

∣∣
∣∣ +

∫ 1

0

ϕ(q(x, y))
2

ds –
∫ 1

0

(|t1| + |t2|)
4

ds

=
ϕ(q(x, y))

2
.
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From this we get

sup
t∈[a,b]

∣∣(Tx)(t)
∣∣ + sup

t∈[a,b]

∣∣(Ty)(t)
∣∣ ≤ ϕ(q(x, y))

2
.

Then we have

q(Tx, Ty) ≤ ϕ(q(x, y))
2

for all x, y ∈ X with x �= y. Therefore, we get

ϕ
(
q(Tx, Ty)

) ≤ ϕ(ϕ(q(x, y)))
2

≤ ψ(ϕ(q(x, y)))
2

,

ψ(ϕ(q(x, y)))
2

– ϕ
(
q(Tx, Ty)

) ≥ 0,

σ
(
ϕ
(
q(Tx, Ty)

)
,ψ

(
ϕ
(
q(x, y)

))) ≥ 0

for all x, y ∈ X with x �= y. For x = y, it is easy to verify that T satisfies the �-weighted
contraction condition (1.1). Hence T satisfies the �-weighted contraction condition (1.1),
therefore by Theorem 2.1 T has a unique fixed point. Thus, we conclude that equation (4.2)
possesses a unique solution.

5 Application to the problem of buckling of a rod
In this section, we study the solution for the buckling of a rod problem as an application
of our derived fixed point result. For this consider a homogeneous thin rod whose ends
are pinned, the left end is fixed, and the right end is free to move along the x axis. The rod
coincides with the portion of the x axis between 0 and l when it is unloaded. Under a com-
pressive load P a possible state for the rod is that of pure compression, but for sufficiently
large P transverse deflections occur. Assume that the buckling occurs in the x – y plane.

Buckling of a rod leads to the following boundary value problem:

u′′ + αu = 0, 0 < S < l; u(0) = u(l) = 0. (5.1)

Here α = P
EI , where the constants E and I are respectively Young’s modulus and the mo-

ment of inertia. The problem can be translated into the Fredholm integral equation

u(x) = α

∫ l

0
G(x, ξ )u(ξ ) dξ , (5.2)

where G(x, ξ ) is the Green’s function associated with (5.1) given by

G(x, ξ ) =

⎧
⎨

⎩

(l–ξ )x
l , 0 ≤ x < ξ ,

(l–x)ξ
l , ξ < x ≤ l.

(5.3)

Let X = C[0, l] be a set of all real-valued continuous functions on [0, l] with the metric

d(x, y) = sup
t∈[a,b]

∣∣x(t) – y(t)
∣∣
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for all x, y ∈ X. Note that the metric space (C[a, b], d) is complete and the w-distance q :
X × X → [0, +∞) is defined as follows:

q(x, y) =

⎧
⎨

⎩
supt∈[a,b]|x(t)| + supt∈[a,b]|y(t)| if x �= y,

0 if x = y

for all x, y ∈ X.

Theorem 5.1 The problem of buckling of a rod leads to the second order boundary value
problem (5.1). Consider the mapping T : X → X defined by

Tu(x) = α

∫ l

0
G(x, ξ )u(ξ ) dξ , (5.4)

where G(x, ξ ) is a Green’s function (5.3) related to (5.1). For αl2 < 2, there exists a unique
fixed point for the Fredholm integral equation (5.4) which provides a solution for (5.1).

Proof It is clear that a map T : X → X is well defined. Define two functions ψ : [0, +∞) →
[0, +∞) and ϕ : [0, +∞) → [0, +∞) by ψ(t) = t

2 and ϕ(t) = t. One can easily verify that
ϕ ∈ 
 and ψ ∈ � . Also ψ(t) < t for all t > 0.

Let σ : [0, +∞) × [0, +∞) →R defined by σ (t, s) = s
2 – t. If u, v ∈ X, then we have

∣
∣Tu(x)

∣
∣ +

∣
∣Tv(x)

∣
∣ ≤ α

∫ l

0
G(x, ξ )

∣
∣u(ξ )

∣
∣ +

∣
∣v(ξ )

∣
∣dξ

≤ αq(u, v)
∫ l

0
G(x, ξ ) dξ ,

q(Tu, Tv) ≤ αq(u, v)
l2

8
<

1
4

q(u, v),

ϕ
(
q(Tu, Tv)

) ≤ 1
4
ϕ
(
q(u, v)

)
,

ϕ
(
q(Tu, Tv)

) ≤ 1
2
ψ

(
ϕ
(
q(u, v)

))
,

1
2
ψ

(
ϕ
(
q(u, v)

))
– ϕ

(
q(Tu, Tv)

) ≥ 0,

σ
(
ϕ
(
q(Tu, Tv)

)
,ψ

(
ϕ
(
q(u, v)

))) ≥ 0,

where ϕ(t) = t, ψ(t) = t
2 , and σ (t, s) = s

2 .
T satisfies the hypothesis of Theorem 2.1. Therefore, for αl2 < 2, equation (5.1) or (5.4)

has one and only one solution. �
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