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Abstract
In this paper, we consider a fractional COVID-19 epidemic model with a convex
incidence rate. The Atangana–Baleanu fractional operator in the Caputo sense is
taken into account. We establish the equilibrium points, basic reproduction number,
and local stability at both the equilibrium points. The existence and uniqueness of the
solution are proved by using Banach and Leray–Schauder alternative type theorems.
For the fractional numerical simulations, we use the Toufik–Atangana scheme.
Optimal control analysis is carried out to minimize the infection and maximize the
susceptible people.
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1 Introduction
Corona virus or severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is a virus
that attacks the respiratory system. The virus that causes this disease is called COVID-19
(corona virus disease 2019). The ICTV corona virus disease study group stated that this
virus is a species associated with the severe acute respiratory syndrome. COVID-19 was
first discovered in humans in December 2019. This outbreak was first detected in Wuhan
city, Hubei province, China, in mid-December 2019. The outbreak due to SARS-CoV-2
was declared a global health emergency or pandemic by the World Health Organization
(WHO) on January 30, 2020. The Chinese government conducted quarantine in the city
of Wuhan on January 23, 2020 as a step to control the pandemic [1].

Modeling in mathematics is a tremendous tool for expressing and dealing with com-
plicated phenomena. Recently, considerable attention has been given to the proposal of
mathematical models in comprehending the ailment of infectious nature [2–6]. Many re-
searchers have developed models for the realization and regulation of the outbreak of
transmissible diseases in a population. Infectious diseases are the second largest cause
of death across the globe. The discipline of infectious diseases will assume added promi-
nence in the twenty-first century in both developed and developing nations. To an un-
precedented extent, issues related to infectious diseases in the context of global health are
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on the agendas of world leaders, health policymakers, and philanthropists. Over the last
few years, several researchers have been exploring infectious diseases and their mecha-
nisms using different methods [7–10]. This not only helps to control the spreading of in-
fectious diseases but also aids in everyday life to prevent these diseases. Several researchers
have researched epidemic models to examine and monitor various diseases such as avian
influenza, hepatitis B, tuberculosis, leishmaniasis [11–13]. Since the existence and anni-
hilation of COVID-19 is subject to numerous parameters of the affected system, we can-
not characterize the entire disease system throughout the globe by using a single model.
As in the case of COVID-19, the spreading of the disease has a direct relation with the
quarantine of the human population. Commonly, we have two types of quarantine: one
is susceptible quarantine and the second is infected quarantine. In our work, we take the
infected quarantine which means that the people will be quarantined if they are infected.

Fractional calculus is the generalization of classical calculus. To get a better insight into
a mathematical model and to deeply understand phenomena, noninteger order operators
can be used. Moreover, models involving fractional-order derivatives provide a greater de-
gree of accuracy and are able to abduct the fading memory and spanning behavior. Frac-
tional order differential equation models give more understanding about a disease under
consideration [14–17]. Literature has suggested a number of fractional operators with sin-
gular and nonsingular kernel [18–21], and their applications can be found in some recent
studies [14, 16]. In [22], the authors considered co-dynamics for cancer and hepatitis us-
ing a mathematical model with fractional derivative and examined its results. For more
details, see [23–25].

We consider the model available in [26] in which the total population is denoted by
N(t) and is divided into five groups, namely: susceptible individuals S(t) which denotes
individuals vulnerable to the infection; exposed individuals E(t); infectious individuals I(t);
quarantined individuals Q(t); and recovered individuals R(t) at time t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = b – βSI(1 + δI) – (η + μ + d3)S(t),
dE
dt = βSI(1 + δI) – (χ + μ + d2)E(t),
dI
dt = λE(t) – (μ + ε + γ + d1)I(t),
dQ
dt = d3S(t) + d2E(t) + d1I(t) – (μ + τ )Q(t),
dR
dt = ηS(t) + τQ(t) + γ I(t) – μR(t),

S(t) > 0, E(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, R(t) ≥ 0.

(1)

We reformulated the above model by fractionalizing it with the help of fractional param-
eter 0 < χ ≤ 1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC
D

χ
0,t[S(t)] = b̄ – β̄S(t)I(t)(1 + δ̄I(t)) – (η̄ + μ̄ + d̄3)S(t),

ABC
D

χ
0,t[E(t)] = β̄S(t)I(t)(1 + δ̄I(t)) – (λ̄ + μ̄ + d̄2)E(t),

ABC
D

χ
0,t[I(t)] = λ̄E(t) – (μ̄ + ε̄ + γ̄ + d̄1)I(t),

ABC
D

χ
0,t[Q(t)] = d̄3S(t) + d̄2E(t) + d̄1I(t) – (μ̄ + τ̄ )Q(t),

ABC
D

χ
0,t[R(t)] = η̄S(t) + τ̄Q(t) + γ̄ I(t) – μ̄R(t),

S(t) > 0, E(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, R(t) ≥ 0.

(2)
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The parameters β̄ and δ̄ are positive constants, whereas b̄ is the constant birth rate, β̄ is
the disease transmission coefficient, μ is the natural death rate, ε is the death rate for the
disease of infectious individuals, and λ̄, γ̄ , d̄1, d̄2, d̄3, τ̄ are the state transition rates. η̄ is
the transmission rate from the susceptible to the recovered class which represents those
people who have strong immune system.

The organization of our paper is as follows: Sect. 2 deals with the basic definitions which
are helpful in the analysis of the coming sections. Also the basic reproduction number as
well as equilibrium points are established. The unique positive solution of our proposed
model is given. Section 3 is concerned with the local stability of the proposed model. Ex-
istence and uniqueness are carried out in Sect. 4. Section 5 deals with the Ulam–Hyers
stability of our model. Section 6 depicts some simulations carried out by the Atangana–
Toufik scheme. In Sect. 7, optimal control analysis is applied to our model. And in the final
Sect. 7, we give the concluding remarks along with the future work.

2 Preliminaries
The following definitions of Atangana–Baleanu fractional derivative and integration in
the Caputo sense are taken from [27, 28]:

AB
C D

χ
0,tr(t) =

B(χ )
1 – χ

∫ t

0
Eχ

{

–χ
(t – δ)χ

1 – χ

}

r(1)(δ) dδ, (3)

AB
C Iχ

0,tr(t) =
1 – χ

B(χ )
r(t) +

χ

B(χ )
(χ )

∫ t

0
r(δ)(t – δ)χ–1 dδ, (4)

satisfying

∥
∥AB

C D
χ

b1,t
(
r(t)

)∥
∥ <

B(χ )
1 – χ

∥
∥r(t)

∥
∥, where

∥
∥r(t)

∥
∥ = max

b1≤t≤b2

∣
∣r(t)

∣
∣ (5)

for r(t) ∈ C[b1, b2] and the Lipschitz condition

∥
∥AB

C D
χ

b1,tr1(t) – AB
C D

χ

b1,tr2(t)
∥
∥ < �1

∥
∥r1(t) – r2(t)

∥
∥. (6)

2.1 Basic reproduction number R0

The DFE of model (2) is denoted by E0(S0, 0, 0, Q0, R0), where

S0 =
b̄

η̄ + μ̄ + d̄3
, Q0 =

d̄3S0

μ̄ + τ̄
, R0 =

η̄S0 + τ̄Q0

μ̄
.

