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Abstract
Some new integral inequalities for strongly (α,h –m)-convex functions via
generalized Riemann–Liouville fractional integrals are established. The outcomes of
this paper provide refinements of some fractional integral inequalities for strongly
convex, stronglym-convex, strongly (α,m)-convex, and strongly (h –m)-convex
functions. Also, the refinements of error estimations of these inequalities are obtained
by using two fractional integral identities. Moreover, using a parameter substitution
and a constant multiplier, k-fractional versions of established inequalities are also
given.
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1 Introduction
Convex function has become an essential notion in the subjects of geometric function
theory, mathematical statistics, pure and applied mathematics, physics, mechanics and
economics. The generalizations, extensions, and refinements of convex functions are also
useful to study classical results for new kinds of functions. The majority of renowned in-
equalities and properties from various disciplines of mathematics are available in the lit-
erature with detailed applications of convexity theory.

Let I ⊆R be an interval in R. Then a real-valued function f : I →R is said to be convex
function if the following inequality holds:

f
(
at + (1 – t)b

) ≤ tf (a) + (1 – t)f (b), (1.1)

for all a, b ∈ I and t ∈ [0, 1].
The well-known Hadamard inequality describes the convex function in an equivalent

way.
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Let f : I →R be a convex function and a, b ∈ I where a < b. Then the following inequality
holds:

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (ξ ) dξ ≤ f (a) + f (b)

2
. (1.2)

If the function f is concave on I , then the inequality in (1.2) holds in reverse order. This
inequality provides lower and upper estimates of the integral mean value of a convex
function. The interest of many mathematicians was evoked by this inequality, and sev-
eral generalizations, extensions, and variants of this inequality have been obtained. In the
last two decades it has been remarkably studied, and a lot of papers have been published,
see [1, 11, 13, 14, 17, 24, 29–34] and the references therein. Fractional integral inequalities
play an important role in mathematics as well as in other areas of mathematics because
of their wide applications to establishing the uniqueness of solutions. These solutions can
be obtained for certain fractional partial differential equations.

The main objective of this research is to obtain a few versions of the Hadamard in-
equality for generalized Riemann–Liouville fractional integrals. To achieve this goal, we
employ the definition of strongly (α, h – m) convex functions. The refinements of their
error estimations are also established. Taking into account parameter substitution and a
constant multiplier, k-fractional versions of Hadamard inequalities and their estimations
for strongly (α, h – m)-convex function are proved. In the course of this study, results ob-
tained are a unification and generalization of the comparable results in the literature on
Hadamard inequalities. Next, we give the definition of strongly (α, h – m)-convex function
as follows.

Definition 1 ([35]) Let J ⊆ R be an interval containing (0, 1), and let h : J → R be a non-
negative function. A function f : [0, b] → R is called strongly (α, h – m)-convex function
with modulus λ ≥ 0, if f is nonnegative and for all x, y ∈ [0, b], t ∈ (0, 1), m ∈ (0, 1], we have
the inequality

f
(
xt + m(1 – t)y

) ≤ h
(
tα

)
f (x) + mh

(
1 – tα

)
f (y) – mλh

(
tα

)
h
(
1 – tα

)|y – x|2. (1.3)

Fractional calculus is the study of derivatives and integrals of fractional order. Its his-
tory is nearly as old as the history of classical calculus. Nevertheless, it has gained the
popularity and importance in extensive fields of science and engineering. This field has
been widely adopted by many scholars. Recently, motivated by the classical Riemann–
Liouville fractional integral operators, researchers have defined different integral opera-
tors, see [4, 12, 25]. The Riemann–Liouville fractional integral operator is defined as fol-
lows.

Definition 2 Let f ∈ L1[a, b]. Then left-sided and right-sided Riemann–Liouville frac-
tional integrals of a function f of order μ, where �(μ) > 0, are defined by

Iμ

a+ f (x) =
1

�(μ)

∫ x

a
(x – t)μ–1f (t) dt, x > a, (1.4)

and

Iμ

b– f (x) =
1

�(μ)

∫ b

x
(t – x)μ–1f (t) dt, x < b. (1.5)



Farid et al. Advances in Difference Equations        (2021) 2021:392 Page 3 of 25

Sarikaya et al. [27, 28] elegantly obtained the following fractional integral inequalities of
Hadamard type by using the Riemann–Liouville fractional integrals.

Theorem 1 ([27]) Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈ L1[a, b].
If f is a convex function on [a, b], then the following fractional integral inequality holds:

f
(

a + b
2

)
≤ �(μ + 1)

2(b – a)μ
[
Iμ

a+ f (b) + Iμ

b– f (a)
] ≤ f (a) + f (b)

2
(1.6)

with μ > 0.

Theorem 2 ([28]) Under the assumptions of Theorem 1, the following fractional integral
inequality holds:

f
(

a + b
2

)
≤ 2μ–1�(μ + 1)

(b – a)μ
[
Iμ

( a+b
2 )+ f (b) + Iμ

( a+b
2 )– f (a)

] ≤ f (a) + f (b)
2

(1.7)

with μ > 0.

Theorem 3 ([27]) Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If |f ′|
is convex on [a, b], then the following fractional integral inequality holds:

∣
∣∣
∣
f (a) + f (b)

2
–

�(μ + 1)
2(b – a)μ

[
Iμ

a+ f (b) + Iμ

b– f (a)
]
∣
∣∣
∣ ≤ b – a

2(μ + 1)

(
1 –

1
2μ

)
[∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣].

The definition of k-fractional integral is stated as follows.

Definition 3 ([23]) Let f ∈ L1[a, b]. Then k-fractional Riemann–Liouville integrals of or-
der μ, where �(μ) > 0, k > 0, are defined by

kIμ

a+ f (x) =
1

k�k(μ)

∫ x

a
(x – t)

μ
k –1f (t) dt, x > a, (1.8)

and

kIμ

b– f (x) =
1

k�k(μ)

∫ b

x
(t – x)

μ
k –1f (t) dt, x < b, (1.9)

where �k(·) is defined as follows:

�k(μ) =
∫ ∞

0
tμ–1e– tk

k dt, �(μ) > 0.

The definition of generalized fractional integrals by a monotonically increasing function
is given as follows.

Definition 4 ([15]) Let f : [a, b] → R be an integrable function. Also let ψ be an increas-
ing and positive monotone function on (a, b] having a continuous derivative ψ ′ on (a, b).
The left-sided and right-sided fractional integrals of a function f with respect to another
function ψ on [a, b] of order μ, where �(μ) > 0, are defined by

Iμ,ψ
a+ f (x) =

1
�(μ)

∫ x

a
ψ ′(t)

(
ψ(x) – ψ(t)

)μ–1f (t) dt, x > a, (1.10)
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Iμ,ψ
b– f (x) =

1
�(μ)

∫ b

x
ψ ′(t)

(
ψ(t) – ψ(x)

)μ–1f (t) dt, x < b. (1.11)

The k-analogue of generalized fractional integrals is defined as follows.

Definition 5 ([2]) Let f : [a, b] → R be an integrable function. Also, let ψ be an increas-
ing and positive monotone function on (a, b] having a continuous derivative ψ ′ on (a, b).
The left-sided and right-sided fractional integrals of a function f with respect to another
function ψ on [a, b] of order μ, where �(μ) > 0, k > 0, are defined by

kIμ,ψ
a+ f (x) =

1
k�k(μ)

∫ x

a
ψ ′(t)

(
ψ(x) – ψ(t)

)μ
k –1f (t) dt, x > a, (1.12)

kIμ,ψ
b– f (x) =

1
k�k(μ)

∫ b

x
ψ ′(t)

(
ψ(t) – ψ(x)

)μ
k –1f (t) dt, x < b. (1.13)

Using the fact �k(μ) = k
μ
k –1�( μ

k ) in (1.10) and (1.11) after replacing μ with μ

k , we get

k
–μ
k I

μ
k ,ψ

a+ f (x) = kIμ,ψ
a+ f (x), (1.14)

k
–μ
k Iμ,ψ

b– f (x) = kIμ,ψ
b– f (x). (1.15)

For more details on the above defined fractional integrals, we refer the readers to see
[21, 26]. In the upcoming section, Hadamard inequalities for strongly (α, h – m)-convex
function via (1.10) and (1.11) are derived. Also, we give refinements of many fractional
versions of Hadamard inequalities proved in [3, 5–10, 16, 18, 19, 27, 28]. In Sect. 3, by
using two different fractional integral identities, error bounds of the established inequali-
ties are given. Section 4 contains k-fractional versions of Hadamard inequalities and their
estimations for strongly (α, h – m)-convex function.

