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Abstract
In this paper, the problem of temperature distribution for convective straight fins with
constant and temperature-dependent thermal conductivity is solved by using
artificial neural networks trained by the biogeography-based heterogeneous cuckoo
search (BHCS) algorithm. We have solved the integer and noninteger order energy
balance equation in order to analyse the temperature distribution in convective
straight fins. We have compared our results with homotopy perturbation method
(HPM), variational iteration method (VIM), and homotopy perturbation Sumudu
transform method (HPSTM). The results show that the ANN–BHCS algorithm gives
better results than other analytical techniques. We have further checked the
efficiency of the ANN–BHCS algorithm by using the performance metrics MAD, TIC,
and ENSE. We have calculated the values of MAD, TIC, and ENSE for case 1 of the
problem, and histograms of these metrics show the efficiency of our algorithm.

Keywords: Fractional order differential equations; Design engineering;
Mathematical models; Intelligent computing techniques; Artificial neural networks;
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1 Introduction
A vast number of problems which model physical phenomena, for example heat transfer,
involve the nonlinear function [1]. In mechanical engineering, heat transfer is a very com-
mon science because in various objects it can be required. The problems of improvement
of heat transfer are solved on an extended surface which is known as fin. The heat transfer
mechanism of fin is to conduct heat through its thermal conduction from the source of
heat to the fin’s surface, and then heat is dissipated into the air through the effects of ther-
mal radiation and convection. In addition to traditional uses, like heat exchangers, com-
pressors, and engines with internal combustion, fins also demonstrate efficiency in the
systems of heat rejection and cooling of electronic parts of space vehicles [2, 3]. A broad
analysis on this subject was presented in [4] by Kern and Kraus. By using the homotopy
perturbation technique, Domairry and Fazeli investigated the efficacy of the convective
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fins in [5]. The heat transfer dynamics of fins in space radiator and one-dimensional radi-
ation fins are further investigated in [6–8]. The system of heat-rejecting comprising par-
allel tubes connected by web plates has been studied by Bartas and Sellers [9]. In [10],
Hug and Aziz used a perturbation-based technique to find the closed form solutions for
straight convective fin with thermal conductivity which is dependent on temperature. To
find analytical solution for dimensionless temperature and investigate the efficiency of the
fin having thermal conductivity dependent on temperature, Arslanturk [11, 12] used Ado-
mian decomposition technique.

In recent years, studying the heat transfer on extended surfaces has become very piv-
otal with growing importance of performance of heat transfer fins having lower vol-
umes, weights, initial and operating costs of the systems [11]. In addition to the devel-
opments in standard methods of numerical computation, a new methodology, which is
known as homotopy perturbation Sumudu transformation technique, was proposed to
analyze less or strongly nonlinear systems. HPSTM has recently been used for solution
of nonlinear fractional equation of gas dynamics and some other physical phenomena
[13]. Sumudu transform method, homotopy perturbation method (HPM), and He’s poly-
nomials are combined to design the HPSTM technique [14]. Fractional calculus [15, 16]
is a branch of applied mathematics which deals with arbitrary order differentiation and
integration. It has found many applications in different areas of science and engineer-
ing over the last three decades [17–20]. The HPSTM is used for the solution of en-
ergy balance equation of fractional order [21]. More works on analytical and numerical
techniques for the solving integer and fractional differential equations are available in
[22–51].

In this work, we have designed a hybrid of ANNs and biogeography-based heteroge-
neous cuckoo search algorithm (BHCS) for the solution of integer and fractional order
energy balance equation in order to analyze the temperature distribution in convective
straight fins. We have named our algorithm the ANN–BHCS algorithm. We have analyzed
seven cases of the problems and the results are compared with other techniques such as
HPM, VIM, and HPSTM [6, 21, 52]. The results show that the ANN–BHCS algorithm is
better than other techniques in terms of obtaining the solutions with high accuracy. We
have further tested the efficiency of the ANN–BHCS algorithm by utilizing the perfor-
mance metrics MAD, TIC, and ENSE.

Key contributions of our work are given below:
• We have designed a hybrid technique of ANNs and BHCS which is named

ANN–BHCS algorithm, see Fig. 1. The ANN model is designed for the solution of
integer and fractional order differential equations, see Fig. 3.

• The problem of temperature distribution in convective straight fin is analyzed, see
Fig. 2. Three integer order and four fractional order cases of the problem are
considered.

• To validate the results obtained by the ANN–BHCS algorithm, we have compared it
with analytical techniques such as HPM, VIM, and HPSTM.

• To check the quality of the solutions and efficiency of the algorithm, we have
calculated three performance metrics which are mean absolute deviation (MAD),
Theil’s inequality coefficient (TIC), and error in Nash–Sutcliffe efficiency ENSE.
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Figure 1 Graphical abstract for paper

2 Straight convective fins with temperature-dependent thermal conductivity
Consider a straight convective fin having thermal conductivity dependent on temperature,
and it has an arbitrary constant area of cross section Ac, length b, and perimeter P, and
the heat transfer coefficient is denoted by h. The fin is associated with the temperature
T at the base surface, and extends into temperature Ta of the fluid. The geometry of the
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Figure 2 Geometry of the straight fin

straight fin is given in Fig. 2. The one-dimensional energy balance equation is given by
[52, 53]

Ac
d

dx

[
k(T)

dT
dx

]
– Ph(T – Ta) = 0. (1)

The thermal conductivity of fin’s material is considered as a linear function according to
Eq. (2),

k(T) = ka
[
1 + λ(T – Ta)

]
, (2)

where k is the parameter defining the variation of the thermal conductivity and ka is the
thermal conductivity at the ambient fluid temperature of the fin.

Introducing the dimensionless parameters:

θ =
T – Ta

Tb – Ta
, ξ =

x
b

, β = λ(Tb – Ta) and ψ =
(

hPb2

kaAc

)1/2

. (3)

Now Eq. (1) reduces to the following equation:

d2θ

dξ 2 + βθ
d2θ

dξ 2 + β

(
dθ

dξ

)2

– ψ2θ = 0; 0 ≤ ξ ≤ 1, (4)

with the following boundary conditions:

θ ′(0) = 0 and θ (1) = 1. (5)

The computational domain 0 ≤ x ≤ b is transformed to 0 ≤ ξ ≤ 1 by introducing the di-
mensionless parameters given in Eq. (3).

To understand the anomalous behavior of this system, we fractionalize the energy bal-
ance Eq. (4) into fractional order (v > 0) as follows in order to find fin temperature in
straight fins:

dvθ

dξ v + βθ
d2θ

dξ 2 + β

(
dθ

dξ

)2

– ψ2θ = 0; 1 < v ≤ 2 and 0 ≤ ξ ≤ 1, (6)

with the following boundary conditions as in Eq. (5).
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3 Basic definitions
This section consists of some definitions and important relations from fractional calculus
that have been used in the construction of ANN for FDEs. Fractional derivatives and inte-
grals have been expressed in different ways in literature, i.e., Riemann–Liouville, Caputo,
Erdélyi–Kober, Hadamard, Grünwald–Letnikov, and Riesz type etc. In standard fractional
calculus, equivalence of these definitions for some functions has been given [15, 54, 55]. All
of these definitions have their own importance and advantages in different kinds of prob-
lems in mathematics. Definitions of Riemann–Liouville and Caputo fractional derivatives
are given below.

Definition 1 (The fractional order Riemann–Liouville integral and derivative) The inte-
gral of fractional order v > 0 can be written as [16]

(
Ivf

)
(x) =

1
�(α)

∫ x

0
(x – τ )v–1f (τ ) dτ , (7)

(
I0f

)
(x) = f (x). (8)

Here, Iv shows the fractional integral of order v. The fractional derivative of order v > 0 is
normally given as

(
Dvf

)
(x) =

(
d

dx

)n(
In–vf

)
(x) (n – 1 < v ≤ n). (9)

Here, Dv represents the fractional derivative of order v and n is an integer.