Similar to the method mentioned in [29], we calculate F and V as follows:

F =

[
0 β̄S0

0 0

]

, V =

[
λ̄ + μ̄ + d̄2 0

–λ̄ μ̄ + ε̄ + γ̄ + d̄1

]

,

V –1 =
1

(λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1)

[
μ̄ + ε̄ + γ̄ + d̄1 0

λ̄ λ̄ + μ̄ + d̄2

]

,

FV –1 =

[
β̄S0λ̄

(λ̄+μ̄+d̄2)(μ̄+ε̄+γ̄ +d̄1)
β̄S0

μ̄+ε̄+γ̄ +d̄1

0 0

]

.
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Hence

R0 =
λ̄β̄b̄

(η̄ + μ̄ + d̄3)(λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1)
.

2.2 Endemic equilibrium point
System (2) is reshaped as

S∗ =
(λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1)I∗

λ̄β̄I∗(1 + δ̄I∗)
,

E∗ =
(μ̄ + ε̄ + γ̄ + d̄1)I∗

λ̄
,

Q∗ =
d̄3S∗ + d̄2E∗ + d̄1I∗

μ̄ + τ̄
,

R∗ =
η̄S∗ + τ̄Q∗ + γ̄ I∗

μ̄
.

(7)

Taking into account the above values in

b̄ – (η̄ + μ̄ + d̄3)S∗ – (λ̄ + μ̄ + d̄2)E∗ = 0, (8)

we get

P(I) = A1I3 + A2I2 + A3I = 0, (9)

where

A1 = (λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1)β̄δ̄, (10)

A2 = –
(
(λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1)β̄ + b̄λ̄β̄δ̄

)
, (11)

A3 = bλ̄β̄ – (λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1)(η̄ + μ̄ + d̄3). (12)

By Descarte’s rule of the sign if A3 > 0, then (9) has one positive, one negative, and one
zero root, and A3 > 0 implies that R0 > 1. Hence, for R0 > 1, a unique positive equilibrium
exists for the model.

3 Local stability
We establish the local stability of system (2) in this section at COVID-19 free point E0 as
well as at COVID-19 present equilibrium point E∗.

Theorem 1 The COVID-19 free equilibrium (CFE) point E0 of the proposed fractional
order SEQIR pandemic model (2) is locally asymptotically stable if R0 < 1.
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Proof The Jacobian matrix of system (2) at E0 is

J
(
E0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(η̄ + μ̄ + d̄3) 0 – β̄b̄
η̄+μ̄+d̄3

0 0

0 –(λ̄ + μ̄ + d̄2) β̄b̄
η̄+μ̄+d̄3

0 0
0 λ̄ –(μ̄ + ε̄ + γ̄ + d̄1) 0 0
d̄3 d̄2 d̄1 –(μ̄ + τ̄ ) 0
η̄ 0 γ̄ τ̄ –μ̄

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (13)

Therefore, by the Routh–Hurwitz stability conditions for fractional order systems [30],
the necessary and sufficient condition is

∣
∣arg

(
eig(J)

)∣
∣ =

∣
∣arg(ωi)

∣
∣ > κ

π

2
(14)

for various fractional order models. Therefore, the disease-free equilibrium of system (2)
is asymptotically stable if all of the eigenvalues ωi, i = 1, 2, 3, 4, 5, of J(E0) satisfy condi-
tion (14). Hence, a sufficient condition for the local asymptotic stability of the equilibrium
points is that the eigenvalues ωi, i = 1, 2, 3, 4, 5, of the Jacobian matrix J(E0) satisfy the
condition | arg(ωi)| > κ π

2 . This confirms that fractional order differential equations are, at
least, as stable as their integer order counterparts.

The characteristic equation of J(E0) is

(
ω1 + (η̄ + μ̄ + d̄3)

)(
ω2 + (μ̄ + τ̄ )

)
(ω3 + μ̄)

(
Aω2 + Bω + C

)
= 0,

where

A = 1,

B = 2μ̄ + λ̄ + ε̄ + γ̄ + d̄1 + d̄2,

C = (λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1) –
β̄λ̄b

η̄ + μ̄ + d̄3
,

(15)

(λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1) –
β̄λ̄b

η̄ + μ̄ + d̄3
> 0,

(λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1)(1 – R0) > 0.

This shows that, for R0 < 1, the quadratic equation (Aω2 +Bω+C) = 0 has all terms positive,
and thus its roots must all be negative. Meanings λ4,5 < 0, all of the eigenvalues ωi for i =
1, 2, 3, 4, 5, satisfy the condition given by (14). Therefore, all the eigenvalues have negative
real parts if R0 < 1. This completes the proof. �

3.1 At pandemic equilibrium point
Lemma 1 Let M be a 3×3 real matrix. If tr(M), det(M), and det M[2] are all negative, then
all eigenvalues of M have negative real parts.

Theorem 2 If R0 > 1, then the pandemic equilibrium E∗ of the proposed fractional order
SEQIR pandemic model (2) is locally asymptotically stable.



Khan et al. Advances in Difference Equations        (2021) 2021:387 Page 6 of 22

Proof The Jacobian matrix of system (2) at E∗ is

J |∗| =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–a11 0 –β̄S∗(1 + 2δ̄I∗) 0 0
β̄I∗(1 + δ̄I∗) –(λ̄ + μ̄ + d̄2) β̄S∗(1 + 2δ̄I∗) 0 0

0 λ̄ –(μ̄ + ε̄ + γ̄ + d̄1) 0 0
d̄3 d̄2 d̄1 –(μ̄ + τ̄ ) 0
η̄ 0 γ̄ τ̄ –μ̄

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where a11 = (β̄I∗(1 + δ̄I∗) + (η̄ + μ̄ + d̄3)).
Therefore, by the Routh–Hurwitz stability conditions for fractional order systems [30],

the necessary and sufficient condition is

∣
∣arg

(
eig

(
J |∗|))∣∣ =

∣
∣arg(ωi)

∣
∣ > κ

π

2
(16)

for various fractional order models. Therefore, the disease-free equilibrium of system (2)
is asymptotically stable if all of the eigenvalues ωi, i = 1, 2, 3, 4, 5, of J |∗|(E∗) satisfy condi-
tion (16). Hence, a sufficient condition for the local asymptotic stability of the equilibrium
points is that the eigenvalues ωi, i = 1, 2, 3, 4, 5, of the Jacobian matrix J |∗|(E∗) satisfy the
condition | arg(ωi)| > κ π

2 . This confirms that fractional order differential equations are, at
least, as stable as their integer order counterparts.

Here, ω1 = –μ̄, ω2 = –(μ̄ + τ̄ ), and we consider the following matrix for the rest of eigen-
values:

J |∗|
1 =

⎛

⎜
⎝

–(β̄I∗(1 + δ̄I∗) + (η̄ + μ̄ + d̄3)) 0 –β̄S∗(1 + 2δ̄I∗)
β̄I∗(1 + δ̄I∗) –(λ̄ + μ̄ + d̄2) β̄S∗(1 + 2δ̄I∗)

0 λ̄ –(μ̄ + ε̄ + γ̄ + d̄1)

⎞

⎟
⎠ .