2 Fractional versions of Hadamard inequalities for strongly (α, h – m)-convex
function

Theorem 4 Let f : [a, b] →R be a positive function with 0 ≤ a < mb and f ∈ L1[a, b]. Also,
suppose that f is a strongly (α, h – m)-convex function on [a, b] with modulus c ≥ 0, ψ is
a positive strictly increasing function having continuous derivative ψ ′ on (a, b). If [a, b] ⊂
Range(ψ) and (α, m) ∈ (0, 1]2, then the following fractional integral inequality holds:

f
(

a + mb
2

)
+

cmh( 1
2α )h( 2α–1

2α )
(μ + 1)(μ + 2)

[
μ(μ + 1)(b – a)2 + 2

(
a
m

– mb
)2

(2.1)

+ 2μ(b – a)
(

a
m

– mb
)]

≤ �(μ + 1)
(mb – a)μ

[
h
(

1
2α

)
Iμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(mb)

)

+ mμ+1h
(

2α – 1
2α

)
Iμ,ψ
ψ–1(b)– (f ◦ ψ)

(
ψ–1

(
a
m

))]

≤ μ

[
h
(

1
2α

)
f (a) + mh

(
2α – 1

2α

)
f (b)

]∫ 1

0
h
(
tα

)
tμ–1 dt

+ mμ

[
h
(

1
2α

)
f (b) + mh

(
2α – 1

2α

)
f
(

a
m2

)]∫ 1

0
tμ–1h

(
1 – tα

)
dt
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– cmμ

[
h
(

1
2α

)
(b – a)2 + mh

(
2α – 1

2α

)(
b –

a
m2

)2]∫ 1

0
tμ–1h

(
tα

)
h
(
1 – tα

)
dt

with μ > 0.

Proof Since the function f : [a, b] → R is a strongly (α, h – m)-convex function, for x, y ∈
[a, b], we have

f
(

x + my
2

)
≤ h

(
1

2α

)
f (x) + mh

(
2α – 1

2α

)
f (y) – cmh

(
1

2α

)
h
(

2α – 1
2α

)
|y – x|2. (2.2)

By setting x = at + m(1 – t)b, y = a
m (1 – t) + bt and integrating the resulting inequality over

the interval [0, 1] after multiplying by tμ–1, we get

1
μ

f
(

a + mb
2

)
≤ h

(
1

2α

)∫ 1

0
f
(
at + m(1 – t)b

)
tμ–1 dt (2.3)

+ mh
(

2α – 1
2α

)∫ 1

0
f
(

a
m

(1 – t) + bt
)

tμ–1 dt –
cmh( 1

2α )h( 2α–1
2α )

μ(μ + 1)(μ + 2)

×
[
μ(μ + 1)(b – a)2 + 2

(
a
m

– mb
)2

+ 2μ(b – a)
(

a
m

– mb
)]

.

Now, let u ∈ [a, b] such that ψ(u) = at + m(1 – t)b, that is, t = mb–ψ(u)
mb–a , and let v ∈ [a, b]

such that ψ(v) = a
m (1 – t) + bt, that is, t = ψ(v)– a

m
b– a

m
in (2.3). Then, by applying Definition 4

and multiplying by μ, we get the following inequality:

f
(

a + mb
2

)
≤ �(μ + 1)

(mb – a)μ

[
h
(

1
2α

)
Iμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(mb)

)

+ mμ+1h
(

2α – 1
2α

)
Iμ,ψ
ψ–1(b)– (f ◦ ψ)

(
ψ–1

(
a
m

))]

–
cmh( 1

2α )h( 2α–1
2α )

(μ + 1)(μ + 2)

[
μ(μ + 1)(b – a)2

+ 2
(

a
m

– mb
)2

+ 2μ(b – a)
(

a
m

– mb
)]

.

Hence the first inequality of (2.1) is obtained. On the other hand, f is a strongly (α, h – m)-
convex function with modulus c, we have the following inequality:

h
(

1
2α

)
f
(
at + m(1 – t)b

)
+ mh

(
2α – 1

2α

)
f
(

a
m

(1 – t) + bt
)

(2.4)

≤ h
(
tα

)
[

h
(

1
2α

)
f (a) + mh

(
2α – 1

2α

)
f (b)

]

+ mh
(
1 – tα

)
[

h
(

1
2α

)
f (b) + mh

(
2α – 1

2α

)
f
(

a
m2

)]

– cmh
(
tα

)
h
(
1 – tα

)
[

h
(

1
2α

)
(b – a)2 + mh

(
2α – 1

2α

)(
b –

a
m2

)2]
.
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Multiplying inequality (2.4) by tμ–1 and then integrating over the interval [0, 1], we get

h
(

1
2α

)∫ 1

0
f
(
ta + m(1 – t)b

)
tμ–1 dt (2.5)

+ mh
(

2α – 1
2α

)∫ 1

0
f
(

a
m

(1 – t) + tb
)

tμ–1 dt

≤
[

h
(

1
2α

)
f (a) + mh

(
2α – 1

2α

)
f (b)

]∫ 1

0
h(tα)tμ–1 dt

+
[

h
(

1
2α

)
f (b) + mh

(
2α – 1

2α

)
f
(

a
m2

)]∫ 1

0
tμ–1h(1 – tα) dt

– cm
[

h
(

1
2α

)
(b – a)2 + mh

(
2α – 1

2α

)(
b –

a
m2

)2]∫ 1

0
h(tα)h(1 – tα)tμ–1 dt.

Using substitutions in (2.5) as considered in (2.3) leads to the second inequality of (2.1). �

Remark 1
(i) If α = m = 1 and h(t) = t in (2.1), we get the inequality stated in [10, Corollary 1].

(ii) If α = 1, c = 0 and take ψ as the identity function in (2.1), we get the inequality
stated in [6, Corollary 2.2].

(iii) If α = m = 1, c = 0, h(t) = t and take ψ as the identity function in (2.1), we get
Theorem 1.

(iv) If α = μ = m = 1, h(t) = t, c = 0 and take ψ as the identity function in (2.1), we get
Hadamard inequality.

(v) If α = m = 1, c = 0, and h(t) = t in (2.1), we get the inequality stated in [18,
Theorem 2.1].

(vi) If α = μ = m = 1, h(t) = t and take ψ as the identity function in (2.1), we get the
inequality stated in [19, Theorem 6].

(vii) If α = 1, h(t) = t and take ψ as the identity function in (2.1), we get the inequality
stated in [5, Theorem 6].

(viii) If α = 1, h(t) = t, c = 0 and take ψ as the identity function in (2.1), we get the
inequality stated in [8, Theorem 2.1].

(ix) If h(t) = t in (2.1), we get the inequality stated in [9, Corollary 2].

Corollary 1 If α = 1 in (2.1), then the following inequality holds for strongly (h – m)-convex
function:

f
(

a + mb
2

)
+

cmh2( 1
2 )

(μ + 1)(μ + 2)

[
μ(μ + 1)(b – a)2 + 2

(
a
m

– mb
)2

+ 2μ(b – a)
(

a
m

– mb
)]

≤ h( 1
2 )�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(mb)

)
+ mμ+1Iμ,ψ

ψ–1(b)– (f ◦ ψ)
(

ψ–1
(

a
m

))]

≤ μh
(

1
2

)
[
f (a) + mf (b)

] ∫ 1

0
h(t)tμ–1 dt

+ mμh
(

1
2

)[
f (b) + mf

(
a

m2

)]∫ 1

0
h(1 – t)tμ–1 dt
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– cmμh
(

1
2

)[
(b – a)2 + m

(
b –

a
m2

)2]∫ 1

0
tμ–1h(t)h(1 – t) dt,

and if c = 0, then the result for (h – m)-convex function can be obtained.