Definition 2 (Caputo fractional derivatives) There are some limitations of the definition
of fractional derivatives given by Riemann–Liouville, when it is used for modeling of some
real world phenomena related to differential equations of fractional order. Therefore, a
modified definition for fractional differential operator Dv is introduced by Caputo [16, 56]:

(
Dvf

)
(x) = In–v dn

dxn f (x) =
1

�(n – v)

∫ x

0
(x – τ )n–v–1f (n)(τ ) dτ (n – 1 < v ≤ n), (10)

where Iv is given in Eq. (3). Caputo integral operator is given by

(
IvDvf

)
(x) = f (x) –

n–1∑
k=0

f k(0)
xk

k!
(n – 1 < v ≤ n). (11)

The ordinary derivative followed by a fractional integral gives the Caputo fractional
derivative, while the calculation in reverse order gives the Riemann–Liouville derivative.
Using Caputo fractional derivative, we can use the traditional homogeneous and nonho-
mogeneous initial/boundary conditions occurring in general applications. However, for
homogeneous initial conditions, Riemann–Liouville and Caputo formulations coincide
[16, 57].

Definition 3 (Mittag-Leffler function (MLF)) The Mittag-Leffler function (MLF) is one
of the most important functions having widespread applications in fractional calculus. It
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plays an important role in the solution of differential equations of integer and fractional
orders because of its exponential nature.

The classical MLF has the definition as given below [58]:

Eα(x) =
∞∑

k=0

xk

�(αk + 1)
(α > 0). (12)

It becomes the exponential function when α = 1. The MLF function with two parameters
α and β is as follows:

Eα,β (t) =
∞∑

k=0

tk

�(αk + β)
(α > 0,β > 0). (13)

For β = 1, it becomes a standard MLF function.

4 Solution methodology
4.1 ANN modeling
This section presents the mathematical modeling of artificial neural networks (ANN) for
differential equations of fractional order. Neural networks modeling has already been im-
plemented for solving integer order differential equations. Now, we model the ANN to
find the solution for fractional order differential equations.

The exponential function is used as an activation function for ANN. It has the capability
to approximate the functions and its fractional derivative is also calculated with terms
represented by classical MLF. The fractional derivative of an exponential function can be
written as

dv

dxv eλx = x–vE1,1–v(λx). (14)

Approximate solution for the problem considered in this research and its v order derivative
is given by

θ̂ (ξ ) =
m∑

i=1

αieωiξ+β , (15)

dv

dξ v θ̂ (ξ ) =
m∑

i=1

αieβiξ–vE1,1–v(ωiξ ). (16)

Equations (15) and (16) are used to approximate a solution of the fractional order differen-
tial equation given in Eq. (6). The neural networks architecture for fractional differential
equations is given in Fig. 3. The objective function for the problem considered in this paper
is given by

min E = E1 + E2, (17)

where E1 and E2 are given by

E1 =
1

N + 1

N∑
m=0

(
dvθ̂

dξ v + βθ̂
d2θ̂

dξ 2 + β

(
dθ̂

dξ

)2

– ψ2θ̂

)2

, (18)
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Figure 3 ANN structure for the problem

E2 =
1
2
(
θ̂ ′(0)2 +

(
θ̂ (1) – 1

)2). (19)

Here, E1 is related to the differential equation and E2 is related to the initial and boundary
conditions. We try to find the weights αi, ωi, and βi in Eq. (15) such that E1 and E2 approach
zero, then E will also approach zero. Hence the approximate solution θ̂ (ξ ) will approach
the exact solution θ (ξ ).

4.2 Cuckoo search
Inspired by the cuckoo bird’s breeding behavior, a metaheuristic algorithm was developed
which is called the cuckoo search algorithm [59]. The female bird lays eggs in other host
birds’ nests and they unintentionally raise her brood. When the host bird finds the egg of
the cuckoo bird in her nest, it either throws it out of the nest or starts making her own
brood elsewhere [60].

In the cuckoo search algorithm, the solution is represented by the egg of the host bird
and the new candidate solution is represented by cuckoo’s egg. There are three rules that
are described for cuckoo search and those are [61]: (1) the cuckoo lays a single egg at a
time and puts it in the host’s nest; (2) the nests that have a high quality egg, i.e., a better
solution will go to the next generation; and (3) there is a fixed number of host nests, and
the host bird can find an alien egg with certain probability.

Assuming xi = (xi1, xi2, . . . , xiD) as the position for the ith egg (solution) then updated
solution xi

new is generated by Levy flights as given below:

xnew
i = xold

i + α(xl – xg) ⊕ Levy(β),

= xold
i +

0.01u
|v|1/β (xi – xg),

(20)
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where the product ⊕ is entry-wise multiplication; the Levy flight exponent is denoted by
β ; the step size for a cuckoo is determined by a positive parameter α; the best solution
within the current population is denoted by xg ; u and v are random numbers:

u ∼ N
(
0,σ 2

u
)
, v ∼ N

(
0,σ 2

v
)
, (21)

σu =
[

sin(πβ/2) · �(1 + β)
2(β–1)/2β · �( 1+β

2 )

]1/β

, σv = 1, (22)

where � is used for gamma function, and β controls the value of σu. There is a discovery
operator in CS which is used to replace the discovered nests with a probability (pa). The
equation that is used to update the solution is given as follows:

xnew
ij =

⎧⎨
⎩

xold
ij + rand · (xr1,j(k) – xr2j(k)) if P > pa,

xold
ij (k) else,

(23)

where xij
new is the jth element of the ith solution xi

new; xr1,j and xr2,j are the jth elements of
the two solutions xr1 and xr2, where r1 and r2 are two different integers in interval [1, NP],
where NP represents size of population, pa represents the discovery probability, P and
rand are some random numbers that belong to the interval [0, 1].

4.3 Biogeography-based optimization
Biogeography-based optimization (BBO) is an evolutionary algorithm which is inspired
by different characteristics of species living in the islands [62]. In BBO, each habitat is
considered as a candidate solution having some habitat’s suitability index (HSI), which is
employed for measurement of the quality of a habitat. A habitat (solution) is represented
by some suitability index variables (SIV). Two types of operators, i.e., migration and muta-
tion, are used in BBO that are employed for the evolution of the population. In migration
process, the solutions with high HSI share their characteristics with the solutions having
low HSI and the solutions with low HSI accept new characteristics from the solutions with
high HSI.

In BBO, population is randomly initialized with NP habitats (solutons). Each generation
sorts the population from the best to the worst and immigration and emigration rates λ

and μ respectively are assigned to each habitat:

⎧⎨
⎩

λi = I(1 – Si
NP ),

μi = E Si
NP ,

(24)

where immigration (I) and emigration (E) rates are such that I = E = 1; Si represents the
number of species of the habitats and Si = NP – i. Accordingly, for the best solution the Si

value is NP – 1, and for the second best solution the Si value is NP – 2, and for the worst
solution the Si value is 0.

The migration mixes the features within the population that modifies the solutions. Af-
ter migration, to modify the solutions, BBO also uses the mutation operator.
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4.4 Heterogeneous cuckoo search algorithm based on BBO
CS and BBO are hybridized because CS uses the Levy flights to modify the solutions as it
is good at exploration, and BBO modifies the solutions using the migration operator as it
is good at exploitation. Combining the exploration and exploitation, a hybrid metaheuris-
tic algorithm is developed which is known as BBO-based heterogeneous cuckoo search
(BHCS) algorithm. The proposed BHCS algorithm has two main stages that are the het-
erogeneous cuckoo search and the discovery based on biogeography. The details of these
two stages are explained in the next section.

4.4.1 Heterogeneous cuckoo search strategy
At first stage, the BHCS algorithm uses the Levy flights and quantum mechanism based
heterogeneous cuckoo search. This strategy is inspired by quantum mechanism and was
first presented in [60, 63]. The rules to update the solutions by heterogeneous cuckoo
search are given as follows [60, 63]:

xnew
i =

⎧⎪⎪⎨
⎪⎪⎩

xold
i + α · (xi – xg) ⊕ Levy(β) 2

3 < sr ≤ 1 (a),

x̄ + L · (x̄ – xold
i ) 1

3 < sr ≤ 2
3 (b),

xold
i + ε · (xg – xold

i ) else (c),

(25)

where L = δ ln(1/η), ε = δ exp(η), xg is used for the best solution at the current iteration;
x̄ = 1

NP
∑NP

i=1 xi represents the mean of all solutions; sr and η are random numbers in the
interval [0, 1]. Equation (25) shows that heterogeneous cuckoo search employs three equa-
tions to update the solutions with the same probabilities. The first equation is related to
Levy flights in original cuckoo search and the second and third equations to update the
solutions are based on quantum mechanism. Updating the solutions using heterogeneous
rules diversifies the search and follows the direction towards the real global region.