From the Jacobian matrix J |∗|
1 we have

tr
(
J |∗|
1
)

= –
[(

β̄I∗(1 + δ̄I∗) + (η̄ + μ̄ + d̄3)
)

+ (λ̄ + μ̄ + d̄2) + (μ̄ + ε̄ + γ̄ + d̄1)
]

< 0,

also

det
(
J |∗|
1
)

= –
[(

β̄I∗(1 + δ̄I∗) + (η̄ + μ̄ + d̄3)
)(

(λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1)

– λ̄β̄S∗(1 + 2δ̄I∗) + λ̄β̄S∗(1 + 2δ̄I∗)β̄S∗I∗(1 + 2δ̄I∗)
)]

,

= –
[(

β̄I∗(1 + δ̄I∗) + (η̄ + μ̄ + d̄3)
)(

(λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1)

+ λ̄β̄S∗(1 + 2δ̄I∗)
[
β̄S∗I∗(1 + 2δ̄I∗) – 1

])]
,

det
(
J |∗|
1
)

= –
[(

β̄I∗(1 + δ̄I∗) + (η̄ + μ̄ + d̄3)
)(

(λ̄ + μ̄ + d̄2)(μ̄ + ε̄ + γ̄ + d̄1)

+ λ̄β̄S∗(1 + 2δ̄I∗)
[
β̄S∗I∗(1 + 2δ̄I∗) – 1

])]
< 0.

Further, the second additive compound matrix is

J [2] =

⎛

⎜
⎝

–β̄I(1 + δ̄I) – m β̄S(1 + 2δ̄I) β̄S(1 + 2δ̄I)
λ̄ –β̄I(1 + δ̄I) – n 0
0 β̄I(1 + δ̄I) –k

⎞

⎟
⎠ ,
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where

m = 2μ̄ + η̄ + λ̄ + d̄2 + d̄3,

n = 2μ̄ + η̄ + εχ + γ̄ + d̄1 + d̄3,

k = 2μ̄ + λ̄ + εχ + γ̄ + d̄1 + d̄2.

Hence

det
(
J [2]) = –

[(
β̄I∗(1 + δ̄I∗) + m

)(
β̄I∗(1 + δ̄I∗) + n

)
k +

(
β̄I∗(1 + δ̄I∗)

)(
λ̄β̄I∗(1 + δ̄I∗)

)

–
(
β̄S∗(1 + δ̄2δ̄I∗)λ̄k

)]
< 0.

Therefore, by Lemma 1, all of the eigenvalues ωi for i = 1, 2, 3, 4, 5 satisfy the condition
given by (16). Thus, the pandemic equilibrium point E∗ is locally asymptotically stable. �

4 Existence and uniqueness
We denote a Banach space by D(W ) with W = [0, b] containing a real-valued continu-
ous function with sup norm and P = D(W ) × D(W ) × D(W ) × D(W ) × D(W ) with norm
‖(S, E, I, Q, R)‖ = ‖S‖ + ‖E‖ + ‖I‖ + ‖Q‖ + ‖R‖, where ‖S‖ = supt∈J |S(t)|, ‖E‖ = supt∈j |E(t)|,
‖I‖ = supt∈j |I(t)|, ‖Q‖ = supt∈j |Q(t)|, ‖R‖ = supt∈j |R(t)|. By using the ABC integral opera-
tor on model (2), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t) – S(0) = ABC
D

χ
0,t[S(t)]{b̄ – β̄S(t)I(t)(1 + δ̄I(t)) – (η̄ + μ̄ + d̄3)S(t)},

E(t) – E(0) = ABC
D

χ
0,t[E(t)]{β̄S(t)I(t)(1 + δ̄I(t)) – (λ̄ + μ̄ + d̄2)E(t)},

I(t) – Q(0) = ABC
D

χ
0,t[I(t)]{λ̄E(t) – (μ̄ + ε̄ + γ̄ + d̄1)I(t)},

Q(t) – I(0) = ABC
D

χ
0,t[Q(t)]{d̄3S(t) + d̄2E(t) + d̄1I(t) – (μ̄ + τ̄ )Q(t)},

R(t) – R(0) = ABC
D

χ
0,t[R(t)]{η̄S(t) + τ̄Q(t) + γ̄ I(t) – μ̄R(t)}.

(17)

Now, using equation (3), we obtain

S(t) – S(0) =
1 – χ

B(χ )
K1

(
χ , t, S(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K1
(
χ ,ϑ , S(ϑ)

)
dϑ ,

E(t) – E(0) =
1 – χ

B(χ )
K2

(
χ , t, E(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K2
(
χ ,ϑ , E(ϑ)

)
dϑ ,

I(t) – I(0) =
1 – χ

B(χ )
K3

(
χ , t, I(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K3
(
χ ,ϑ , Q(ϑ)

)
dϑ ,

Q(t) – Q(0) =
1 – χ

B(χ )
K4

(
χ , t, Q(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K4
(
χ ,ϑ , I(ϑ)

)
dϑ ,

R(t) – R(0) =
1 – χ

B(χ )
K5

(
χ , t, R(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K5
(
χ ,ϑ , R(ϑ)

)
dϑ ,

(18)

where

K1
(
χ , t, S(t)

)
= b̄ – β̄S(t)I(t)

(
1 + δ̄I(t)

)
– (η̄ + μ̄ + d̄3)S(t),

K2
(
χ , t, E(t)

)
= β̄S(t)I(t)

(
1 + δ̄I(t)

)
– (λ̄ + μ̄ + d̄2)E(t),
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K3
(
χ , t, I(t)

)
= χE(t) – (μ̄ + ε̄ + γ̄ + d̄1)I(t), (19)

K4
(
χ , t, Q(t)

)
= d̄3S(t) + d̄2E(t) + d̄1I(t) – (μ̄ + τ̄ )Q(t),

K5
(
χ , t, R(t)

)
= η̄S(t) + τ̄Q(t) + γ̄ I(t) – μ̄R(t).

The K1, K2, K3, K4, and K5 satisfy the Lipschitz condition only if S(t), E(t), I(t), Q(t), and
R(t) possess an upper bound. Supposing S(t) and S∗(t) are couple functions, we have

∥
∥K1

(
χ , t, S(t)

)
– K1

(
χ , t, S∗(t)

)∥
∥ =

∥
∥–

(
β̄I(1 + δ̄I) + η̄ + μ̄ + d̄3

)(
S(t) – S∗(t)

)∥
∥. (20)

Considering

η1 :=
∥
∥–

(
β̄I(1 + δ̄I) + η̄ + μ̄ + d̄3

)∥
∥,

we get

∥
∥K1

(
χ , t, S(t)

)
– K1

(
χ , t, S∗(t)

)∥
∥ ≤ η1

∥
∥S(t) – S∗(t)

∥
∥. (21)

Similarly,

∥
∥K2

(
χ , t, E(t)

)
– K2

(
χ , t, E∗(t)

)∥
∥ ≤ η2

∥
∥E(t) – E∗(t)

∥
∥,

∥
∥K3

(
χ , t, I(t)

)
– K3

(
χ , t, I∗(t)

)∥
∥ ≤ η3

∥
∥I(t) – I∗(t)

∥
∥,

∥
∥K4

(
χ , t, Q(t)

)
– K4

(
χ , t, Q∗(t)

)∥
∥ ≤ η4

∥
∥Q(t) – Q∗(t)

∥
∥,

∥
∥K5

(
χ , t, R(t)

)
– K5

(
χ , t, R∗(t)