Corollary 2 If α = 1 and h(t) = t in (2.1), then the following inequality for strongly m-
convex function holds:

f
(

a + mb
2

)
+

cm
4(μ + 1)(μ + 2)

[
μ(μ + 1)(b – a)2 + 2

(
a
m

– mb
)2

+ 2μ(b – a)
(

a
m

– mb
)]

≤ �(μ + 1)
2(mb – a)μ

[
Iμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(mb)

)
+ mμ+1Iμ,ψ

ψ–1(b)– (f ◦ ψ)
(

ψ–1
(

a
m

))]

≤ μf (a)
2(μ + 1)

+
mf (b)

2
+

m2f ( a
m2 )

(μ + 1)
–

cmμ[(b – a)2 + m(b – a
m2 )2]

2(μ + 1)(μ + 2)
,

and if c = 0 in the above inequality, then the result for m-convex function can be obtained.

Remark 2 For c > 0, all the results stated in the above corollaries and remark provide the
refinements.

Theorem 5 Under the assumptions of Theorem 4, the following fractional integral inequal-
ity holds:

f
(

a + mb
2

)
+

cmh( 1
2α )h( 2α–1

2α )
4(μ + 1)(μ + 2)

[
μ(μ + 1)(b – a)2 +

(
a
m

– mb
)2(

μ2 + 5μ + 8
)

(2.6)

+ 2μ(b – a)
(

a
m

– mb
)

(μ + 3)
]

≤ 2μ�(μ + 1)
(mb – a)μ

[
h
(

1
2α

)
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)

+ mμ+1h
(

2α – 1
2α

)
Iμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]

≤ μ

[
h
(

1
2α

)
f (a) + mh

(
2α – 1

2α

)
f (b)

]∫ 1

0
h
(

tα

2α

)
tμ–1 dt

+ μm
[

h
(

1
2α

)
f (b) + mh

(
2α – 1

2α

)
f
(

a
m2

)]∫ 1

0
h
(

2α – tα

2α

)
tμ–1 dt

– μcm
[

h
(

1
2α

)
(b – a)2 + mh

(
2α – 1

2α

)(
b –

a
m2

)2]

×
∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
tμ–1 dt

with μ > 0.
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Proof Let x = at
2 + m( 2–t

2 )b, y = a
m ( 2–t

2 ) + bt
2 in (2.2), and integrating the resulting inequality

over [0, 1] after multiplying by tμ–1, we get

1
μ

f
(

a + mb
2

)
≤ h

(
1

2α

)∫ 1

0
f
(

at
2

+ m
(

2 – t
2

)
b
)

tμ–1 dt (2.7)

+ mh
(

2α – 1
2α

)∫ 1

0
f
(

a
m

(
2 – t

2

)
+

bt
2

)
tμ–1 dt

–
cmh( 1

2α )h( 2α–1
2α )

4μ(μ + 1)(μ + 2)

[
μ(μ + 1)(b – a)2

+
(

a
m

– mb
)2(

μ2 + 5μ + 8
)

+ 2μ(b – a)
(

a
m

– mb
)

(μ + 3)
]

.

Let u ∈ [a, b] such that ψ(u) = at
2 + m( 2–t

2 )b, that is, t = 2(mb–ψ(u))
mb–a and v ∈ [a, b] such that

ψ(v) = a
m ( 2–t

2 ) + bt
2 , that is, t = 2(ψ(v)– a

m )
b– a

m
in (2.7), then by applying Definition 4 and multi-

plying by μ, we get the following inequality:

f
(

a + mb
2

)
≤ 2μ�(μ + 1)

(mb – a)μ

[
h
(

1
2α

)
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)

+ mμ+1h
(

2α – 1
2α

)
Iμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]

–
cmh( 1

2α )h( 2α–1
2α )

4(μ + 1)(μ + 2)

[
μ(μ + 1)(b – a)2

+
(

a
m

– mb
)2(

μ2 + 5μ + 8
)

+ 2μ(b – a)
(

a
m

– mb
)

(μ + 3)
]

.

Hence the first inequality of (2.6) is obtained. Since f is a strongly (α, h – m)-convex func-
tion on [a, b] with modulus c, we have the following inequality:

h
(

1
2α

)
f
(

at
2

+ m
(

2 – t
2

)
b
)

+ mh
(

2α – 1
2α

)
f
(

a
m

(
2 – t

2

)
+

bt
2

)
(2.8)

≤ h
(

tα

2α

)[
h
(

1
2α

)
f (a) + mh

(
2α – 1

2α

)
f (b)

]
+ mh

(
2α – tα

2α

)[
h
(

1
2α

)
f (b)

+ mh
(

2α – 1
2α

)
f
(

a
m2

)]
– cmh

(
tα

2α

)
h
(

2α – tα

2α

)[
(b – a)2 + m

(
b –

a
m2

)2]
.

Multiplying (2.8) by tμ–1 and then integrating over [0, 1], we get

h
(

1
2α

)∫ 1

0
f
(

at
2

+ m
(

2 – t
2

)
b
)

tμ–1 dt (2.9)

+ mh
(

2α – 1
2α

)∫ 1

0
f
(

a
m

(
2 – t

2

)
+

bt
2

)
tμ–1 dt

≤
[

h
(

1
2α

)
f (a) + mh

(
2α – 1

2α

)
f (b)

]∫ 1

0
h
(

tα

2α

)
tμ–1 dt + m

(
h
(

1
2α

)
f (b)
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+ mh
(

2α – 1
2α

)
f
(

a
m2

))∫ 1

0
h
(

2α – tα

2α

)
tμ–1 dt – cm

[
(b – a)2 + m

(
b –

a
m2

)2]

×
∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
tμ–1 dt.

Using the substitutions in (2.9) as considered in (2.7) leads to the second inequality of
(2.6). �

Remark 3
(i) If α = m = 1 and h(t) = t in (2.6), we get the inequality stated in [10, Corollary 4].

(ii) If α = m = 1, h(t) = t, c = 0 and take ψ as the identity function in (2.6), we get
Theorem 2.

(iii) If α = μ = m = 1, h(t) = t, c = 0 and take ψ as the identity function in (2.6), we get
the Hadamard inequality.

(iv) If h(t) = t in (2.6), we get the inequality stated in [9, Corollary 5].
(v) If α = 1, h(t) = t and take ψ as the identity function in (2.6), we get the inequality

stated in [5, Theorem 7].
(vi) If α = 1, h(t) = t, c = 0 and take ψ as the identity function in (2.6), we get the

inequality stated in [7, Theorem 2.1].
(vii) If α = μ = m = 1, h(t) = t and ψ as the identity function in (2.6), we get the

inequality stated in [19, Theorem 6].
(viii) If α = m = 1, c = 0, and h(t) = t in (2.6), we get the inequality stated in [22,

Lemma 1].

Corollary 3 If α = 1 in (2.6), then the following inequality holds for strongly (h – m)-convex
function:

f
(

a + mb
2

)
+

cmh2( 1
2 )

4(μ + 1)(μ + 2)

[
μ(μ + 1)(b – a)2 +

(
a
m

– mb
)2(

μ2 + 5μ + 8
)

+ 2μ(b – a)
(

a
m

– mb
)

(μ + 3)
]

≤ 2μh( 1
2 )�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)

+ mμ+1Iμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]

≤ μh
(

1
2

)
[
f (a) + mf (b)

] ∫ 1

0
h
(

t
2

)
tμ–1 dt

+ μmh
(

1
2

)[
f (b) + mf

(
a

m2

)]∫ 1

0
h
(

2 – t
2

)
tμ–1 dt

– μcmh
(

1
2

)[
(b – a)2 + m

(
b –

a
m2

)2]∫ 1

0
h
(

t
2

)
h
(

2 – t
2

)
tμ–1 dt.