4.4.2 Biogeography-based discovery operator
At the second stage, new solutions are generated using a discovery operator. When the
host bird finds an alien egg with probability pa, it abandons the old nest and starts making
a new nest based on the migration operator.

Initially, solutions are listed from the best to worst, and an immigration rate μ is assigned
to each solution:

μl = E
Si

NP
, (26)

where E = 1 represents the maximum emigration rate; Si = NP – i represents the number
of species in solutions.

In biogeography-based discovery operator, those solutions having best fitness value
share their characteristics with other solutions, which helps to enhance the exploitation.

4.4.3 Overall BHCS algorithm
The BHCS algorithm uses a cascading structure for the implementation of its two steps.
The cooperation between heterogeneous search strategy and biogeography-based discov-
ery operator can efficiently balance the exploitation and exploration.
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5 Performance metrics
We have performed 100 simulations on all four problems to establish the stability, adapt-
ability, and certainty of the BHCS algorithm. For this purpose, we have determined the
mean absolute deviation (MAD) in solutions, root-mean-square error (RMSE), error in
Nash–Sutcliffe efficiency (ENSE), Theil’s inequality coefficient (TIC), and Nash–Sutcliffe
efficiency (NSE). The analytical definition of these indexes are provided in Eqs. (27)–(30),

MAD =
1
N

N∑
m=1

|θm – θ̂m|, (27)

TIC =

√
1
N

∑N
m=1 (θm – θ̂m)2

(
√

1
N

∑N
m=1 θ2

m +
√

1
N

∑N
m=1 θ̂2

m)
, (28)

NSE = 1 –
∑N

m=1 (θm – θ̂m)2∑N
m=1 (θm – θ̄m)2

, θ̄m =
1
N

N∑
m=1

θm, (29)

ENSE = 1 – NSE. (30)

6 Results and discussion
In this paper, the biogeography-based heterogeneous cuckoo search (BHCS) algorithm
is used to train the ANN model for the solution of fractional differential equations. We
have considered the fractional form of the energy balance equation (6) in order to find
the temperature in straight fins. We have considered the cases with integer and fractional
orders. The problems are solved using the ANN modeling given in Eqs. (15) and (16). In
our ANN network, we have taken 10 neurons with 30 unknown weights α, ω, and β . The
training is performed over the interval [0, 1] with a step size of 0.1. The domain has 11
grid points.

6.1 Case 1
In the first case, we have taken β = 0, v = 2. Using these values, Eq. (6) becomes

d2θ

dξ 2 – ψ2θ = 0; 0 ≤ ξ ≤ 1, (31)

with boundary conditions

θ ′(0) = 0, θ (1) = 1. (32)

The fitness function for Eqs. (31) and (32) is given as

min E =
1

11

10∑
m=0

(
d2θ̂

dξ 2 – ψ2θ̂

)2

+
1
2
((

θ̂ ′(0)
)2 +

(
θ̂ (1) – 1

)2). (33)

Equation (33) is minimized for ψ = 0.2, ψ = 0.5, and ψ = 0.8 using the ANN–BHCS al-
gorithm. The minimum fitness values obtained for the cases with ψ = 0.2, ψ = 0.5, and
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Figure 4 Weights obtained by the ANN–BHCS algorithm for case 1

ψ = 0.8 are 7.4829E–13, 1.5272E–16, and 2.8616E–12 respectively. Weights obtained by
the ANN–BHCS algorithm for different values of ψ in case 1 are given in Fig. 4.

Using the weights given in Fig. 4, the series solutions for case 1 are given as follows:

Solution for ψ = 0.2:

θ̂ (ξ ) = 0.143377926259098e(–0.0418794570500770∗ξ+0.603339509800116)

– 1.50409601849347e(–0.581908044758456∗ξ–2.01551159960342)

+ 0.287241489951004e(–0.671405234875654∗ξ–0.731521145322519)

– 0.0627038559905543e(–1.36851490007073∗ξ–0.436732558847139)

+ 2.97799690160653e(0.208371755956944∗ξ–2.36837490446120)

+ 0.394989568829285e(–0.586047360504350∗ξ–1.99633165510105)

+ 1.04859467368134e(0.261805873347917∗ξ–4.83414069981780)

+ 0.918091810798712e(–1.44365419755033∗ξ–3.41866339844307)

+ 2.19401669184716e(0.251280939194522∗ξ–2.99313408698317)

+ 1.84383655001332e(–0.239279689235954∗ξ–1.69054475191618),

(34)
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Solution for ψ = 0.5:

θ̂ (ξ ) = 10e(0.499970067232250∗ξ–3.11686717118239)

+ 10e(10∗ξ–10) – 10e(10∗ξ–10) + 10e(10∗ξ–10)

+ 9.99494624581934e(0.527213929554713∗ξ–9.99999999999726)

+ 2.86432831656622e(–0.500001463874875∗ξ–1.86559907908470)

+ 10e(9.99999999998309∗ξ–10) – 9.99999999999504e(10∗ξ–10)

– 1.54342599995394e – 05e(–9.98889167939289∗ξ–10) – 10e(10∗ξ–10),

(35)

Solution for ψ = 0.8:

θ̂ (ξ ) = – 2.84540527255357e(–3.21845338461347∗ξ–6.53112157800192)

– 3.80413421079954e(–3.74181618183772∗ξ–8.93065320014428)

+ 2.00944346021810e(0.799869640284646∗ξ–1.62836178434453)

– 0.441669875127631e(–0.981705252103056∗ξ–4.67920234633275)

– 0.900148712340136e(0.296185270518098∗ξ–5.15015758661538)

+ 6.63668690521927e(–0.779416608705294∗ξ–2.89499226031466)

+ 0.167565735886103e(–1.23922653155550∗ξ–0.390700545289821)

– 3.22533792775341e(0.822874709544892∗ξ–5.18290223782813)

+ 3.19253397853502e(–3.39413566604332∗ξ–6.69094305479483)

– 4.23009948394512e(–1.23074833318238∗ξ–3.75559355870230).

(36)

Exact and approximate solutions for ψ = 0.2, ψ = 0.5, and ψ = 0.8 obtained by HPM, VIM,
HPSTM, and ANN–BHCS algorithm are given in Tables 1, 2 and 3 respectively. The abso-
lute errors in approximate solutions for ψ = 0.2, ψ = 0.5, and ψ = 0.8 are given in Tables 4,
5 and 6 respectively. The tables show that the absolute errors in solutions obtained by the
ANN–BHCS algorithm are less than those of the HPM, VIM, and HPSTM, which shows
that the ANN–BHCS algorithm gives better solutions than other techniques. The exact
and approximate solutions obtained by the ANN–BHCS algorithm for different values of
ψ are also plotted in Fig. 5(a). The figure shows that the solutions obtained by the ANN–
BHCS algorithm are very close to the exact solution. From Fig. 5(a), we can see that the
dimensionless temperature θ decreases as the value of thermo-geometric fin parameter ψ

increases. The absolute errors in solutions for different values of ψ are plotted in Fig. 5(b).
The absolute errors in solutions for ψ = 0.2, ψ = 0.5, and ψ = 0.8 are in the range 2.25E–08
to 7.71E–09, 4.19E–09 to 8.80E–09, and 2.34E–07 to 4.25E–07 respectively. Convergence
of the fitness values for different values of ψ is given in Fig. 5(c). Histogram plots of the
values of performance metrics are given in Figs. 6 and 7. In Fig. 6, the histograms for MAD
and TIC values are given, which shows that more than 90% of the values are very close to
zero. Figure 7 shows that more than 90% of the fitness and ENSE values are very close to
zero, which shows the accuracy of the ANN–BHCS algorithm.
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Table 1 Exact and approximate solutions for case 1 with ψ = 0.2