)∥
∥ ≤ η5

∥
∥R(t) – R∗(t)

∥
∥,

(22)

where

η2 =
∥
∥–(λ̄ + μ̄ + d̄2)

∥
∥

η3 =
∥
∥–(μ̄ + ε̄ + γ̄ + d̄1)

∥
∥

η4 =
∥
∥–(μ̄ + τ̄ )

∥
∥

η5 =
∥
∥–(μ̄)

∥
∥,

which shows that the Lipschitz condition holds. Continuing in a recursive manner, (18)
gives us

Sn(t) – S(0) =
1 – χ

B(χ )
K1

(
χ , t, Sn–1(t)

)

+
χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K1
(
χ ,ϑ , Sn–1(ϑ)

)
dϑ ,

En(t) – E(0) =
1 – χ

B(χ )
K2

(
χ , t, En–1(t)

)

+
χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K2
(
χ ,ϑ , En–1(ϑ)

)
dϑ ,

In(t) – I(0) =
1 – χ

B(χ )
K3

(
χ , t, In–1(t)

)
(23)
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+
χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K3
(
χ ,ϑ , In–1(ϑ)

)
dϑ ,

Qn(t) – Q(0) =
1 – χ

B(χ )
K4

(
χ , t, Qn–1(t)

)

+
χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K4
(
χ ,ϑ , Qn–1(ϑ)

)
dϑ ,

Rn(t) – R(0) =
1 – χ

B(χ )
K5

(
χ , t, Rn–1(t)

)

+
χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K5
(
χ ,ϑ , Rn–1(ϑ)

)
dϑ ,

together with S0(t) = S(0), E0(t) = E(0), I0(t) = I(0), Q0(t) = Q(0), and R0(t) = R(0). Differ-
ence of consecutive terms yields

�S,n(t) = Sn(t) – Sn–1(t) =
1 – χ

B(χ )
(
K1

(
χ , t, Sn–1(t)

)
– K1

(
χ , t, Sn–2(t)

))

+
χ

B(χ )
(χ )

∫ t

0
(t – ϑ)χ–1(

K1
(
χ ,ϑ , Sn–1(ϑ)

)
– K1

(
χ ,ϑ , Sn–2(ϑ)

))
dϑ ,

�E,n(t) = En(t) – En–1(t) =
1 – χ

B(χ )
(
K2

(
χ , t, En–1(t)

)
– K2

(
χ , t, En–2(t)

))

+
χ

B(χ )
(χ )

∫ l

0
(t – ϑ)χ–1(

K2
(
χ ,ϑ , En–1(ϑ)

)
– K2

(
χ ,ϑ , En–2(ϑ)

))
dϑ ,

�I,n(t) = I1n(t) – In–1(t) =
1 – χ

B(χ )
(
K3

(
χ , t, In–1(t)

)
– K3

(
χ , t, In–2(t)

))

+
χ

B(χ )
(χ )

∫ t

0
(t – ϑ)χ–1(

K3
(
χ ,ϑ , In–1(ϑ)

)
– K3

(
χ ,ϑ , In–2(ϑ)

))
dϑ ,

�Q,n(t) = Q2n(t) – Qn–1(t) =
1 – χ

B(χ )
(
K4

(
χ , t, Qn–1(t)

)
– K4

(
χ , t, Qn–2(t)

))

+
χ

B(χ )
(χ )

∫ t

0
(t – ϑ)χ–1(

K4
(
χ ,ϑ , Qn–1(ϑ)

)
– K4

(
χ ,ϑ , Qn–2(ϑ)

))
dϑ ,

�R,n(t) = Fn(t) – Rn–1(t) =
1 – χ

B(χ )
(
K5

(
χ , t, Rn–1(t)

)
– K5

(
χ , t, Rn–2(t)

))

+
χ

B(χ )
(χ )

∫ t

0
(t – ϑ)χ–1(

K5
(
χ ,ϑ , Rn–1(ϑ)

)
– K5

(
χ ,ϑ , Rn–2(ϑ)

))
dϑ .

(24)

Noting that

Sn(t) =
n∑

i=0

�S,i(t), En(t) =
n∑

i=0

�E,i(t), In(t) =
n∑

i=0

�I,i(t),

Qn(t) =
n∑

i=0

�Q,i(t), Rn(t) =
n∑

i=0

�R,i(t).

(25)

Taking into account Eqs. (21)–(22) and considering that

�S,n–1(t) = Sn–1(t) – Sn–2(t), �E,n–1(t) = En–1(t) – En–2(t),
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�I,n–1(t) = In–1(t) – In–2(t), �Q,n–1(t) = Qn–1(t) – Qn–2(t), (26)

�R,n–1(t) = Rn–1(t) – Rn–2(t),

we reach

∥
∥�S,n(t)

∥
∥ ≤ 1 – χ

B(χ )
η1
∥
∥�S,n–1(t)

∥
∥ χ

B(χ )
(χ )
η1 ×

∫ t

0
(t – ϑ)χ–1∥∥�S,n–1(ϑ)

∥
∥dϑ ,

∥
∥�E,n(t)

∥
∥ ≤ 1 – χ

B(χ )
η2
∥
∥�E,n–1(t)

∥
∥ χ

B(χ )
(χ )
η2 ×

∫ t

0
(t – ϑ)χ–1∥∥�E,n–1(ϑ)

∥
∥dϑ ,

∥
∥�I,n(t)

∥
∥ ≤ 1 – χ

B(χ )
η3
∥
∥�I,n–1(t)

∥
∥ χ

B(χ )
(χ )
η3 ×

∫ t

0
(t – ϑ)χ–1∥∥�I,n–1(ϑ)

∥
∥dϑ ,

∥
∥�Q,n(t)

∥
∥ ≤ 1 – χ

B(χ )
η4
∥
∥�Q,n–1(t)

∥
∥ χ

B(χ )
(χ )
η4 ×

∫ t

0
(t – ϑ)χ–1∥∥�Q,n–1(ϑ)

∥
∥dϑ ,

∥
∥�R,n(t)

∥
∥ ≤ 1 – χ

B(χ )
η5
∥
∥�R,n–1(t)

∥
∥ χ

B(χ )
(χ )
η5 ×

∫ t

0
(t – ϑ)χ–1∥∥�R,n–1(ϑ)

∥
∥dϑ .

(27)

Theorem 3 System (2) has a unique solution for t ∈ [0, b] subject to the condition if

1 – χ

B(χ )
ηi +

χ

B(χ )
(χ )
b̄ηi < 1, i = 1, 2, . . . , 5, (28)

holds.

Proof Since S(t), E(t), I(t), Q(t), and R(t) are bounded functions and Eqs. (21)–(22) hold,
in a recursive manner Eq. (27) leads to

∥
∥�S,n(t)

∥
∥ ≤ ∥

∥S0(t)
∥
∥

(
1 – χ

B(χ )
η1 +

χ b̄
B(χ )
(χ )

η1

)n

,

∥
∥�E,n(t)

∥
∥ ≤ ∥

∥E0(t)
∥
∥

(
1 – χ

B(χ )
η3 +

χ b̄
B(χ )
(χ )

η2

)n

,

∥
∥�I,n(t)

∥
∥ ≤ ∥

∥I0(t)
∥
∥

(
1 – χ

B(χ )
η3 +

χ b̄
B(χ )
(χ )

η3

)n

,

∥
∥�Q,n(t)

∥
∥ ≤ ∥

∥Q0(t)
∥
∥

(
1 – χ

B(χ )
η4 +

χ b̄
B(χ )
(χ )

η4

)n

,

∥
∥�R,n(t)

∥
∥ ≤ ∥

∥R0(t)
∥
∥

(
1 – χ

B(χ )
η5 +

χ b̄
B(χ )
(χ )

η5

)n

.