If c = 0 in the above inequality, then the result for (h – m)-convex function can be obtained.
Also, taking ψ as the identity function in the above inequality, the result for strongly (h–m)-
convex function via Riemann–Liouville fractional integrals can be obtained.
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Corollary 4 If α = 1 and h(t) = t in (2.6), then the following inequality holds for strongly
m-convex function:

f
(

a + mb
2

)
+

cm
16(μ + 1)(μ + 2)

[
μ(μ + 1)(b – a)2 +

(
a
m

– mb
)2(

μ2 + 5μ + 8
)

+ 2μ(b – a)
(

a
m

– mb
)

(μ + 3)
]

≤ 2μ–1�(μ + 1)
(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)

+ mμ+1Iμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]

≤ μf (a)
4(μ + 1)

+
mf (b)

2
+

m2f ( a
m2 )

4(μ + 1)
–

μcm(μ + 3)
8(μ + 1)(μ + 2)

[
(b – a)2 + m

(
b –

a
m2

)2]
.

If c = 0 in the above inequality, then the result for m-convex function can be obtained.

Remark 4 For c > 0, all the results stated in the above corollaries and remark provide the
refinements.

3 Error estimations of Hadamard inequalities for strongly (α, h – m)-convex
functions

This section is concerned with the error estimations of Hadamard inequalities for strongly
(α, h – m)-convex function using integral operators (1.10) and (1.11). The consequences
of these inequalities reflect the refinements of error bounds of some fractional integral
inequalities for convex, m-convex, (α, m)-convex, and (h – m)-convex functions. We need
the following identity to prove our next theorem.

Lemma 1 ([9]) Let a < b and f : [a, b] → R be a differentiable mapping on (a, b). Also,
suppose that f ′ ∈ L[a, b], ψ is a positive strictly increasing function having a continuous
derivative ψ ′ on (a, b). If [a, b] ⊂ Range(ψ), then the following identity holds for generalized
fractional integral operators:

f (a) + f (b)
2

–
�(μ + 1)
2(b – a)μ

[
Iμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(b)

)
+ Iμ,ψ

ψ–1(b)– (f ◦ ψ)(ψ–1(a)
]

(3.1)

=
b – a

2

∫ 1

0

(
(1 – t)μ – tμ

)
f ′(ta + (1 – t)b

)
dt.

Theorem 6 Let f : [a, b] → R be a differentiable mapping on (a, b) with 0 ≤ a < b. Also
suppose that |f ′| is strongly (α, h – m)-convex with modulus c ≥ 0, ψ is a positive strictly
increasing function having continuous derivative ψ ′ on (a, b). If [a, b] ⊂ Range(ψ) and
(α, m) ∈ (0, 1]2, then the following fractional integral inequality holds:

∣∣
∣∣
f (a) + f (b)

2
–

�(μ + 1)
2(b – a)μ

[
Iμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(b)

)
+ Iμ,ψ

ψ–1(b)– (f ◦ ψ)
(
ψ–1(a)

)]
∣∣
∣∣ (3.2)

≤ b – a
2

[∣∣f ′(a)
∣∣
(∫ 1

2

0
h
(
tα

)(
(1 – t)μ – tμ

)
dt +

∫ 1

1
2

h
(
tα

)(
tμ – (1 – t)μ

)
dt

)
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+ m
∣∣
∣∣f

′
(

b
m

)∣∣
∣∣

(∫ 1
2

0
h
(
1 – tα

)(
(1 – t)μ – tμ

)
dt +

∫ 1

1
2

h
(
1 – tα

)(
tμ – (1 – t)μ

)
dt

)

– cm
(

b
m

– a
)2(∫ 1

2

0
h
(
tα

)
h
(
1 – tα

)(
(1 – t)μ – tμ

))
dt

+
∫ 1

1
2

h(t)h(1 – t)
(
tμ – (1 – t)μ

)
dt)

]

with μ > 0.

Proof From Lemma 1, it follows that

∣
∣∣
∣
f (a) + f (b)

2
–

�(μ + 1)
2(b – a)μ

[
Iμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(b)

)
+ Iμ,ψ

ψ–1(b)– (f ◦ ψ)
(
ψ–1(b)

)]
∣
∣∣
∣ (3.3)

≤ b – a
2

∫ 1

0

∣
∣(1 – t)μ – tμ

∣
∣
∣
∣f ′(at + (1 – t)b

)∣∣dt.

By using the strong (α, h – m)-convexity of |f ′|, we have

∣
∣f ′(ta + (1 – t)b

)∣∣ ≤ h
(
tα

)∣∣f ′(a)
∣
∣ + mh

(
1 – tα

)
∣∣
∣∣f

′
(

b
m

)∣∣
∣∣ (3.4)

– cmh
(
tα

)
h
(
1 – tα

)
(

b
m

– a
)2

.

Now, using (3.4) in (3.3), we have

∣
∣∣
∣
f (a) + f (b)

2
–

�(μ + 1)
2(b – a)μ

[
Iμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(b)

)
+ Iμ,ψ

ψ–1(b)– (f ◦ ψ)
(
ψ–1(b)

)]
∣
∣∣
∣

≤ b – a
2

∫ 1

0

∣
∣(1 – t)μ – tμ

∣
∣
[

h
(
tα

)∣∣f ′(a)
∣
∣ + mh

(
1 – tα

)
∣∣
∣∣f

′
(

b
m

)∣∣
∣∣

– cmh
(
tα

)
h
(
1 – tα

)( b
m

– a
)2]

dt

=
b – a

2

[∣
∣f ′(a)

∣
∣
(∫ 1

2

0
h
(
tα

)(
(1 – t)μ – tμ

)
dt +

∫ 1

1
2

h
(
tα

)(
tμ –

(
1 – tα

)μ)
dt

)

+ m
∣∣
∣∣f

′
(

b
m

)∣∣
∣∣

(∫ 1
2

0
h
(
1 – tα

)(
(1 – t)μ – tμ

)
dt +

∫ 1

1
2

h
(
1 – tα

)(
tμ – (1 – t)μ

)
dt

)

– cm
(

b
m

– a
)2(∫ 1

2

0
h
(
tα

)
h
(
1 – tα

)(
(1 – t)μ – tμ

)
dt

+
∫ 1

1
2

h
(
tα

)
h
(
1 – tα

)(
tμ – (1 – t)μ

)
dt

)]
. �

Remark 5
(i) If α = m = 1 and h(t) = t in (3.2), we get the inequality stated in [10, Corollary 7].

(ii) If α = m = 1, h(t) = t, c = 0 and take ψ as the identity function in (3.2), we get
Theorem 3.
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(iii) If α = 1, h(t) = t and take ψ as the identity function in (3.2), we get the inequality
stated in [5, Theorem 8].

(iv) If α = μ = m = 1, h(t) = t, c = 0 and take ψ as the identity function in (3.2), we get
the inequality stated in [3, Theorem 2.2].

Corollary 5 If α = 1 in (3.2), then the following inequality holds for strongly (h – m)-convex
function:

∣∣∣
∣
f (a) + f (b)

2
–

�(μ + 1)
2(b – a)μ

[
Iμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(b)

)
+ Iμ,ψ

ψ–1(b)– (f ◦ ψ)
(
ψ–1(a)

)]
∣∣∣
∣

≤ b – a
2

[∣
∣f ′(a)

∣
∣
(∫ 1

2

0
h(t)

(
(1 – t)μ – tμ

)
dt +

∫ 1

1
2

h(t)
(
tμ – (1 – t)μ

)
dt

)

+ m
∣∣∣
∣f

′
(

b
m

)∣∣∣
∣

(∫ 1
2

0
h(1 – t)

(
(1 – t)μ – tμ

)
dt +

∫ 1

1
2

h(1 – t)
(
tμ – (1 – t)μ

)
dt

)

– cm
(

b
m

– a
)2(∫ 1

2

0
h(t)h(1 – t)

(
(1 – t)μ – tμ

)
)

dt

+
∫ 1

1
2

h(t)h(1 – t)
(
tμ – (1 – t)μ

)
dt)

]
.