ξ Exact HPM [6] VIM [52] HPSTM [21] ANN–BHCS

0 0.980327998 0.9803 0.9803 0.980328 0.980328074
0.1 0.980524070 0.9805 0.9805 0.980524 0.980524147
0.2 0.981112365 0.9805 0.9811 0.981112 0.981112432
0.3 0.982093117 0.9821 0.9820 0.982093 0.982093168
0.4 0.983466721 0.9835 0.9834 0.983467 0.983466756
0.5 0.985233724 0.9852 0.9852 0.985234 0.985233752
0.6 0.987394833 0.9874 0.9873 0.987395 0.987394863
0.7 0.989950914 0.9900 0.9899 0.989951 0.989950948
0.8 0.992902988 0.9929 0.9929 0.992903 0.992903022
0.9 0.996252237 0.9963 0.9962 0.996252 0.996252260
1 1.000000000 1.0000 1.0000 1.000000 1.000000005

Table 2 Exact and approximate solutions for case 1 with ψ = 0.5

ξ Exact HPM [6] VIM [52] HPSTM [21] ANN–BHCS

0 0.886818884 0.8868 0.8868 0.886833 0.886818875
0.1 0.887927639 0.8879 0.8879 0.887942 0.887927630
0.2 0.891256675 0.8913 0.8912 0.891271 0.891256667
0.3 0.896814317 0.8968 0.8968 0.896829 0.896814309
0.4 0.904614462 0.9046 0.9046 0.904629 0.904614455
0.5 0.914676614 0.9147 0.9146 0.914691 0.914676608
0.6 0.927025934 0.9270 0.9270 0.92704 0.927025929
0.7 0.941693302 0.9417 0.9416 0.941707 0.941693297
0.8 0.958715394 0.9587 0.9587 0.958727 0.958715390
0.9 0.978134774 0.9781 0.9781 0.978142 0.978134769
1 1.000000000 1.0000 1.0000 1.000000 0.999999996

Table 3 Exact and approximate solutions for case 1 with ψ = 0.8

ξ Exact HPM [6] VIM [52] HPSTM [21] ANN–BHCS

0 0.747699918 0.7477 0.7477 0.747893 0.747699494
0.1 0.750093834 0.7501 0.7500 0.750288 0.750093436
0.2 0.757290912 0.7573 0.7572 0.757487 0.757290522
0.3 0.769337237 0.7693 0.7693 0.769536 0.769336857
0.4 0.786309946 0.7863 0.7863 0.786512 0.786309593
0.5 0.808317724 0.8083 0.8083 0.808523 0.808317413
0.6 0.835501495 0.8355 0.8355 0.835705 0.835501227
0.7 0.868035328 0.8680 0.8680 0.868229 0.868035088
0.8 0.906127550 0.9061 0.9061 0.906294 0.906127316
0.9 0.950022083 0.9500 0.9500 0.950131 0.950021836
1 1.000000000 1.0000 1.0000 1.000000 0.999999740

Table 4 Absolute errors in solutions for case 1 with ψ = 0.2

ξ HPM [6] VIM [52] HPSTM [21] ANN–BHCS

0 2.80E–05 2.80E–05 2.36E–09 7.68E–08
0.1 2.41E–05 2.41E–05 6.98E–08 7.71E–08
0.2 0.00061 1.24E–05 3.65E–07 6.76E–08
0.3 6.88E–06 9.31E–05 1.17E–07 5.06E–08
0.4 3.33E–05 6.67E–05 2.79E–07 3.51E–08
0.5 3.37E–05 3.37E–05 2.76E–07 2.79E–08
0.6 5.17E–06 9.48E–05 1.67E–07 2.95E–08
0.7 4.91E–05 5.09E–05 8.59E–08 3.41E–08
0.8 2.99E–06 2.99E–06 1.16E–08 3.36E–08
0.9 4.78E–05 5.22E–05 2.37E–07 2.25E–08
1 0.000000 0.000000 0.000000 4.68E–09



Ahmad et al. Advances in Difference Equations        (2021) 2021:382 Page 14 of 38

Table 5 Absolute errors in solutions for case 1 with ψ = 0.5

t HPM [6] VIM [52] HPSTM [21] ANN–BHCS

0 1.89E–05 1.89E–05 1.41E–05 8.80E–09
0.1 2.76E–05 2.76E–05 1.44E–05 8.57E–09
0.2 4.33E–05 5.67E–05 1.43E–05 8.12E–09
0.3 1.43E–05 1.43E–05 1.47E–05 7.50E–09
0.4 1.45E–05 1.45E–05 1.45E–05 6.80E–09
0.5 2.34E–05 7.66E–05 1.44E–05 6.12E–09
0.6 2.59E–05 2.59E–05 1.41E–05 5.54E–09
0.7 6.70E–06 9.33E–05 1.37E–05 5.08E–09
0.8 1.54E–05 1.54E–05 1.16E–05 4.74E–09
0.9 3.48E–05 3.48E–05 7.23E–06 4.47E–09
1 0.000000 0.000000 0.000000 4.19E–09

Table 6 Absolute errors in solutions for case 1 with ψ = 0.8

ξ HPM [6] VIM [52] HPSTM [21] ANN–BHCS

0 8.18E–08 8.18E–08 1.93E–04 4.25E–07
0.1 6.17E–06 9.38E–05 1.94E–04 3.98E–07
0.2 9.09E–06 9.09E–05 1.96E–04 3.90E–07
0.3 3.72E–05 3.72E–05 1.99E–04 3.80E–07
0.4 9.95E–06 9.95E–06 2.02E–04 3.53E–07
0.5 1.77E–05 1.77E–05 2.05E–04 3.11E–07
0.6 1.49E–06 1.49E–06 2.04E–04 2.68E–07
0.7 3.53E–05 3.53E–05 1.94E–04 2.40E–07
0.8 2.76E–05 2.76E–05 1.66E–04 2.34E–07
0.9 2.21E–05 2.21E–05 1.09E–04 2.47E–07
1 0.000000 0.000000 0.000000 2.60E–07

Figure 5 Results obtained by the ANN–BHCS algorithm for case 1
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Figure 6 Histograms of MAD and TIC for case 1

6.2 Case 2
In the second case, we have taken ψ = 0.5 and v = 2. Using these values, Eq. (6) becomes

d2θ

dξ 2 + βθ
d2θ

dξ 2 + β

(
dθ

dξ

)2

– (0.5)2θ = 0; 0 ≤ ξ ≤ 1, (37)

with boundary conditions

θ ′(0) = 0, θ (1) = 1. (38)

The fitness function for Eqs. (37) and (38) is given as

min E =
1

11

10∑
m=0

(
d2θ̂

dξ 2 + βθ̂
d2θ̂

dξ 2 + β

(
dθ̂

dξ

)2

– (0.5)2θ̂

)2

+
1
2
((

θ̂ ′(0)
)2 +

(
θ̂ (1) – 1

)2).