(29)

So

∥
∥�S,n(t)

∥
∥ → 0,

∥
∥�E,n(t)

∥
∥ → 0,

∥
∥�I,n(t)

∥
∥ → 0,

∥
∥�Q,n(t)

∥
∥ → 0,

∥
∥�R,n(t)

∥
∥ → 0
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as n → ∞. Incorporating the triangle inequality, and for any k, Eq. (29) yields

∥
∥Sn+k(t) – Sn(t)

∥
∥ ≤

n+k∑

j=n+1

Zj
1 =

Zn+1
1 – Zn+k+1

1
1 – Z1

,

∥
∥En+k(t) – En(t)

∥
∥ ≤

n+k∑

j=n+1

Zj
2 =

Zn+1
2 – Zn+k+1

2
1 – Z2

,

∥
∥In+k(t) – In(t)

∥
∥ ≤

n+k∑

j=n+1

Zj
3 =

Zn+1
3 – Zn+k+1

3
1 – Z3

,

∥
∥Qn+k(t) – Qn(t)

∥
∥ ≤

n+k∑

j=n+1

Zj
4 =

Zn+1
4 – Zn+k+1

4
1 – Z4

,

∥
∥Rn+k(t) – Rn(t)

∥
∥ ≤

n+k∑

i=n+1

Zj
5 =

Zn+1
5 – Zn+k+1

5
1 – Z5

,

(30)

with Zi = 1–χ

B(χ )ηi + χ

B(χ )
(χ ) b̄ηi < 1 by hypothesis. Similar to the method as mentioned in
[31], we can easily obtain the existence of a unique solution for system (2). �

5 Hyers–Ulam stability
Definition ([31]) The ABC fractional integral system given by Eq. (18) is said to be Hyers–
Ulam stable if there exist constants �i > 0, i ∈ N5 satisfying: For every γi > 0, i ∈ N5, for

∣
∣
∣
∣S(t) –

1 – χ

B(χ )
K1

(
χ , t, S(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K1
(
χ ,ϑ , S(ϑ)

)
dϑ

∣
∣
∣
∣ ≤ γ1,

∣
∣
∣
∣E(t) –

1 – χ

B(χ )
K2

(
χ , t, E(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K2
(
χ ,ϑ , E(ϑ)

)
dϑ

∣
∣
∣
∣ ≤ γ2,

∣
∣
∣
∣I(t) –

1 – χ

B(χ )
K3

(
χ , t, I(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K3
(
χ ,ϑ , I(ϑ)

)
dϑ

∣
∣
∣
∣ ≤ γ3,

∣
∣
∣
∣Q(t) –

1 – χ

B(χ )
K4

(
χ , t, Q(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K4
(
χ ,ϑ , Q(ϑ)

)
dϑ

∣
∣
∣
∣ ≤ γ4,

∣
∣
∣
∣R(t) –

1 – χ

B(χ )
K5

(
χ , t, R(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K5
(
χ ,ϑ , R(ϑ)

)
dϑ

∣
∣
∣
∣ ≤ γ5,

(31)

there exist (Ṡ(t), Ė(t), İ(t), Q̇(t), Ṙ(t)) which satisfy

Ṡ(t) =
1 – χ

B(χ )
K1

(
χ , t, S(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K1
(
χ ,ϑ , Ṡ(ϑ)

)
dϑ ,

Ė(t) =
1 – χ

B(χ )
K2

(
χ , t, E(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K2
(
χ ,ϑ , Ė(ϑ)

)
dϑ ,

İ(t) =
1 – χ

B(χ )
K3

(
χ , t, I(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K3
(
χ ,ϑ , İ(ϑ)

)
dϑ ,

Q̇(t) =
1 – χ

B(χ )
K4

(
χ , t, Q(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K4
(
χ ,ϑ , Q̇(ϑ)

)
dϑ ,

Ṙ(t) =
1 – χ

B(χ )
K5

(
χ , t, R(t)

)
+

χ

B(χ )
(χ )
×

∫ t

0
(t – ϑ)χ–1

K5
(
χ ,ϑ , Ṙ(ϑ)

)
dϑ ,

(32)
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such that

∣
∣S(t) – Ṡ(t)

∣
∣ ≤ ζ1γ1,

∣
∣E(t) – Ė(t)

∣
∣ ≤ ζ2γ2,

∣
∣I(t) – İ(t)

∣
∣ ≤ ζ3γ3,

∣
∣Q(t) – Q̇(t)

∣
∣ ≤ ζ4γ4,

∣
∣R(t) – Ṙ(t)

∣
∣ ≤ ζ5γ5.

(33)

Theorem 4 Model (2) is Hyers–Ulam stable subject to the condition J .

Proof Thanks to Theorem 3, the proposed ABC fractional model (2) has a unique solution
(S(t), E(t), I(t), Q(t), R(t)) satisfying (18). Then we have

∥
∥S(t) – Ṡ(t)

∥
∥ ≤ 1 – χ

B(χ )
∥
∥K1

(
χ , t, S(t)

)
– K1

(
χ , t, Ṡ(t)

)∥
∥

+
χ

B(χ )
(χ )

∫ t

0
(t – ϑ)χ–1∥∥K1

(
χ , t, S(t)

)
– K1

(
χ , t, Ṡ(t)

)∥
∥dϑ

≤
[

1 – χ

B(χ )
+

χ

B(χ )
(χ )

]

χ1‖S – Ṡ‖,

(34)

∥
∥E(t) – Ė(t)

∥
∥ ≤ 1 – χ

B(χ )
∥
∥K2

(
χ , t, E(t)

)
– K2

(
χ , t, Ė(t)

)∥
∥

+
χ

B(χ )
(χ )

∫ t

0
(t – ϑ)χ–1∥∥K2

(
χ , t, E(t)

)
– K2

(
χ , t, Ė(t)

)∥
∥dϑ

≤
[

1 – χ

B(χ )
+

χ

B(χ )
(χ )

]

χ2‖E – Ė‖,

(35)

∥
∥I(t) – İ(t)

∥
∥ ≤ 1 – χ

B(χ )
∥
∥K3

(
χ , t, I(t)

)
– K3

(
χ , t, İ(t)

)∥
∥

+
χ

B(χ )
(χ )

∫ t

0
(t – ϑ)χ–1∥∥K3

(
χ , t, I(t)

)
– K3

(
χ , t, İ(t)

)∥
∥dϑ

≤
[

1 – χ

B(χ )
+

χ

B(χ )
(χ )

]

χ3‖I – İ‖,

(36)

∥
∥Q(t) – Q̇(t)

∥
∥ ≤ 1 – χ

B(χ )
∥
∥K4

(
χ , t, Q(t)

)
– K4

(
χ , t, Q̇(t)

)∥
∥

+
χ

B(χ )
(χ )

∫ t

0
(t – ϑ)χ–1∥∥K4

(
χ , t, Q(t)

)
– K4

(
χ , t, Q̇(t)

)∥
∥dϑ

≤
[

1 – χ

B(χ )
+

χ

B(χ )
(χ )

]

χ4‖Q – Q̇‖,

(37)

∥
∥R(t) – Ṙh(t)

∥
∥ ≤ 1 – χ

B(χ )
∥
∥K5

(
χ , t, R(t)

)
– K5

(
χ , t, Ṙ(t)

)∥
∥

+
χ

B(χ )
(χ )

∫ t

0
(t – ϑ)χ–1∥∥K5

(
χ , t, R(t)

)
– K5

(
χ , t, Ṙ(t)

)∥
∥dϑ

≤
[

1 – χ

B(χ )
+

χ

B(χ )
(χ )

]

χ5‖R – Ṙ‖.