For c = 0 in the above inequality, the result for (h – m)-convex function can be obtained.
Moreover, if ψ is an identity function, then the result for (h – m)-convex function for
Riemann–Liouville fractional integrals can be obtained.

Corollary 6 If α = 1 and h(t) = t in (3.2), then the following inequality holds for strongly
m-convex function:

∣
∣∣
∣
f (a) + f (b)

2
–

�(μ + 1)
2(b – a)μ

[
Iμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(b)

)
+ Iμ,ψ

ψ–1(b)– (f ◦ ψ)
(
ψ–1(a)

)]
∣
∣∣
∣

≤ b – a
2(μ + 1)

(
1 –

1
2μ

)(∣∣
∣∣f

′(a) + m|f ′
(

b
m

)∣∣
∣∣

)
–

cm( b
m – a)2(b – a)

(μ + 2)(μ + 3)

(
1 –

μ + 4
2μ+2

)
.

If c = 0 in the above inequality, then the result for m-convex function can be obtained.

Corollary 7 If α = μ = m = 1, h(t) = t and take ψ as the identity function in (3.2), we get
the following inequality for strongly convex function:

∣
∣∣
∣
f (a) + f (b)

2
–

1
(b – a)

∫ b

a
f (ν) dν

∣
∣∣
∣ ≤ b – a

8
[∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣] –
c(b – a)2

32
.

To prove next two theorems, we need the following identity.

Lemma 2 ([20]) Let f : [a, b] → R be a differentiable mapping on (a, b) such that f ′ ∈
L[a, b], ψ is a positive increasing function having continuous derivative ψ ′ on (a, b). If
[a, b] ⊂ Range(ψ) and m ∈ (0, 1], then the following fractional integral identity holds:

2μ–1�(μ + 1)
(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)
(3.5)
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+ mμ+1Iμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]
–

1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]

=
mb – a

4

[∫ 1

0
tμf ′

(
at
2

+ m
(

2 – t
2

)
b
)

dt –
∫ 1

0
tμf ′

(
a
m

(
2 – t

2

)
+

bt
2

)
dt

]
.

Theorem 7 Let f : [a, b] → R be a differentiable mapping on (a, b) such that f ′ ∈ Ł[a, b].
Also, suppose that |f ′|q is a strongly (α, h – m)-convex function on [a, b] for q ≥ 1, ψ is
an increasing and positive monotone function on (a, b] having a continuous derivative ψ ′

on (a, b). If [a, b] ⊂ Range(ψ) and (α, m) ∈ (0, 1]2, then the following fractional integral
inequality holds:

∣∣
∣∣
2μ–1�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)
(3.6)

+ mμ+1Iμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]

–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣
∣∣
∣

≤ mb – a

4(μ + 1)1– 1
q

[(∣
∣f ′(a)

∣
∣q

∫ 1

0
h
(

tα

2α

)
tμ dt

+ m
∣∣f ′(b)

∣∣q
∫ 1

0
h
(

2α – tα

2α

)
tμ dt – cm(b – a)2

∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
tμ dt

) 1
q

+
(

m
∣∣
∣∣f

′
(

a
m2

)∣∣
∣∣

q ∫ 1

0
h
(

2α – tα

2α

)
tμ dt +

∣
∣f ′(b)

∣
∣q

∫ 1

0
h
(

tα

2α

)
tμ dt

– cm
(

b –
a

m2

)2 ∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
tμ dt

) 1
q
]

with μ > 0.

Proof For q = 1, applying the Lemma 2 and using the strong (α, h – m)-convexity of |f ′|,
we have

∣
∣∣
∣
2μ–1�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)
+ mμ+1Iμ,ψ

ψ–1( a+mb
2m )– (f ◦ ψ)

(
ψ–1

(
a
m

))]

–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣∣
∣∣

≤ mb – a
4

[∫ 1

0

∣
∣∣
∣t

μf ′
(

at
2

+ m
(

2 – t
2

)
b
)∣

∣∣
∣dt +

∫ 1

0

∣
∣∣
∣t

μf ′
(

a
m

(
2 – t

2

)
+

bt
2

)∣
∣∣
∣dt

]

≤ mb – a
4

[(∣∣f ′(a)
∣
∣ +

∣
∣f ′(b)

∣
∣)

∫ 1

0
h
(

tα

2α

)
tμ dt

+ m
(∣

∣f ′(b)
∣
∣ +

∣∣
∣∣f

′
(

a
m2

)∣∣
∣∣

)∫ 1

0
h
(

2α – tα

2α

)
tμ dt – cm

(
(b – a)2 +

(
b –

a
m2

)2)

×
∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
tμ dt

]
.
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Now, for q > 1, we use Lemma 2 and the power mean inequality

∣∣
∣∣
2μ–1�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)
+ mμ+1Iμ,ψ

ψ–1( a+mb
2m )– (f ◦ ψ)

(
ψ–1

(
a
m

))]

–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣
∣∣∣

≤ mb – a
4

(∫ 1

0
tμ dt

)1– 1
q
[(∫ 1

0
tμ

∣∣
∣∣f

′
(

at
2

+ m
(

2 – t
2

)
b
)∣∣

∣∣

q

dt
) 1

q

+
(∫ 1

0
tμ

∣
∣∣∣f

′
(

a
m

(
2 – t

2

)
+

bt
2

)∣
∣∣∣

q

dt
) 1

q
]

≤ mb – a

4(μ + 1)1– 1
q

[(∣
∣f ′(a)

∣
∣q

∫ 1

0
h
(

tα

2α

)
tμ dt + m

∣
∣f ′(b)

∣
∣q

∫ 1

0
h
(

2α – tα

2α

)
tμ dt

– cm(b – a)2
∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
tμ dt

) 1
q

+
(

m
∣∣
∣∣f

′
(

a
m2

)∣∣
∣∣

∫ 1

0
h
(

2α – tα

2α

)
tμ dt +

∣
∣f ′(b)

∣
∣q

∫ 1

0
h
(

tα

2α

)
tμ dt

– cm
(

b –
a

m2

)2 ∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
tμ dt

) 1
q
]

. �

Remark 6
(i) If α = m = 1 and h(t) = t in (3.6), we get the inequality stated in [10, Theorem 12].

(ii) If α = 1, h(t) = t and take ψ as the identity function in (3.6), we get the inequality
stated in [5, Theorem 9].

(iii) If α = 1, h(t) = t, c = 0 and take ψ as the identity function in (3.6), we get the
inequality stated in [7, Theorem 2.4].

(iv) If α = m = 1, h(t) = t, c = 0 and take ψ as the identity function in (3.6), we get the
inequality stated in [28, Theorem 5].

(v) If α = μ = m = q = 1, h(t) = t, c = 0 and take ψ as the identity function in (3.6), we
get the inequality stated in [16, Theorem 2.2].

(vi) If α = μ = m = q = 1, h(t) = t and take ψ as the identity function in (3.6), we get the
inequality stated in [10, Corollary 13].

Corollary 8 If α = 1 in (3.6), then the following inequality holds for strongly (h – m)-convex
function:

∣
∣∣
∣
2μ–1�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)
+ mμ+1Iμ,ψ

ψ–1( a+mb
2m )– (f ◦ ψ)

(
ψ–1

(
a
m

))]

–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣∣∣
∣

≤ mb – a

4(μ + 1)
1
p

[(∣∣f ′(a)
∣∣q

∫ 1

0
h
(

t
2

)
tμ dt + m

∣∣f ′(b)
∣∣q

∫ 1

0
h
(

2 – t
2

)
tμ dt

– cm(b – a)2
∫ 1

0
h
(

t
2

)
h
(

2 – t
2

)
tμ dt

) 1
q
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+
(

m
∣
∣∣
∣f

′
(

a
m2

)∣
∣∣
∣

q ∫ 1

0
h
(

2 – t
2

)
tμ dt +

∣∣f ′(b)
∣∣q

∫ 1

0
h
(

t
2

)
tμ dt

– cm
(

b –
a

m2

)2 ∫ 1

0
h
(

t
2

)
h
(

2 – t
2

)
tμ dt

) 1
q
]

.

