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Abstract
Our aim is to study and investigate the family of (p,q)-extended (incomplete and
complete) elliptic-type integrals for which the usual properties and representations of
various known results of the (classical) elliptic integrals are extended in a simple
manner. This family of elliptic-type integrals involves a number of special cases and
has a connection with (p,q)-extended Gauss’ hypergeometric function and
(p,q)-extended Appell’s double hypergeometric function F1. Turán-type inequalities
including log-convexity properties are proved for these (p,q)-extended complete
elliptic-type integrals. Further, we establish various Mellin transform formulas and
obtain certain infinite series representations containing Laguerre polynomials. We
also obtain some relationship between these (p,q)-extended elliptic-type integrals
and Meijer G-function of two variables. Moreover, we obtain several connections with
(p,q)-extended beta function as special values and deduce numerous differential and
integral formulas. In conclusion, we introduce (p,q)-extension of the Epstein–Hubbell
(E-H) elliptic-type integral.

MSC: Primary 33B15; 33C05; 33E05; 33C65; secondary 33B99; 33C60; 33C75

Keywords: Turán-type inequalities; Elliptic integrals; Extended beta function;
Extended hypergeometric functions; Mellin transform; Laguerre polynomials

1 Introduction, preliminaries, and motivation
Elliptic-type integrals such as (classical) Legendre elliptic integrals, generalized complete
elliptic integrals of the first and second kind (see, for example, [5, 29, 30, 33–35]), and sym-
metric elliptic integrals [7] and also several definite integrals of such families are known
to play a prominent role in special functions in terms of their modulus or complementary
modulus in the theory of conformal mappings [2], studies of crystallographic minimal
surfaces, radiation physics problems [3], nuclear technology, fracture mechanics studies
of elliptical crack problems, the study of electromagnetic or acoustic waves being scat-
tered by an elliptic disk [15], astronomy, geometry, physics, and engineering mechanics
[4]. In recent years (2009), Lin et al. [16, p. 1178, Eq. (1.12)] introduced and extensively

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03536-0
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03536-0&domain=pdf
mailto:naveenahrodia@gmail.com


Parmar et al. Advances in Difference Equations        (2021) 2021:381 Page 2 of 16

investigated the following generalized family of elliptic integrals (incomplete) H(ψ , k,γ ):

H(ψ , k,γ ) :=
∫ ψ

0

(
1 – k2 sin2 θ

)γ – 1
2 dθ =

∫ sinψ

0

(1 – k2t2)γ – 1
2√

1 – t2
dt, (1.1)

(∣∣k2∣∣ < 1; 0 � ψ � π

2
;γ ∈C

)
.

Obviously, their special cases are

H
(

π

2
, k,γ

)
:= H(k,γ ),

H(ψ , k, 0) =: F(ψ , k), and H(ψ , k, 1) =: E(ψ , k),

and

H
(

π

2
, k, 0

)
=: K(k) and H

(
π

2
, k, 1

)
=: E(k),

and they respectively yield the families of complete elliptic integrals H(k,γ ) due to the
Bushell [5, p. 2, Eq. (2.2)]

H(k,γ ) =
∫ π

2

0

(
1 – k2 sin2 θ

)γ – 1
2 dθ =

∫ 1

0

(1 – k2t2)γ – 1
2√

1 – t2
dt (1.2)

(∣∣k2∣∣ < 1;γ ∈C
)

and well-known (canonical) Legendre incomplete elliptic integrals F(ψ , k) and E(ψ , k) and
complete elliptic integrals K(k) and E(k) of the first and second kind (in terms of modulus
|k| and amplitude ψ ) [6]:

F(ψ , k) =
∫ ψ

0

dθ√
1 – k2 sin2 θ

=
∫ sinψ

0

dt√
(1 – t2)(1 – k2t2)

(1.3)

(∣∣k2∣∣ < 1; 0 � ψ � π

2

)
,

E(ψ , k) =
∫ ψ

0

√
1 – k2 sin2 θ dθ =

∫ sinψ

0

√
1 – k2t2

1 – t2 dt (1.4)
(∣∣k2∣∣ < 1; 0 � ψ � π

2

)
,

and

K(k) =
∫ π

2

0

dθ√
1 – k2 sin2 θ

=
∫ 1

0

dt√
(1 – t2)(1 – k2t2)