(38)

Taking γi = χi, �i = 1–χ

B(χ ) + χ

B(χ )
(χ ) implies

∥
∥S(t) – Ṡ(t)

∥
∥ ≤ γ1�1. (39)
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Similarly,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖E(t) – Ė(t)‖ ≤ γ2�2,

‖I(t) – İ(t)‖ ≤ γ3�3,

‖Q(t) – Q̇(t)‖ ≤ γ4�4,

‖R(t) – Ṙ(t)‖ ≤ γ5�5.

(40)

System (18) is Hyers–Ulam stable by taking into account (39) and (40), hence model (2)
is Hyers–Ulam stable. �

6 Numerical scheme
To solve our proposed model we incorporate the Toufik–Atangana scheme [32]. For this
we consider the first equation of (2). We have

ABC
0 Dχ

t S(t) = G1
(
t, S(t)

)
, S(0) = S0, (41)

the solution of which is

S(t) = S(0) +
1 – χ

F(χ )
G1

(
t, S(t)

)
+

χ

F(χ )
(χ )

∫ t

0
G1

(
k, S(k)

)
(t – k)χ–1 dk. (42)

Applying Lagrange’s interpolation polynomial on the interval [tk , tk+1] to the equality
G1(y, S(y)) = �

α3
– b0

(I(y)+A(y)S(y))
k(N) – S(y) leads to

Sk ≈ 1
h
[
(y – tk–1)G1

(
tk , S(tk), I(tk), A(tk)

)

– (y – tk)G1
(
tk+1, S(tk+1), I(tk+1), A(tk+1)

)]
,

(43)

where h = tk – tk–1. Now, substituting (43) into (42), we have

S(tn+1)

= S(0) +
1 – χ

F(χ )
G1

(
tk , S(tk), E(tk), I(tk), Q(tk), R(tk)

)

+
χ

F(χ )
(χ )

×
n∑

j=1

⎛

⎝

G1(tj ,S(tj),E(tj),I(tj),Q(tj),R(tj))
h

∫ tj+1
tj

(y – tj–1)(tn+1 – y)χ–1 dy

– G1(tj–1,S(tj–1),E(tj–1),I(tj–1),Q(tj–1),R(tj–1))
h

∫ tj+1
tj

(y – tj–1)(tn+1 – y)χ–1 dy

⎞

⎠

× S(0) +
1 + χ

F(χ )
G1

(
tn, S(tn), E(tn), I(tn), Q(tn), R(tn)

)

+
χ

F(χ )
(χ )

n∑

j=1

( G1(tj ,S(tj),E(tj),I(tj),Q(tj),R(tj))
h ϒj–1

– G1(tj–1,S(tj–1),E(tj–1),I(tj–1),Q(tj–1),R(tj–1))
h ϒj

)

,

(44)



Khan et al. Advances in Difference Equations        (2021) 2021:387 Page 14 of 22

where

ϒj–1 =
∫ tj+1

tj

(y – tj–1)(tn+1 – y)χ–1 dy

= –
1
χ

[
(tj+1 – tj–1)(tn+1 – tj+1)χ – (tj – tj–1)(tn+1 – tj)χ

]

–
1

χ (χ + 1)
[
(tn+1 – tj+1)χ+1(tn+1 – tj+1)χ – (tn+1 – tj)χ+1],

(45)

ϒj =
∫ tj+1

tj

(y – tj–1)(tn+1 – y)χ–1 dy

= –
1
χ

[
(tj+1 – tj–1)(tn+1 – tj+1)χ

]

–
1

χ (χ + 1)
[
(tn+1 – tj+1)χ+1(tn+1 – tj)χ+1].

(46)

Incorporating tj = jh into (45) and (46) leads to

ϒj–1 =
hχ+1

χ (χ + 1)
[
(n + 1 – j)χ (n – j + 2 + χ ) – (n – j)χ (n – j + 2 + 2χ )

]
, (47)

ϒj =
hχ+1

χ (χ + 1)
[
(n + 1 – j)χ+1 – (n – j)χ (n – j + 1 + χ )

]
. (48)

Equation (44) with the help of (47) and (48) becomes

S(tn+1) = S(t0) +
1 – χ

F(χ )
G1

(
tn, S(tn), E(tn), I(tn), Q(tn), R(tn)

)

+
χ

F(χ )
(χ )

×
n∑

j=1

⎛

⎜
⎜
⎜
⎜
⎝

G1(tj ,S(tj),E(tj),I(tj),Q(tj),R(tj))

(χ+2)

× hχ [(n + 1 – j)χ (n – j + 2 + χ ) – (n – j)χ (n – j + 2 + 2χ )]
– G1(tj–1,S(tj–1),E(tj–1),I(tj–1),Q(tj–1),R(tj–1))


(χ+2)
× hχ [(n + 1 – j)χ+1 – (n – j)χ (n – j + 1 + χ )]

⎞

⎟
⎟
⎟
⎟
⎠

.

(49)

Similarly,

E(tn+1) = E(t0) +
1 – χ

F(χ )
G1

(
tn, S(tn), E(tn), I(tn), Q(tn), R(tn)

)

+
χ

F(χ )
(χ )

×
n∑

j=1

⎛

⎜
⎜
⎜
⎜
⎝

G1(tj ,S(tj),E(tj),I(tj),Q(tj),R(tj))

(χ+2)

× hχ [(n + 1 – j)χ (n – j + 2 + χ ) – (n – j)χ (n – j + 2 + 2χ )]
– G1(tj–1,S(tj–1),E(tj–1),I(tj–1),Q(tj–1),R(tj–1))


(χ+2)
× hχ [(n + 1 – j)χ+1 – (n – j)χ (n – j + 1 + χ )]

⎞

⎟
⎟
⎟
⎟
⎠

,

(50)



Khan et al. Advances in Difference Equations        (2021) 2021:387 Page 15 of 22

I(tn+1) = I(t0) +
1 – χ

F(χ )
G1

(
tn, S(tn), E(tn), I(tn), Q(tn), R(tn)

)

+
χ

F(χ )
(χ )

×
n∑

j=1

⎛

⎜
⎜
⎜
⎜
⎝

G1(tj ,S(tj),E(tj),I(tj),Q(tj),R(tj))

(χ+2)

× hχ [(n + 1 – j)χ (n – j + 2 + χ ) – (n – j)χ (n – j + 2 + 2χ )]
– G1(tj–1,S(tj–1),E(tj–1),I(tj–1),Q(tj–1),R(tj–1))