For c = 0 in the above inequality, the result for (h – m)-convex function can be obtained.
Moreover, if ψ is the identity function in the above inequality, then the result for (h – m)-
convex function for Riemann–Liouville fractional integrals can be obtained.

Corollary 9 If α = 1 and h(t) = t in (3.6), then the following inequality holds for strongly
m-convex function:

∣∣
∣∣
2μ–1�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)
+ mμ+1Iμ,ψ

ψ–1( a+mb
2m )– (f ◦ ψ)

(
ψ–1

(
a
m

))]

–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣∣
∣∣

≤ mb – a
4(μ + 1)

(
1

2(μ + 2)

) 1
q
[(∣∣f ′(a)

∣∣q(μ + 1) + m
∣∣f ′(b)

∣∣q(μ + 3)

–
cm(b – a)2(μ + 1)(μ + 4)

2(μ + 3)

) 1
q

+
(

m
∣
∣∣∣f

′
(

a
m2

)∣
∣∣∣

q

(μ + 3)

+
∣∣f ′(b)

∣∣q(μ + 1) –
cm(b – a

m2 )2(μ + 1)(μ + 4)
2(μ + 3)

) 1
q
]

.

If c = 0 in the above inequality, then the result for m-convex function can be obtained.

Theorem 8 Let f : [a, b] →R be a differentiable mapping on (a, b) with a < b. Also, suppose
that |f ′|q is a strongly (α, h–m)-convex function for q > 1, ψ is a positive increasing function
having continuous derivative ψ ′ on (a, b). If [a, b] ⊂ Range(ψ) and (α, m) ∈ (0, 1]2, then the
following fractional integral inequality holds:

∣∣
∣∣
2μ–1�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)(ψ–1(mb) (3.7)

+ mμ+1Iμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]
–

1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣∣
∣∣

≤ mb – a

4(μp + 1)
1
p

[(∣∣f ′(a)
∣∣q

∫ 1

0
h
(

tα

2α

)
dt + m

∣∣f ′(b)
∣∣q

∫ 1

0
h
(

2α – tα

2α

)
dt

– cm(b – a)2
∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
dt

) 1
q

+
(

m
∣
∣∣
∣f

′
(

a
m2

)∣
∣∣
∣

q ∫ 1

0
h
(

2α – tα

2α

)
dt +

∣∣f ′(b)
∣∣q

∫ 1

0
h
(

tα

2α

)
dt

– cm
(

b –
a

m2

)2 ∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)) 1
q
]

with μ > 0 and 1
p + 1

q = 1.
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Proof By applying Lemma 2 and using the property of modulus, we get

∣∣
∣∣
2μ–1�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)
+ mμ+1Iμ,ψ

ψ–1( a+mb
2m )– (f ◦ ψ)

(
ψ–1

(
a
m

))]

–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣
∣∣
∣

≤ mb – a
4

[∫ 1

0

∣∣
∣∣t

μf ′
(

at
2

+ m
(

2 – t
2

)
b
)∣∣

∣∣dt +
∫ 1

0

∣∣
∣∣t

μf ′
(

a
m

(
2 – t

2

)
+

bt
2

)∣∣
∣∣dt

]
.

Now, applying Hölder’s inequality for integrals, we get

∣
∣∣
∣
2μ–1�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)
+ mμ+1Iμ,ψ

ψ–1( a+mb
2m )– (f ◦ ψ)

(
ψ–1

(
a
m

))]

–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣
∣∣
∣

≤ mb – a

4(μp + 1)
1
p

[(∫ 1

0

∣∣
∣∣f

′
(

at
2

+ m
(

2 – t
2

)
b
)∣∣

∣∣

q

dt
) 1

q

+
(∫ 1

0

∣
∣∣
∣f

′
(

a
m

(
2 – t

2

)
+

bt
2

)∣
∣∣
∣

q

dt
) 1

q
]

.

Using the strong (α, h – m)-convexity of |f ′|q, we get

∣∣
∣∣
2μ–1�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)
+ mμ+1Iμ,ψ

ψ–1( a+mb
2m )– (f ◦ ψ)

(
ψ–1

(
a
m

))]

–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣∣
∣∣

≤ mb – a

4(μp + 1)
1
p

[(∣∣f ′(a)
∣∣q

∫ 1

0
h
(

tα

2α

)
dt + m

∣∣f ′(b)
∣∣q

∫ 1

0
h
(

2α – tα

2α

)
dt

– cm(b – a)2
∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
dt

) 1
q

+
(

m
∣∣∣
∣f

′
(

a
m2

)∣∣∣
∣

q ∫ 1

0
h
(

2α – tα

2α

)
dt +

∣∣f ′(b)
∣∣q

∫ 1

0
h
(

tα

2α

)
dt – cm

(
b –

a
m2

)2

×
∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
dt

) 1
q
]

. �

Remark 7
(i) If α = m = 1 and h(t) = t in (3.7), we get the inequality stated in [10, Theorem 13].

(ii) If α = 1, h(t) = t and take ψ as the identity function in (3.7), we get the inequality
stated in [5, Theorem 10].

(iii) If α = 1, h(t) = t, c = 0 and take ψ as the identity function in (3.7), we get the
inequality stated in [7, Theorem 2.7].

(iv) If α = μ = m = 1, h(t) = t, c = 0 and take ψ as the identity function in inequality
(3.7), we get the inequality stated in [16, Theorem 2.4].
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Corollary 10 If α = 1 in (3.7), then the following inequality holds for strongly (h – m)-
convex function:

∣∣
∣∣
2μ–1�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)(ψ–1(mb) + mμ+1Iμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]

–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣∣
∣∣

≤ mb – a

4(μp + 1)
1
p

[(∣∣f ′(a)
∣∣q

∫ 1

0
h
(

t
2

)
dt + m

∣∣f ′(b)
∣∣q

∫ 1

0
h
(

2 – t
2

)
dt

– cm(b – a)2
∫ 1

0
h
(

t
2

)
h
(

2 – t
2

)
dt

) 1
q

+
(

m
∣
∣∣
∣f

′
(

a
m2

)∣
∣∣
∣

q ∫ 1

0
h
(

2 – t
2

)
dt +

∣∣f ′(b)
∣∣q

∫ 1

0
h
(

t
2

)
dt

– cm
(

b –
a

m2

)2 ∫ 1

0
h
(

t
2

)
h
(

2 – t
2

)) 1
q
]

.

For c = 0 in the above inequality, the result for (h – m)-convex function can be obtained.
Moreover, if ψ is the identity function in the above inequality, then the result for (α, h – m)-
convex function for Riemann–Liouville fractional integrals can be obtained.

Corollary 11 If α = 1 and h(t) = t in (3.7), then the following inequality holds for strongly
m-convex function:

∣∣
∣∣
2μ–1�(μ + 1)

(mb – a)μ

[
Iμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)(ψ–1(mb) + mμ+1Iμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]

–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣
∣∣∣

≤ mb – a

42– 1
p (μp + 1)

1
p

[((∣∣f ′(a)
∣
∣ + (3m)

1
q
∣
∣f ′(b)

∣
∣)q –

2cm(b – a)2

3

) 1
q

+
((

(3m)
1
q

∣∣
∣∣f

′
(

a
m2

)∣∣
∣∣ +

∣
∣f ′(b)

∣
∣
)q

–
cm(b – a

m2 )2

3

) 1
q
]

.

If c = 0 in the above inequality, then the result for m-convex function can be obtained.

4 k-Fractional versions of Hadamard inequalities for strongly (α, h – m)-convex
function and their error estimations

In this section, we present k-fractional versions of Hadamard inequalities and their error
estimations discussed in Sect. 2 and Sect. 3.