(39)
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Figure 7 Histograms of ENSE and fitness values for case 1

Equation (39) is minimized for different values of β using the ANN–BHCS algorithm.
A total of 100 simulations were performed for different values of β . The minimum fitness
values for β = –0.5, –0.3, –0.1, 0.1, 0.3, and 0.5 are 7.6027E–10, 2.8034E–11, 6.4330E–12,
1.3345E–10, 2.8926E–12, and 3.7965E–12 respectively. Weights obtained to minimize the
fitness function for different values of β are plotted in Fig. 8. Using the weights given in
Fig. 8, series solutions of case 2 for different values of β are given as follows:

Solution for β = –0.5:

θ̂ (ξ ) = 1.3350e(–0.7910∗ξ–0.6658) + · · · + 0.96921e(–3.0480∗ξ–2.5067), (40)

Solution for β = –0.3:

θ̂ (ξ ) = 0.8911e(3.2514∗ξ–9.0745) + · · · – 2.8323e(1.5411∗ξ–9.8469), (41)
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Figure 8 Weights obtained by ANN–BHCS algorithm for case 2

Solution for β = –0.1:

θ̂ (ξ ) = –1.4834e(–1.9619∗ξ–1.9046) + · · · + 8.8526e(–2.0635∗ξ–3.6484), (42)

Solution for β = 0.1:

θ̂ (ξ ) = –0.6059e(–0.8974∗ξ–8.3929) + · · · + 0.3641e(0.6138∗ξ–0.4443), (43)

Solution for β = 0.3:

θ̂ (ξ ) = 0.2523e(–0.5144∗x–3.6000) + · · · – 0.4030e(0.9104∗x–5.1234), (44)
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Table 7 Solutions of case 2 for different values of β

ξ β = –0.5 β = –0.3 β = –0.1 β = 0.1 β = 0.3 β = 0.5

0 0.80870903 0.84895272 0.87632760 0.89575861 0.91012117 0.92110851
0.1 0.81040774 0.85037735 0.87752844 0.89678637 0.91101487 0.92189683
0.2 0.81552617 0.85466099 0.88113548 0.89987138 0.91369658 0.92426187
0.3 0.82413110 0.86183292 0.88716148 0.90501908 0.91816818 0.92820385
0.4 0.83633707 0.87194260 0.89562778 0.91223846 0.92443280 0.93372316
0.5 0.85231206 0.88506085 0.90656446 0.92154190 0.93249480 0.94082028
0.6 0.87228676 0.90128139 0.92001057 0.93294525 0.94235971 0.94949584
0.7 0.89656852 0.92072293 0.93601440 0.94646792 0.95403426 0.95975061
0.8 0.92556226 0.94353191 0.95463379 0.96213294 0.96752632 0.97158552
0.9 0.95980197 0.96988620 0.97593654 0.97996694 0.98284490 0.98500159
1 0.99999869 1.00000001 1.00000088 0.99999999 1.00000009 1.00000000

Solution for β = 0.5:

θ̂ (ξ ) = 0.0511e(0.5214∗ξ–1.8989) + · · · – 0.3029e(–1.6382∗ξ–0.6656). (45)

Numerical solutions for case 2 with different values of thermal conductivity β are given
in Table 7. Solutions are also plotted in Fig. 9(a). In this case, the thermo-geometric fin
parameter is taken as ψ = 0.5 and the thermal conductivity β is varied from –0.5 to 0.5 with
a step size of 0.2. From Table 7 and Fig. 9(a), we see that the dimensionless temperature θ

increases with increase in the value of β . The accuracy of the ANN–BHCS algorithm can
be seen from convergence of the fitness values and histograms of fitness values in Fig. 9.

6.3 Case 3
In the third case, we have taken v = 2, ψ = 1.5, and β is varied from –0.5 to 0.5 with step
size 0.2. For this case, Eq. (6) takes the form

d2θ

dξ 2 + βθ
d2θ

dξ 2 + β

(
dθ

dξ

)2

– (1.5)2θ = 0; 0 ≤ ξ ≤ 1, (46)

with boundary conditions

θ ′(0) = 0, θ (1) = 1. (47)

The fitness function for Eqs. (46) and (47) is given as

min E =
1

11

10∑
m=0

(
d2θ̂

dξ 2 + βθ̂
d2θ̂

dξ 2 + β

(
dθ̂

dξ

)2

– (1.5)2θ̂

)2

+
1
2
((

θ̂ ′(0)
)2 +

(
θ̂ (1) – 1

)2).

(48)

The ANN–BHCS algorithm is used to minimize the fitness function for different val-
ues of β . The minimum fitness values obtained by the ANN–BHCS algorithm for β =
–0.5, –0.3, –0.1, 0.1, 0.3, and 0.5 are 2.5336E–07, 8.0939E–09, 3.0616E–10, 3.6515E–11,
4.3335E–10, and 3.9055E–09 respectively. Weights obtained to minimize the fitness func-
tion for different problems are plotted in Fig. 10. Using these weights, the series solutions
of different values of β are given as follows:
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Figure 9 Results obtained by ANN–BHCS algorithm for case 2

Solution for β = –0.5:

θ̂ (ξ ) = 0.3204e(0.3247∗ξ+0.3378) + · · · + 0.6760e(0.8112∗ξ+0.9999), (49)

Solution for β = –0.3:

θ̂ (ξ ) = 1.8800e(–1.3968∗ξ–2.0628) + · · · + 8.9815e(10.0578∗ξ–17.6447), (50)
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Figure 10 Weights obtained by ANN–BHCS algorithm for case 3

Solution for β = –0.1:

θ̂ (ξ ) = 15.3357e(6.1567∗ξ–19.5578) + · · · + 17.6613e(2.9498∗ξ–8.3558), (51)

Solution for β = 0.1:

θ̂ (ξ ) = 4.8310e(–10.9679∗ξ–19.0044) + · · · – 19.9914e(2.6348∗ξ–8.1145), (52)

Solution for β = 0.3:

θ̂ (ξ ) = 1.3616e(5.4673∗ξ–11.9129) + · · · + 3.8582e(–5.2181∗ξ–7.6499), (53)
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Table 8 Solutions of case 3 for different values of β

ξ β = –0.5 β = –0.3 β = –0.1 β = 0.1 β = 0.3 β = 0.5

0 0.3204530 0.3634227 0.4050497 0.4445395 0.4814116 0.5154265
0.1 0.3247589 0.3680258 0.4098092 0.4493352 0.4861487 0.5200393
0.2 0.3378566 0.3819946 0.4242141 0.4638123 0.5004178 0.5339093
0.3 0.3603275 0.4058207 0.4486484 0.4882419 0.5243908 0.5571308
0.4 0.3932029 0.4403662 0.4837684 0.5230779 0.5583513 0.5898562
0.5 0.4380835 0.4869343 0.5305288 0.5689602 0.6026885 0.6322901
0.6 0.4973826 0.5473863 0.5902239 0.6267186 0.6578902 0.6846835
0.7 0.5747799 0.6243306 0.6645440 0.6973773 0.7245342 0.7473254
0.8 0.6760973 0.7214393 0.7556551 0.7821595 0.8032767 0.8205334
0.9 0.8112633 0.8440041 0.8663089 0.8824905 0.8948398 0.9046434
1 0.9999998 0.9999871 0.9999994 1.0000001 0.9999966 0.9999994

Solution for β = 0.5:

θ̂ (ξ ) = 0.0896e(4.4270∗ξ–7.1525) + · · · – 19.6139e(2.0733∗ξ–5.9705). (54)

Numerical solutions of case 3 for different values of β are given in Table 8 and Fig. 11(a).
Convergence and histogram plots of fitness values are given in Fig. 11. For all the values of
β considered in case 3, most of the fitness values are very close to zero, which shows the
accuracy of the ANN–BHCS algorithm. From Fig. 11(a), it is clear that the dimensionless
temperature θ increases as the values of thermal conductivity β increase.

6.4 Case 4
In this case, we have taken v = 1.75, ψ = 0.5, and β is varied from –0.5 to 0.5 with step size
of 0.2. Using these values, Eq. (6) becomes

d1.75θ

dξ 1.75 + βθ
d2θ

dξ 2 + β

(
dθ

dξ

)2

– (0.5)2θ = 0; 0 ≤ ξ ≤ 1, (55)

with boundary conditions

θ ′(0) = 0, θ (1) = 1. (56)

The fitness function for Eqs. (55) and (56) is given by

min E =
1

11

10∑
m=0

(
d1.75θ̂

dξ 1.75 + βθ̂
d2θ̂

dξ 2 + β

(
dθ̂

dξ

)2

– (0.5)2θ̂

)2

+
1
2
((

θ̂ ′(0)
)2 +

(
θ̂ (1) – 1

)2).