(χ+2)
× hχ [(n + 1 – j)χ+1 – (n – j)χ (n – j + 1 + χ )]

⎞

⎟
⎟
⎟
⎟
⎠

,

(51)

Q(tn+1) = Q(t0) +
1 – χ

F(χ )
G1

(
tn, S(tn), E(tn), I(tn), Q(tn), R(tn)

)

+
χ

F(χ )
(χ )

×
n∑

j=1

⎛

⎜
⎜
⎜
⎜
⎝

G1(tj ,S(tj),E(tj),I(tj),Q(tj),R(tj))

(χ+2)

× hχ [(n + 1 – j)χ (n – j + 2 + χ ) – (n – j)χ (n – j + 2 + 2χ )]
– G1(tj–1,S(tj–1),E(tj–1),I(tj–1),Q(tj–1),R(tj–1))


(χ+2)
× hχ [(n + 1 – j)χ+1 – (n – j)χ (n – j + 1 + χ )]

⎞

⎟
⎟
⎟
⎟
⎠

,

(52)

R(tn+1) = R(t0) +
1 – χ

F(χ )
G1

(
tn, S(tn), E(tn), I(tn), Q(tn), R(tn)

)

+
χ

F(χ )
(χ )

×
n∑

j=1

⎛

⎜
⎜
⎜
⎜
⎝

G1(tj ,S(tj),E(tj),I(tj),Q(tj),R(tj))

(χ+2)

× hχ [(n + 1 – j)χ (n – j + 2 + χ ) – (n – j)χ (n – j + 2 + 2χ )]
– G1(tj–1,S(tj–1),E(tj–1),I(tj–1),Q(tj–1),R(tj–1))


(χ+2)
× hχ [(n + 1 – j)χ+1 – (n – j)χ (n – j + 1 + χ )]

⎞

⎟
⎟
⎟
⎟
⎠

.

(53)

7 Graphical results
We get the numerical simulations based on (49)–(53) with parameter values given in Ta-
ble 1. Figure 1 represents the dynamics of all the five population classes i.e. S, E, I , Q, and
R when χ = 0.8. Figure 2 represents the numerical simulation results for α = 0.2 based on
the Mittag—Leffler generalized function which is characterized by the crossover property
when stretched from one operator to another. The operator has a statistical representa-
tion making it more viable. In Fig. 2, the susceptible human population increases as the

Table 1 Values and descriptions of the parameters (based on data [26])

Symbols Values References

b̄ 0.028 [26]
ᾱ 0.2 [26]
μ̄ 0.011 [26]
d̄1 0.2 [26]
d̄2 0.08 [26]
d̄3 0.06 [26]
λ̄ 0.3 [26]
β̄ 0.5 [26]
γ̄ 0.3 [26]
η̄ 0.6 [26]
τ̄ 0.1 [26]
ε̄ 0.3 [26]
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Figure 1 For χ = 0.8, plots of S, E, I, Q, R

Figure 2 Profiles for the first set of initial conditions at different χ values i.e. χ = 0.50, 0.55, 0.60, 0.65, 0.70,
0.75, 0.80, 0.85, 0.90, and α = 0.2

Figure 3 Profiles for the second set of initial conditions at different χ values i.e. χ = 0.50, 0.55, 0.60, 0.65, 0.70,
0.75, 0.80, 0.85, 0.90, and α = 0.2

Figure 4 The incidence data of COVID-19 from
Khyber Pakhtunkhwa, Pakistan

fractional order χ derivative increases. In Fig. 2 the number of the exposed decreases as
the fractional order χ value increases. Figure 2 depicts COVID-19 infected people, the
number of which decreases as the fractional order derivative increases. Similarly, Fig. 2
depicts quarantined people and the number of quarantined people increases as the frac-
tional order derivative increases. In Fig. 2 the recovered human population increases as
the fractional order values increase. Figure 3 represents the numerical simulation results
for α = 0.3 and for different values of fractional parameter χ . Figure 4. shows the real data
plot against the model infected people class.
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8 Optimal control analysis
We use two control variables i.e. social distancing u1(t) and treatment u2(t) [33–35]. The
objective functional is

J(u1, u2) = min
∫ T

0

[

G1S(t) + G2E(t) + G3I(t) +
1
2
(
Z1u2

1(t) + Z2u2
2(t)

)
]

dt. (54)

Subject to the state system, model (2) is modified to (55) after incorporating the control
variable

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC
D

χ
0,t[S(t)] = b̄ – β̄S(t)I(t)(1 + δ̄I(t)) – (η̄ + μ̄ + d̄3 + u1(t))S(t),

ABC
D

χ
0,t[E(t)] = β̄S(t)I(t)(1 + δ̄I(t)) – (λ̄ + μ̄ + d̄2 + u1(t))E(t),

ABC
D

χ
0,t[I(t)] = λ̄E(t) – (μ̄ + ε̄ + γ̄ + d̄1)I(t) – (u1(t) + u2(t))I(t),

ABC
D

χ
0,t[Q(t)] = d̄3S(t) + d̄2E(t) + d̄1I(t) + u2(t)I(t) – (μ̄ + τ̄ χ + u1(t))Q(t),

ABC
D

χ
0,t[R(t)] = η̄S(t) + τ̄ χ Q(t) + γ̄ I(t) + u1(t)S(t) + u1(t)E(t)

+ u1(t)I(t) + u1(t)Q(t) – μ̄R(t)

(55)

with ICs

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0. (56)

In the objective functional (54), G1, G2, and G3 are the relative weights and Z1 and Z2

measure the associated cost on social distancing and treatment, respectively. Our goal is
to find the control function such that

J
(
u∗

1, u∗
2
)

= min
{

J(u1, u2), u1, u2 ∈ U
}

(57)

subject to system (55), where the control set is defined as

U =
{

(u1, u2)/ui(t)0 ≤ ui(t) ≤ 1, i = 1, 2
}

. (58)

The conditions that an optimal solution must satisfy are obtained by using Pontryagin’s
maximum principle. This principle translates Eqs. (54)–(55) into a problem characterized
with minimizing the following Hamiltonian H with regard to control variables:

H = G1S(t) + G2E(t) + G3I(t) +
1
2
(
Z1u2

1 + Z2u2
2
)

+ λ1
[
b̄ – β̄S(t)I(t)

(
1 + δ̄I(t)

)
–
(
η̄ + μ̄ + d̄3 + u1(t)

)
S(t)

]

+ λ2
[
β̄S(t)I(t)

(
1 + δ̄I(t)

)
–
(
λ̄ + μ̄ + d̄2 + u1(t)

)
E(t)

]

+ λ3
[
λ̄E(t) – (μ̄ + ε̄ + γ̄ + d̄1)I(t) –

(
u1(t) + u2(t)

)
I(t)

]

+ λ4
[
d̄3S(t) + d̄2E(t) + d̄1I(t) + u2(t)I(t) –

(
μ̄ + τ̄ χ + u1(t)

)
Q(t)

]

+ λ5
[
η̄S(t) + τ̄ χ Q(t) + γ̄ I(t) + u1(t)S(t) + u1(t)E(t)

+ u1(t)I(t) + u1(t)Q(t) – μ̄R(t)
]
,

(59)
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where λ1(t), λ2(t), λ3(t), λ4(t), and λ5(t) are made up of the adjoint variables. The system
solution is determined by taking the partial derivatives of Hamiltonian (59) with respect
to the associated state variable.