Theorem 9 Under the assumptions of Theorem 4, the following k-fractional integral in-
equality holds:

f
(

a + mb
2

)
+

cmh( 1
2α )h( 2α–1

2α )
(μ + k)(μ + 2k)

[
μ(μ + k)(b – a)2 + 2k2

(
a
m

– mb
)2

(4.1)
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+ 2kμ(b – a)
(

a
m

– mb
)]

≤ �k(μ + k)
(mb – a)

μ
k

[
h
(

1
2α

)

kIμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(mb)

)

+ h
(

2α – 1
2α

)
m

μ
k +1

kIμ,ψ
ψ–1(b)– (f ◦ ψ)

(
ψ–1

(
a
m

))]

≤ μ

k

[
h
(

1
2α

)
f (a) + mh

(
2α – 1

2α

)
f (b)

]∫ 1

0
h
(
tα

)
t

μ
k –1 dt

+
mμ

k

(
h
(

1
2α

)
f (b) + mh

(
2α – 1

2α

)
f
(

a
m2

))

×
∫ 1

0
t

μ
k –1h

(
1 – tα

)
dt –

cmμ

k

[
h
(

1
2α

)
(b – a)2 + mh

(
2α – 1

2α

)(
b –

a
m2

)2]

×
∫ 1

0
t

μ
k –1h

(
tα

)
h
(
1 – tα

)
dt

with μ, k > 0.

Proof Using (1.14) and (1.15) after replacing μ with μ

k in (2.1), we get inequality (4.1). �

Corollary 12 If α = 1 in (4.1), then the following k-fractional integral inequality holds for
strongly (h – m)-convex function:

f
(

a + mb
2

)
+

cmh2( 1
2 )

(μ + k)(μ + 2k)

[
μ(μ + k)(b – a)2 + 2k2

(
a
m

– mb
)2

+ 2kμ(b – a)
(

a
m

– mb
)]

≤ h( 1
2 )�k(μ + k)

(mb – a)
μ
k

[

kIμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(mb)

)
+ m

μ
k +1

kIμ,ψ
ψ–1(b)– (f ◦ ψ)

(
ψ–1

(
a
m

))]

≤ h( 1
2 )μ[f (a) + mf (b)]

k

∫ 1

0
h(t)t

μ
k –1 dt

+
mh( 1

2 )μ
k

[
f (b) + mf

(
a

m2

)]∫ 1

0
t

μ
k –1h(1 – t) dt

–
cmh( 1

2 )μ
k

[
(b – a)2 + m

(
b –

a
m2

)2]∫ 1

0
h(t)h(1 – t)t

μ
k –1 dt.

Corollary 13 If α = 1 and h(t) = t in (4.1), then the following inequality holds for strongly
m-convex function:

f
(

a + mb
2

)
+

cm
4(μ + k)(μ + 2k)

[
μ(μ + k)(b – a)2 + 2k2

(
a
m

– mb
)2

+ 2kμ(b – a)
(

a
m

– mb
)]

≤ �k(μ + k)
2(mb – a)

μ
k

[

kIμ,ψ
ψ–1(a)+ (f ◦ ψ)

(
ψ–1(mb)

)
+ m

μ
k +1

kIμ,ψ
ψ–1(b)– (f ◦ ψ)

(
ψ–1

(
a
m

))]
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≤ μ[f (a) + mf (b)]
2(μ + k)

+
mk

2(μ + k)

[
f (b) + mf

(
a

m2

)]

–
cmμk

2(μ + k)(μ + 2k)

[
(b – a)2 + m

(
b –

a
m2

)2]
.

Theorem 10 Under the assumptions of Theorem 4, the following k-fractional integral in-
equality holds:

f
(

a + mb
2

)
+

cmμh( 1
2α )h( 2α–1

2α )
4(μ + 2k)

[
μ(μ + k)(b – a)2 (4.2)

+
(

a
m

– mb
)2(

μ2 + 5kμ + 8k2)

+ 2μ(b – a)
(

a
m

– mb
)

(μ + 3k)
]

≤ 2
μ
k �k(μ + k)

(mb – a)
μ
k

[
h
(

1
2α

)

kIμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)

+ m
μ
k +1h

(
2α – 1

2α

)

kIμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]

≤ μ

k

[
h
(

1
2α

)
f (a) + mh

(
2α – 1

2α

)
f (b)

]∫ 1

0
h
(

tα

2α

)
t

μ
k –1 dt

+
μm

k

[
h
(

1
2α

)
f (b) + mh

(
2α – 1

2α

)
f
(

a
m2

)]∫ 1

0
h
(

2α – tα

2α

)
t

μ
k –1 dt

–
μcm

k

[
h
(

2α – 1
2α

)
(b – a)2 + mh

(
2α – 1

2α

)(
b –

a
m2

)2]

×
∫ 1

0
t

μ
k –1h

(
tα

2α

)
h
(

2α – tα

2α

)
dt

with μ, k > 0.

Proof Using (1.14) and (1.15) after replacing μ with μ

k in (2.6), we get inequality (4.2). �

Corollary 14 If α = 1 in (4.2), then the following k-fractional integral inequality holds for
strongly (h – m)-convex functions:

f
(

a + mb
2

)
+

cmh2( 1
2 )

4(μ + k)(μ + 2k)

[
μ(μ + k)(b – a)2 +

(
μ2 + 5kμ + 8k2)

(
a
m

– mb
)2

+ 2μ(μ + 3k)(b – a)
(

a
m

– mb
)]

≤ h( 1
2 )2

μ
k �k(μ + k)

(mb – a)
μ
k

[

kIμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)

+ m
μ
k +1

kIμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]

≤ h( 1
2 )μ
k

[
f (a) + mf (b)

] ∫ 1

0
h
(

t
2

)
t

μ
k –1 dt
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+
h( 1

2 )μm
k

[
f (b)+mf

(
a

m2

)]∫ 1

0
h
(

2 – t
2

)
t

μ
k –1 dt

– cmh
(

1
2

)[
(b – a)2 +

(
b –

a
m2

)2]∫ 1

0
h
(

t
2

)
h
(

2 – t
2

)
t

μ
k –1 dt.

Corollary 15 If α = 1 and h(t) = t in (4.2), then the following inequality holds for m-convex
function:

f
(

a + mb
2

)
+

cm
16(μ + k)(μ + 2k)

[
μ(μ + k)(b – a)2 +

(
μ2 + 5kμ + 8k2)

(
a
m

– mb
)2

+ 2μ(μ + 3k)(b – a)
(

a
m

– mb
)]

≤ 2
μ
k –1�k(μ + k)
(mb – a)

μ
k

[

kIμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)

+ m
μ
k +1

kIμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]

≤ μ[f (a) + mf (b)]
4(μ + k)

+
m(μ + 2k)
4(μ + k)

[
f (b) + mf

(
a

m2

)]

–
cmμ(μ + 3k)

8(μ + k)(μ + 2k)

[
(b – a)2 +

(
b –

a
m2

)2]
.

Theorem 11 Under the assumptions of Theorem 6, the following k-fractional integral in-
equality holds:

∣
∣∣
∣
f (a) + f (b)

2
–

�k(μ + k)
2(b – a)

μ
k

[
kIμ,ψ

ψ–1(a)+ (f ◦ ψ)
(
ψ–1(b)

)
+ kIμ,ψ

ψ–1(b)– (f ◦ ψ)
(
ψ–1(a)

)]
∣
∣∣
∣ (4.3)

≤ b – a
2

[∣∣f ′(a)
∣∣
(∫ 1

2

0
h
(
tα

)(
(1 – t)

μ
k – t

μ
k
)

dt +
∫ 1

1
2

h
(
tα

)(
t

μ
k – (1 – t)

μ
k
)

dt
)

+ m
∣
∣∣
∣f

′
(

b
m

)∣
∣∣
∣

(∫ 1
2

0
h
(
1 – tα

)(
(1 – t)

μ
k – t

μ
k
)

dt +
∫ 1

1
2

h
(
1 – tα

)(
t

μ
k – (1 – t)

μ
k
)

dt
)

– cm
(

b
m

– a
)2(∫ 1

2

0
h
(
tα

)
h
(
1 – tα

)(
(1 – t)

μ
k – t

μ
k
)

dt

+
∫ 1

1
2

h
(
tα

)
h
(
1 – tα

)(
t

μ
k – (1 – t)

μ
k
)

dt
)]

with μ, k > 0.