(57)

The ANN–BHCS algorithm is used to minimize the fitness function (57) for different val-
ues of thermal conductivity β . The minimum of fitness values for β = –0.5, –0.3, –0.1, 0.1,
0.3, and 0.5 are 6.4804E–08, 2.7340E–09, 2.3225E–10, 7.0940E–10,5.1839E–11, and
4.8342E–11 respectively. Weights obtained by the ANN–BHCS algorithm to minimize
fitness functions for different values of β are given in Fig. 12. Using these weights, the
series solutions for different values of β are given as follows:
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Figure 11 Results obtained by ANN–BHCS algorithm for case 3

Solution for β = –0.5:

θ̂ (ξ ) = 8.1511e(0.6314∗ξ–2.8504) + · · · – 10.5854e(2.2229∗ξ–8.0687), (58)

Solution for β = –0.3:

θ̂ (ξ ) = 0.0851e(–3.5320∗ξ–1.5651) + · · · – 3.3255e(0.2556∗ξ–6.5176), (59)
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Figure 12 Weights obtained by ANN–BHCS algorithm for case 4

Solution for β = –0.1:

θ̂ (ξ ) = 11.5319e(–0.5860∗ξ–8.0212) + · · · – 5.3904e(–5.4688∗ξ–19.5416), (60)

Solution for β = 0.1:

θ̂ (ξ ) = –19.4309e(–2.3198∗ξ–11.2920) + · · · + 5.6906e(–2.3634∗ξ–5.7827), (61)

Solution for β = 0.3:

θ̂ (ξ ) = –0.0232e(11.2897∗ξ–19.9726) + · · · – 9.9720e(–3.3227∗ξ–10.7209), (62)
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Table 9 Solutions of case 4 for different values of β

ξ β = –0.5 β = –0.3 β = –0.1 β = 0.1 β = 0.3 β = 0.5

0 0.736887254 0.806825310 0.848030903 0.875702486 0.895173165 0.909706168
0.1 0.741421678 0.810242428 0.850464066 0.877525349 0.896627875 0.910894740
0.2 0.751559979 0.818315761 0.856609705 0.882338479 0.900551784 0.914173081
0.3 0.765778410 0.829904509 0.865717768 0.889653279 0.906610595 0.919303417
0.4 0.783893924 0.844693326 0.877505968 0.899249977 0.914639594 0.926159469
0.5 0.805997118 0.862569203 0.891830921 0.911001759 0.924534722 0.934657335
0.6 0.832371069 0.883516938 0.908614294 0.924825732 0.936222607 0.944734751
0.7 0.863600197 0.907592060 0.927819373 0.940666356 0.949649070 0.956343213
0.8 0.900759091 0.934909492 0.949438994 0.958487721 0.964773339 0.969443872
0.9 0.945572821 0.965638253 0.973488179 0.978268589 0.981564669 0.984004942
1 0.999999736 0.999999984 1.000000016 0.999998561 0.999999999 0.999999998

Solution for β = 0.5:

θ̂ (ξ ) = –6.4741e(–11.6490∗ξ–10.8501) + · · · + 2.8678e(–6.3008∗ξ–8.9989). (63)

Numerical solutions of case 4 for different values of β are given in Table 9 and Fig. 13(a).
From Fig. 13(a), it is clear that the dimensionless temperature θ increases as the value of
thermal conductivity β goes from –0.5 to 0.5. Convergence of the fitness values for case 4
is given in Fig. 13(b). Histograms of the fitness values for different values of β are given in
Figs. 13(c)–13(h). The figures show that more than 90% of the fitness values are very close
to zero, which shows the efficiency of the ANN–BHCS algorithm.

6.5 Case 5
In this case, we have taken v = 1.75, ψ = 1.5, and β is varied from –0.5 to 0.5 with step size
of 0.2. Using these values, Eq. (6) becomes

d1.75θ

dξ 1.75 + βθ
d2θ

dξ 2 + β

(
dθ

dξ

)2

– (1.5)2θ = 0; 0 ≤ ξ ≤ 1, (64)

with boundary conditions

θ ′(0) = 0, θ (1) = 1. (65)

The fitness function for Eqs. (64) and (65) is given by

min E =
1

11

10∑
m=0

(
d1.75θ̂

dξ 1.75 + βθ̂
d2θ̂

dξ 2 + β

(
dθ̂

dξ

)2

– (1.5)2θ̂

)2

+
1
2
((

θ̂ ′(0)
)2 +

(
θ̂ (1) – 1

)2).

(66)

The ANN–BHCS algorithm is used to minimize the fitness function (66) for different
values of β . The minimum fitness values for β = –0.5, –0.3, –0.1, 0.1, 0.3, and 0.5 are
5.5365E–05, 1.1040E–07, 3.6501E–09, 4.5598E–08, 1.9501E–08, and 9.3420E–09 respec-
tively. Weights obtained to minimize the fitness function for different values of β are given
in Fig. 14. Series solutions of case 5 with different values of β are given as follows:
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Figure 13 Results obtained by ANN–BHCS algorithm for case 4

Solution for β = –0.5:

θ̂ (ξ ) = –19.8513e(–18.7508∗ξ–8.0998) + · · · + 19.9362e(–13.2450∗ξ–7.2254), (67)

Solution for β = –0.3:

θ̂ (ξ ) = 3.2064e(–1.6155∗ξ–3.8584) + · · · + 19.7640e(–12.2351∗ξ–8.2594), (68)
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Figure 14 Weights obtained by ANN–BHCS algorithm for case 5

Solution for β = –0.1:

θ̂ (ξ ) = 1.9312e(–0.1831∗ξ–4.6329) + · · · + 1.0286e(–8.5327∗ξ–6.4404), (69)

Solution for β = 0.1:

θ̂ (ξ ) = –14.1166e(–13.8929∗ξ–19.4453) + · · · + 19.9964e(–1.7336∗ξ–14.4155), (70)

Solution for β = 0.3:

θ̂ (ξ ) = 1.5998e(–1.3810∗ξ–13.6786) + · · · + 0.7404e(–12.4352∗ξ–5.3138), (71)
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Table 10 Solutions of case 5 for different values of β

ξ β = –0.5 β = –0.3 β = –0.1 β = 0.1 β = 0.3 β = 0.5

0 0.201387 0.265899 0.32226 0.373055 0.420281 0.462251
0.1 0.206053 0.272621 0.329889 0.380834 0.42768 0.469289
0.2 0.219447 0.290303 0.349657 0.401147 0.44752 0.488327
0.3 0.240678 0.317813 0.380153 0.43241 0.478195 0.517834
0.4 0.270292 0.355711 0.421611 0.474484 0.519269 0.557226
0.5 0.309891 0.405493 0.474998 0.527796 0.570781 0.606294
0.6 0.361881 0.469591 0.541871 0.593134 0.633021 0.665029
0.7 0.429848 0.551788 0.624402 0.671579 0.706447 0.733545
0.8 0.5212 0.658144 0.725499 0.764461 0.791636 0.812039
0.9 0.66295 0.799284 0.849003 0.873339 0.889251 0.900762
1 0.997123 0.999929 1.000007 0.999976 1.000002 0.999994

Solution for β = 0.5:

θ̂ (ξ ) = 9.2817e(–13.1731∗ξ–8.1456) + · · · + 5.5888e(–2.2593∗ξ–4.2874). (72)

Numerical solutions of case 5 for different values of β are given in Table 10 and Fig. 15(a).
From Fig. 15(a), it is clear that the dimensionless temperature θ increases as the value of
thermal conductivity β goes from –0.5 to 0.5. Convergence of the fitness values for case 5
is given in Fig. 15(b). Histograms of the fitness values for different values of β are given in
Figs. 15(c)–15(h). The figures show that more than 90% of the fitness values are very close
to zero, which shows the efficiency of the ANN–BHCS algorithm.

6.6 Case 6
In this case, we have taken v = 1.5, ψ = 0.5, and β is varied from –0.5 to 0.5 with step size
of 0.2. Using these values, Eq. (6) becomes

d1.5θ

dξ 1.5 + βθ
d2θ

dξ 2 + β

(
dθ

dξ

)2

– (0.5)2θ = 0; 0 ≤ ξ ≤ 1, (73)

with boundary conditions

θ ′(0) = 0, θ (1) = 1. (74)

The fitness function for Eqs. (73) and (74) is given by

min E =
1

11

10∑
m=0

(
d1.5θ̂

dξ 1.5 + βθ̂
d2θ̂

dξ 2 + β

(
dθ̂

dξ

)2

– (0.5)2θ̂

)2

+
1
2
((

θ̂ ′(0)
)2 +

(
θ̂ (1) – 1

)2).