Following [32], we obtain the necessary optimality conditions for the system of equa-
tions (54) and (55):

ABC
D

χ
0,t[S(t)] = ∂H

∂λS
(t), ABC

D
χ
0,t[E(t)] = ∂H

∂λE
(t),

ABC
D

χ
0,t[I(t)] = ∂H

∂λA
(t), ABC

D
χ
0,t[Q(t)] = ∂H

∂λI
(t),

ABC
D

χ
0,t[R(t)] = ∂H

∂λR
(t),

⎫
⎪⎬

⎪⎭
(60)

ABC
t D

χ

TλS(t) = – ∂H
∂S (t), ABC

t D
χ

TλE(t) = – ∂H
∂E (t),

ABC
t D

χ

TλI(t) = – ∂H
∂I (t), ABC

t D
χ

TλQ(t) = – ∂H
∂Q (t),

ABC
t D

χ

TλR(t) = – ∂H
∂R (t), ∂H

∂u (t) = 0.

⎫
⎪⎬

⎪⎭
(61)

Theorem 5 In view of the optimal controls, (u∗
1, u∗

2) is the solution of the above control
system (54)–(55), then we can find the adjoint variables λi(t) for i = S, E, I, Q, R, satisfying

ABC
t D

χ

Tλi(t) =
∂H
∂i

, (62)

where i = S, E, I, Q, R and with the transversality conditions

λi(T) = 0 for i = S, E, I, Q, R. (63)

Furthermore, the optimal control variables u∗
1(t), u∗

2(t) are defined by

u∗
1(t) = max

{

min

{X
Z1

, 1
}

, 0
}

,

u∗
2(t) = max

{

min

{
(λI(t) – λQ(t))I∗(t)

Z2
, 1
}

, 0
}

, (64)

where

X =
(
λ1(t) + λR(t)

)
S∗(t) +

(
λE(t) + λR(t)

)
E∗(t)

+
(
λR(t) – λI(t)

)
I∗(t) +

(
λQ(t) + λR(t)

)
Q∗(t).

Proof Using (62), we reach the adjoint system

ABC
t D

χ

TλS(t) = –G1 + λS(t)
[
βI(1 + δI) + η + μ + d3 + μ1(t)

]
,

– λE(t)βI(1 + δI) – λQ(t)d3 – λR(t)
[
η + μ1(t)

]
,

ABC
t D

χ

TλE(t) = –G2 + λE(t)
[
λ + μ + d2 + μ1(t)

]
– λI(t)λ – λQ(t)d3 – λ5(t)μ1(t),

ABC
t D

χ

TλI(t) = –G3 + λS(t)
[
βS(1 + 2δI)

]
– λE(t)

[
βS(1 + 2δI)

]

+ λI(t)
[
μ+ ∈ +γ + d1 + μ1(t) + μ2(t)

]

– λQ(t)
[
d1 + μ2(t)

]
– λR(t)

[
γ + μ1(t)

]
,

(65)
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ABC
t D

χ

TλQ(t) = +λQ(t)
[
μ + τ̄ + μ1(t)

]
– λR(t)

[
τ̄ + μ1(t)

]
,

ABC
t D

χ

TλR(t) = +λR(t)μ.

Also, by applying ∂H
∂ui = 0, we get (64) for i = 1, 2. �

8.1 Scheme for FOCP
For a general initial value problem [36]

AB
C Dχ

0,te(t) = r
(
t, e(t)

)
,

e(0) = e0. (66)

With the help of the fundamental theorem of fractional calculus to Eq. (66), we have

e(t) – e(0) =
1 – χ

B(χ )
r
(
t, e(t)

)
+

χ

B(χ )
(χ )

∫ t

0
r
(
δ, e(δ)

)
(t – δ)χ–1 dδ. (67)

With the normalization function B(χ ) = 1 – χ + χ


(χ ) at tn+1, after discretization, we have

en+1(t) – e(0) =

(χ )(1 – χ )r(tn, en)


(χ )(1 – χ ) + χ

+
χ


(χ )(1 – χ ) + χ

n∑

m=0

∫ tm+1

tm

r.(tn+1 – δ)χ–1 dδ.
(68)

Now, approximating r(η, e(η)) by the two-step Lagrange interpolation [37], we have

r
(
δ, e(δ)

) ∼= r(tm, em)(δ – tm–1)
h

–
r(tm–1, em–1)(δ – tm)

h
. (69)

Now, we get

en+1(t) – e(0)

=

(χ )(1 – χ )


(χ )(1 – χ ) + χ
r(tn, en) +

1
(1 + χ )(
(χ )(1 – χ ) + χ )

n∑

m=0

× {
hχ r(tm, em)

{
(n + 1 – m)χ (n – m + 2 + χ ) – (n – m)χ (n – m + 2 + 2χ )

}

– hχ r(tm–1, em–1)
{

(n + 1 – m)χ+1 – (n – m)χ (n – m + 1 + χ )
}}

.

(70)

To get high stability, we incorporate a simple modification [36] such that replacing h (step
size) with χ (h) with χ (h) = h + O(h2); 0 < χ (h) ≤ 1. This new scheme is a nonstandard
one characterized by unconditional stability, and details can be established in [38], and we
obtain the following scheme:

en+1(t) – e(0)

=

(χ )(1 – χ )


(χ )(1 – χ ) + χ
r(tn, en) +

1
(1 + χ )(
(χ )(1 – χ ) + χ )

n∑

m=0

× {
χ (h)χ r(tm, em)

{
(n + 1 – m)χ (n – m + 2 + χ ) – (n – m)χ (n – m + 2 + 2χ )

}

– χ (h)χ r(tm–1, em–1)
{

(n + 1 – m)χ+1 – (n – m)χ (n – m + 1 + χ )
}}

.

(71)
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Figure 5 Profiles for behavior of each state variable for the fractional model with and without control

Figure 6 Profiles for the behavior of control variables u1 and u2

The new scheme is therefore utilized in Eq. (71) to obtain a numerical solution to the state
system. Further, we make of use the implicit finite difference method in order to derive
the solution of the co-state system Eqs. (55) together with the transversality conditions in
Eq. (63). Figure 5 shows the difference between with and without control of each class of
the model while Fig. 6 shows the profiles of each control variable.

9 Conclusion
In the current analysis, the COVID-19 model has been examined by one of the robust non-
local fractional operators called the ABC operator in the Caputo sense. COVID-19 is one
of the most quickly killing virus. The toxic effects of the infectious disease COVID-19 are
very slow-acting and death or life from overdose typically occurs. It is of vehement impor-
tance to analyze more critically the dynamic of this subtle virus. The fractional operator
employed has been shown to be ideally suitable for studying the transmission dynamics
of a disease in the literature. The fractionalized order is χ , and consideration was given to
the dimensional consistency between the rest of the parameters. As a result, several im-
portant features of the proposed fractional version of the model have been documented,
such as the model formation, the existence and uniqueness of the solution through the
fixed point theorem, invariant region, stability analysis, and, most importantly, the basic
number of reproductions. It should be noted that the fractional type disease model under
investigation comprehends the behavior of the disease more correctly than the variant of
the integer order. In addition, different numerical simulations were carried out by means
of an efficient numerical scheme in order to shed more light on the features of the model.
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