Proof Using (1.14) and (1.15) after replacing μ with μ

k in (3.2), we get inequality (4.3). �

Corollary 16 If α = 1 in (4.3), then the following k-fractional integral inequality holds for
strongly (h – m)-convex functions:

∣∣
∣∣
f (a) + f (b)

2
–

�k(μ + k)
2(b – a)

μ
k

[
kIμ,ψ

ψ–1(a)+ (f ◦ ψ)
(
ψ–1(b)

)
+ kIμ,ψ

ψ–1(b)– (f ◦ ψ)
(
ψ–1(a)

)]
∣∣
∣∣

≤ b – a
2

[∣∣f ′(a)
∣∣
(∫ 1

2

0
h(t)

(
(1 – t)

μ
k – t

μ
k
)

dt +
∫ 1

1
2

h(t)
(
t

μ
k – (1 – t)

μ
k
)

dt
)
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+ m
∣∣
∣∣f

′
(

b
m

)∣∣
∣∣

(∫ 1
2

0
h(1 – t)

(
(1 – t)

μ
k – t

μ
k
)

dt +
∫ 1

1
2

h(1 – t)
(
t

μ
k – (1 – t)

μ
k
)

dt
)

– cm(b – a)2
(∫ 1

2

0
h(t)h(1 – t)

(
(1 – t)

μ
k – t

μ
k
)

dt

–
∫ 1

1
2

h(t)h(1 – t)
(
t

μ
k – (1 – t)

μ
k
)

dt
)]

.

Corollary 17 If α = 1 and h(t) = t in (4.3), then the following inequality holds for strongly
m-convex function:

∣
∣∣∣
f (a) + f (b)

2
–

�k(μ + k)
2(b – a)

μ
k

[
kIμ,ψ

ψ–1(a)+ (f ◦ ψ)
(
ψ–1(b)

)
+ kIμ,ψ

ψ–1(b)– (f ◦ ψ)
(
ψ–1(a)

)]
∣
∣∣∣

≤ b – a
2( μ

k + 1)

(
1 –

1
2

μ
k

)(∣
∣f ′(a)

∣
∣ + m

∣∣
∣∣f

′
(

b
m

)∣∣
∣∣

)
–

c( b
m – a)3(1 –

μ
k +4

2
μ
k +2 )

( μ

k + 2)( μ

k + 3)
.

Theorem 12 Under the assumptions of Theorem 7, the following k-fractional integral in-
equality holds:

∣
∣∣
∣
2

μ
k –1�k(μ + k)
(mb – a)

μ
k

[

kIμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)
(4.4)

+ m
μ
k +1

kIμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]

–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣
∣∣
∣

≤ mb – a

4( μ

k + 1)
1
q –1

[(∣∣f ′(a)
∣∣q

∫ 1

0
h
(

tα

2α

)
t

μ
k dt + m

∣∣f ′(b)
∣∣q

∫ 1

0
h
(

2α – tα

2α

)
t

μ
k dt

– cm(b – a)2
∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
t

μ
k dt

) 1
q

+
(

m
∣
∣∣
∣f

′
(

a
m2

)∣
∣∣
∣

q ∫ 1

0
h
(

2α – tα

2α

)
t

μ
k dt +

∣∣f ′(b)
∣∣q

∫ 1

0
h
(

tα

2α

)
t

μ
k dt
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(

b –
a

m2

)2 ∫ 1

0
h
(

tα

2α

)
h
(

2α – tα

2α

)
t

μ
k dt

) 1
q
]

with μ, k > 0.

Proof Using (1.14) and (1.15) after replacing μ with μ

k in (3.6), we get inequality (4.4). �

Corollary 18 If α = 1 in (4.4), then the following k- fractional integral inequality holds for
strongly (h – m)-convex function:

∣∣
∣∣
2

μ
k –1�k(μ + k)
(mb – a)

μ
k

[

kIμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)

+ m
μ
k +1

kIμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
(

ψ–1
(

a
m

))]
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–
1
2

[
f
(

a + mb
2

)
+ mf

(
a + mb

2m

)]∣∣
∣∣

≤ mb – a

4( μ

k + 1)
1
q –1

[(∣∣f ′(a)
∣∣q
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h
(

t
2

)
t

μ
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∫ 1
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h
(

2 – t
2

)
t

μ
k dt
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(

t
2

)
h
(
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2

)
t

μ
k dt

) 1
q

+
(

m
∣∣
∣∣f

′
(

a
m2

)∣∣
∣∣

q ∫ 1

0
h
(

2 – t
2

)
t

μ
k dt +

∣
∣f ′(b)

∣
∣q

∫ 1
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h
(

t
2

)
t

μ
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(
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a
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)2

×
∫ 1

0
h
(

t
2

)
h
(

2 – t
2

)
t

μ
k dt

) 1
q
]

.

Corollary 19 If α = 1 and h(t) = t in (4.4), then the following k-fractional integral inequal-
ity holds for strongly m-convex function:

∣∣
∣∣
2

μ
k –1�k(mu + k)

(mb – a)
μ
k

[

kIμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)

+ m
μ
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kIμ,ψ
ψ–1( a+mb

2m )– (f ◦ ψ)
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ψ–1
(

a
m
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–
1
2

[
f
(
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2

)
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(
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∣∣∣
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∣q

(
μ

k
+ 1

)
+ m

∣
∣f ′(b)

∣
∣q

(
μ

k
+ 3

)
–

cm(b – a)2( μ

k + 1)( μ

k + 4)
2( μ

k + 3)

) 1
q

+
(

m
∣∣
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∣∣

q(
μ
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+ 3

)
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∣
∣q

(
μ

k
+ 1

)

–
cm(b – a

m2 )2( μ

k + 1)( μ

k + 4)
2( μ

k + 3)

) 1
q
]

.

Theorem 13 Under the assumptions of Theorem 8, the following k-fractional integral in-
equality holds:

∣
∣∣
∣
2

μ
k –1�k(μ + k)
(mb – a)

μ
k

[

kIμ,ψ
ψ–1( a+mb

2 )+ (f ◦ ψ)
(
ψ–1(mb)

)
(4.5)
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(

a
m
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–
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2

[
f
(
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2

)
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(
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)]∣∣∣
∣
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4( μp
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1
p
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∣∣q
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2α

)
dt + m
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(
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)
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+
(

m
∣
∣∣
∣f

′
(

a
m2

)∣
∣∣
∣

q ∫ 1
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0
h
(
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2α

)
h
(

2α – tα

2α

)) 1
q
]

with μ, k > 0 and 1
p + 1

q = 1.

Proof Using (1.14) and (1.15) after replacing μ with μ

k in (3.7), we get inequality (4.5). �

Corollary 20 If α = 1 in (4.5), then the following k-fractional integral inequality holds for
strongly (h – m)-convex function:
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∣∣
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2

μ
k –1�k(μ + k)
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μ
k

[
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ψ–1( a+mb
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)

+ m
μ
k +1

kIμ,ψ
ψ–1( a+mb
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(
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q
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)∣
∣∣
∣
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2
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) 1
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.

Corollary 21 If α = 1 and h(t) = t in (4.5), then the following k-fractional integral inequal-
ity holds for strongly m-convex function:

∣∣∣
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2
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.

5 Conclusion
This article deals with Hadamard inequalities for strongly (α, h – m)-convex function
via generalized Riemann–Liouville fractional integrals. The outcomes of this paper pro-
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vide refinements of Hadamard inequalities for different kinds of convex functions. Error
bounds of Hadamard inequalities are obtained for differentiable convex functions of sev-
eral kinds.
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