(75)

The ANN–BHCS algorithm is used to minimize the fitness function (75) for different
values of β . The minimum fitness values for β = –0.5, –0.3, –0.1, 0.1, 0.3, and 0.5 are
1.1723E–06, 2.0482E–07, 3.9230E–08, 2.9632E–09, 2.2827E–10, and 4.3199E–11 respec-
tively. Weights obtained to minimize the fitness function for different values of β are given
in Fig. 16. Series solutions of case 6 with different values of β are given as follows:
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Figure 15 Results obtained by ANN–BHCS algorithm for case 5

Solution for β = –0.5:

θ̂ (ξ ) = 42.9653e(–15.1854∗ξ–10.0023) + · · · – 3.2385e(4.2429∗ξ–9.0045), (76)

Solution for β = –0.3:

θ̂ (ξ ) = –5.3645e(0.2792∗ξ–2.1669) + · · · + 0.5784e(0.6436∗ξ–0.1355), (77)
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Figure 16 Weights obtained by ANN–BHCS algorithm for case 6

Solution for β = –0.1:

θ̂ (ξ ) = 6.2815e(–5.9369∗ξ–11.4495) + · · · – 17.7978e(–10.9295∗ξ–8.1251), (78)

Solution for β = 0.1:

θ̂ (ξ ) = –17.1800e(2.8172∗ξ–16.2736) + · · · + 0.9790e(0.3888∗ξ–0.5252), (79)

Solution for β = 0.3:

θ̂ (ξ ) = 1.0322e(–6.3497∗ξ–4.6384) + · · · + 4.8820e(–0.8769∗ξ–3.3310), (80)
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Table 11 Solutions of case 6 for different values of β

ξ β = –0.5 β = –0.3 β = –0.1 β = 0.1 β = 0.3 β = 0.5

0 0.692576 0.7711602 0.818874 0.85344025 0.87856631 0.897088726
0.1 0.701591 0.7782135 0.823855 0.85661451 0.88078124 0.898750233
0.2 0.717623 0.7912543 0.833969 0.86399013 0.88631954 0.903104574
0.3 0.737751 0.8074587 0.847053 0.87417662 0.89434646 0.909620598
0.4 0.762194 0.8265412 0.862613 0.88666314 0.90446989 0.918011396
0.5 0.791208 0.8483448 0.880408 0.90118365 0.91645402 0.928089048
0.6 0.824867 0.872818 0.900295 0.91756974 0.93013898 0.939718015
0.7 0.863052 0.9000391 0.922207 0.93570855 0.94541058 0.952795746
0.8 0.905427 0.9301718 0.946124 0.95552414 0.96218459 0.967242357
0.9 0.951382 0.9634192 0.972058 0.97696585 0.98039732 0.982994275
1 0.999915 0.9999989 1.000008 1.00000009 0.99999958 1.000000054

Solution for β = 0.5:

θ̂ (ξ ) = –0.7394e(–12.6785∗ξ–7.3373) + · · · + 7.4517e(–0.8547∗ξ–3.7189). (81)

Numerical solutions of case 6 for different values of β are given in Table 11 and Fig. 17(a).
From Fig. 17(a), it is clear that the dimensionless temperature θ increases as the value of
thermal conductivity β goes from –0.5 to 0.5. Convergence of the fitness values for case 6
is given in Fig. 17(b). Histograms of the fitness values for different values of β are given in
Figs. 17(c)–17(h). The figures show that more than 90% of the fitness values are very close
to zero, which shows the efficiency of the ANN–BHCS algorithm.

6.7 Case 7
In this case, we have taken v = 1.5, ψ = 1.5, and β is varied from –0.5 to 0.5 with step size
of 0.2. Using these values, Eq. (6) becomes

d1.5θ

dξ 1.5 + βθ
d2θ

dξ 2 + β

(
dθ

dξ

)2

– (1.5)2θ = 0; 0 ≤ ξ ≤ 1, (82)

with boundary conditions

θ ′(0) = 0, θ (1) = 1. (83)

The fitness function for Eqs. (82) and (83) is given by

min E =
1

11

10∑
m=0

(
d1.5θ̂

dξ 1.5 + βθ̂
d2θ̂

dξ 2 + β

(
dθ̂

dξ

)2

– (1.5)2θ̂

)2

+
1
2
((

θ̂ ′(0)
)2 +

(
θ̂ (1) – 1

)2).

(84)

The BHCS algorithm is used to minimize the fitness function (84) for different values
of β . The minimum fitness values for β = –0.5, –0.3, –0.1, 0.1, 0.3, and 0.5 are 3.2749E–04,
6.1684E–06, 1.0813E–07, 6.9620E–08, 3.3707E–08, and 6.1241E–08 respectively. Weights
obtained to minimize the fitness function for different values of β are given in Fig. 18.
Series solutions of case 6 with different values of β are given as follows:



Ahmad et al. Advances in Difference Equations        (2021) 2021:382 Page 31 of 38

Figure 17 Results obtained by ANN–BHCS algorithm for case 6

Solution for β = –0.5:

θ̂ (ξ ) = 0.0011e(–18.7295∗ξ–12.1889) + · · · + 0.0036e(10.6494∗ξ–4.9802), (85)

Solution for β = –0.3:

θ̂ (ξ ) = 2.1083e(14.4756∗ξ–16.5181) + · · · + 19.4106e(–14.7538∗ξ–16.7618), (86)
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Figure 18 Weights obtained by ANN–BHCS algorithm for case 7

Solution for β = –0.1:

θ̂ (ξ ) = 13.2030e(0.9806∗ξ–4.6034) + · · · + 6.9143e(–4.5284∗ξ–5.0134), (87)

Solution for β = 0.1:

θ̂ (ξ ) = –12.5240e(8.4684∗ξ–13.8879) + · · · + 4.0159e(1.5309ξ–2.9223), (88)

Solution for β = 0.3:

θ̂ (ξ ) = 8.6030e(–19.6605∗ξ–9.1743) + · · · + 10.7660e(–11.8943∗ξ–6.3870), (89)
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Table 12 Solutions of case 7 for different values of β

ξ β = –0.5 β = –0.3 β = –0.1 β = 0.1 β = 0.3 β = 0.5

0 0.102229 0.152917 0.236745 0.300268 0.356649 0.407166
0.1 0.1063 0.160234 0.247773 0.312229 0.367969 0.417422
0.2 0.117445 0.177101 0.272432 0.339384 0.394859 0.442789
0.3 0.134263 0.201217 0.307361 0.377666 0.433094 0.479401
0.4 0.155998 0.233131 0.352945 0.426662 0.481616 0.525858
0.5 0.183067 0.274508 0.410597 0.486878 0.540287 0.581629
0.6 0.218689 0.327975 0.482524 0.559267 0.609343 0.646549
0.7 0.273403 0.398064 0.571904 0.645121 0.689234 0.720658
0.8 0.376272 0.495288 0.68319 0.745998 0.780542 0.804112
0.9 0.594308 0.653159 0.8227 0.863658 0.883917 0.89714
1 0.999193 0.999995 1.000003 0.999997 1.000034 1.000005

Solution for β = 0.5:

θ̂ (ξ ) = 0.7823e(4.4278∗ξ–8.2779) + · · · – 1.8288e(–3.3932∗ξ–6.4575). (90)

Numerical solutions for case 7 are given in Table 12. Solutions are also plotted in Fig. 19(a)
for different values of β . The solution figures show that dimensionless temperature θ in-
creases with increasing the values of thermal conductivity from –0.5 to 0.5. Convergence
of the fitness values for case 7 is given in Fig. 19(b). Histograms for the fitness values for
different values of β are plotted in Figs. 19(c)–19(h).

7 Sensitivity analysis of parameters
In this section, we analyze the sensitivity of different parameters which are number of
neurons, population size, and discovery probability pa. The ODE in case 1 with ψ = 0.2
is solved for sensitivity analysis of parameters. Solutions and absolute errors for different
values of parameters are given in Tables 13, 14, 15, 16, 17, 18. We have solved the problem
for 3, 5, and 10 neurons with fixed population size of 50 and discovery probability pa = 0.3,
and the results show that the ANN–BHCS algorithm gives better solution for 10 neurons.
The problem is solved for different values of discovery probability pa = 0.01, 0.15, and
0.3, and the number of neurons and population size were fixed as 10 and 50 respectively.
For pa = 0.3, the ANN–BHCS algorithm gives better solution. Similarly, the problem is
solved for different population sizes, and the results show that for 50 population size the
algorithm gives better results.

8 Conclusion
In this paper, we have used ANN-based biogeography-based heterogeneous cuckoo search
algorithm (ANN–BHCS) to analyze the problem of temperature distribution for convec-
tive straight fins. The ANN–BHCS algorithm is an efficient technique for the solution
of fractional differential equations. We have considered seven cases of the problem, in
which three cases are of integer order and four cases are of fractional order. In the first
case, we have solved integer order energy balance equation for different values of thermo-
geometric fin parameter ψ . The series solutions for case 1 are given in Eqs. (34), (35) and
(36). The comparison of exact and numerical solutions obtained by HPM, VIM, HPSTM,
and ANN–BHCS for case 1 is given in Tables 1–6. Solutions obtained for case 1 are also
plotted in Fig. 5(a). The results show that the ANN–BHCS algorithm gives better solutions
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Figure 19 Results obtained by ANN–BHCS algorithm for case 7

than other techniques. The efficiency of the algorithm is also obvious from the histograms
of MAD, TIC, and ENSE values for case 1 in Figs. 6 and 7. From the second to seventh
case, we have taken β = –0.5, –0.3, –0.1, 0.1, 0.3, 0.5 for all the cases. In the second and
third case, we have considered integer order energy balance equation. Series solutions for
the second and third case are given in Eqs. (40)–(45) and (49)–(54). Numerical solutions
for the second and third case are given in Tables 7 and 8. Solution plots and histograms
for fitness values of second and third case are given in Figs. 9 and 11. For both the cases,
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Table 13 Solutions obtained for different number of neurons

ξ Exact θ̂ (ξ ) (3 neurons) θ̂ (ξ ) (5 neurons) θ̂ (ξ ) (10 neurons)

0 0.98032800 0.98033066 0.98032478 0.980328074
0.1 0.98052407 0.98052777 0.98052085 0.980524147
0.2 0.98111236 0.98111760 0.98110934 0.981112432
0.3 0.98209312 0.98209990 0.98209052 0.982093168
0.4 0.98346672 0.98347472 0.98346462 0.983466756
0.5 0.98523372 0.98524237 0.98523202 0.985233752
0.6 0.98739483 0.98740350 0.98739332 0.987394863
0.7 0.98995091 0.98995901 0.98994944 0.989950948
0.8 0.99290299 0.99291012 0.99290158 0.992903022
0.9 0.99625224 0.99625835 0.99625110 0.99625226
1 1.00000000 1.00000551 0.99999934 1.000000005

Table 14 Absolute errors (AE) for different number of neurons

ξ AE (3 neurons) AE (5 neurons) AE (10 neurons)

0 2.6613E–06 3.2195E–06 7.68E–08
0.1 3.6959E–06 3.2155E–06 7.71E–08
0.2 5.2352E–06 3.0270E–06 6.76E–08
0.3 6.7871E–06 2.6019E–06 5.06E–08
0.4 7.9974E–06 2.0990E–06 3.51E–08
0.5 8.6490E–06 1.7039E–06 2.79E–08
0.6 8.6620E–06 1.5105E–06 2.95E–08
0.7 8.0928E–06 1.4692E–06 3.41E–08
0.8 7.1344E–06 1.4090E–06 3.36E–08
0.9 6.1164E–06 1.1413E–06 2.25E–08
1 5.5052E–06 6.5876E–07 4.68E–09

Table 15 Solutions obtained for different values of discovery probability (pa)

ξ Exact θ̂ (ξ ) (pa = 0.01) θ̂ (ξ ) (pa = 0.15) θ̂ (ξ ) (pa = 0.3)

0 0.98032800 0.98033472 0.98032852 0.980328074
0.1 0.98052407 0.98053054 0.98052459 0.980524147
0.2 0.98111236 0.98111799 0.98111282 0.981112432
0.3 0.98209312 0.98209766 0.98209346 0.982093168
0.4 0.98346672 0.98347050 0.98346697 0.983466756
0.5 0.98523372 0.98523725 0.98523392 0.985233752
0.6 0.98739483 0.98739841 0.98739504 0.987394863
0.7 0.98995091 0.98995441 0.98995115 0.989950948
0.8 0.99290299 0.99290589 0.99290322 0.992903022
0.9 0.99625224 0.99625393 0.99625240 0.99625226
1 1.00000000 1.00000029 1.00000006 1.000000005

Table 16 Absolute errors (AE) for different values of discovery probability (pa)

ξ AE (pa = 0.01) AE (pa = 0.15) AE (pa = 0.3)

0 6.7251E–06 5.2275E–07 7.68E–08
0.1 6.4719E–06 5.1923E–07 7.71E–08
0.2 5.6209E–06 4.5620E–07 6.76E–08
0.3 4.5405E–06 3.4699E–07 5.06E–08
0.4 3.7794E–06 2.4833E–07 3.51E–08
0.5 3.5265E–06 2.0122E–07 2.79E–08
0.6 3.5732E–06 2.0787E–07 2.95E–08
0.7 3.4939E–06 2.3442E–07 3.41E–08
0.8 2.8993E–06 2.3147E–07 3.36E–08
0.9 1.6919E–06 1.6626E–07 2.25E–08
1 2.9361E–07 6.1897E–08 4.68E–09
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Table 17 Solutions obtained for different population sizes

ξ Exact θ̂ (ξ ) (pop = 20) θ̂ (ξ ) (pop = 30) θ̂ (ξ ) (pop = 50)

0 0.98032800 0.98034833 0.98032832 0.980328074
0.1 0.98052407 0.98054432 0.98052459 0.980524147
0.2 0.98111236 0.98112991 0.98111297 0.981112432
0.3 0.98209312 0.98210581 0.98209368 0.982093168
0.4 0.98346672 0.98347487 0.98346720 0.983466756
0.5 0.98523372 0.98523952 0.98523415 0.985233752
0.6 0.98739483 0.98740070 0.98739529 0.987394863
0.7 0.98995091 0.98995790 0.98995148 0.989950948
0.8 0.99290299 0.99290998 0.99290371 0.992903022
0.9 0.99625224 0.99625658 0.99625313 0.99625226
1 1.00000000 0.99999987 1.00000106 1.000000005

Table 18 Absolute errors (AE) for different population sizes

ξ AE (pop = 20) AE (pop = 30) AE (pop = 50)

0 2.0333E–05 3.2537E–07 7.68E–08
0.1 2.0249E–05 5.1812E–07 7.71E–08
0.2 1.7547E–05 6.0088E–07 6.76E–08
0.3 1.2692E–05 5.6132E–07 5.06E–08
0.4 8.1468E–06 4.7660E–07 3.51E–08
0.5 5.7918E–06 4.2680E–07 2.79E–08
0.6 5.8618E–06 4.5634E–07 2.95E–08
0.7 6.9829E–06 5.6629E–07 3.41E–08
0.8 6.9949E–06 7.2607E–07 3.36E–08
0.9 4.3411E–06 8.9659E–07 2.25E–08
1 1.2613E–07 1.0598E–06 4.68E–09

the dimensionless temperature increases for the values of β = –0.5, –0.3, –0.1, 0.1, 0.3, 0.5.
The cases from the fourth to seventh are of fractional order. The series solutions for all
the cases are given in results section. Numerical solutions from the fourth to seventh case
are given in Tables 9–12. Solution plots and histograms of fitness values for the fourth
to seventh cases are given in Figs. 13, 15, 17 and 19. The results show that the ANN–
BHCS algorithm can efficiently solve the integer and fractional order differential equa-
tions.
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