(∣∣k2∣∣ < 1
)
, (1.5)

E(k) =
∫ π

2

0

√
1 – k2 sin2 θ dθ =

∫ 1

0

√
1 – k2t2

1 – t2 dt
(∣∣k2∣∣ < 1

)
. (1.6)

In recent years, extensions of a number of well-known special functions have been in-
vestigated and studied the (p, q)–variant, and in turn, when p = q the p–variant together
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with the set of related higher transcendental hypergeometric type special functions (see,
for details, [8–10, 17, 18, 20, 22–24]). In what follows we shall use the following recently
defined (p, q)-extensions of the classical beta function B(x, y) and classical Gauss’s hyper-
geometric function F(λ,μ;ν;Z) [11, p. 360, Eq. (1.14)]:

Bp,q(δ,σ ) = B(δ,σ ; p, q) =
∫ 1

0
tδ–1(1 – t)σ–1e– p

t – q
1–t dt (1.7)

(
min

{�(p),�(q); min
{�(δ),�(σ )

}
> 0

} ≥ 0
)
,

and [11, p. 371, Eq. (7.1)]

Fp,q(λ,μ;ν;Z) =
∑
n≥0

(λ)n
B(μ + n,ν – μ; p, q)

B(μ,ν – μ)
Zn

n!
(
p, q ≥ 0;�(ν) > �(μ) > 0; |Z| < 1

)
.

(1.8)

Also, we shall need a (p, q)-extension of Appell’s(first) hypergeometric function F1 [21,
Eq. (1.9)]:

F1
(
λ,μ,μ′;ν;X,Y; p, q

)
=

∑
m,n≥0

(μ)n
(
μ′)

n
B(λ + m + n,ν – λ; p, q)

B(λ,ν – λ)
Xm

m!
Yn

n!
(1.9)

(
min

{�(p),�(q); max
{|X|, |Y|} < 1

} ≥ 0
)
.

The goal of this paper is to introduce and investigate the family of (p, q)-extended (in-
complete) elliptic-type integrals and (complete) elliptic-type integrals, which are analo-
gous on the basis of definition (1.7) of the (p, q)-extended beta function B(δ,σ ; p, q) so that
many of the known properties of the elliptic-type integrals carry over naturally. In Sect. 2,
we introduce a family of (p, q)-extended elliptic-type integrals. The (p, q)-extension pro-
posed in this section provides connections with (p, q)-extended Gauss’ hypergeometric
function Fp,q and (p, q)-extended Appell’s double hypergeometric function F1. In Sect. 3,
Turán-type inequalities including the log-convexity property are proved for these (p, q)-
extended(complete) elliptic-type integrals. Furthermore, in Sect. 4, Mellin transform for-
mulas and some infinite series representations containing the Laguerre polynomials are
derived for these (p, q)-extended elliptic-type integrals. Moreover, in Sect. 5, we provide
certain connections with the (p, q)-extended beta function and Meijer’s G-function of two
variables as new representations for the parameter(special) values and differential and in-
tegral properties of the (p, q)-extended(complete) elliptic-type integrals. Finally, in con-
clusion Sect. 6, we introduce a (p, q)-extension of the Epstein–Hubbell (E-H) elliptic-type
integral.
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2 A family of (p, q)-extended elliptic-type integrals
We begin by introducing a family of (p, q)-extended(incomplete) elliptic-type integrals and
(complete) elliptic-type integrals (in terms of modulus |k| with amplitude ψ ), given by (1.1)

Hp,q(ψ , k,γ ) :=
∫ ψ

0

(
1 – k2 sin2 θ

)γ – 1
2 e– p

sin2 θ
– q

cos2 θ dθ

=
∫ sinψ

0

(1 – k2t2)γ – 1
2√

1 – t2
e– p

t2 – q
1–t2 dt (2.1)

(
min

{�(p),�(q)
}

> 0;
∣∣k2∣∣ < 1 with 0 � ψ � π

2
when p = q = 0

)
.

It is clear that from (2.1), in the particular cases γ = 0 and γ = 1, respectively, we have

Fp,q(ψ , k) :=
∫ ψ

0

1√
1 – k2 sin2 θ

e– p
sin2 θ

– q
cos2 θ dθ

=
∫ sinψ

0

1√
(1 – t2)(1 – k2t2)

e– p
t2 – q

1–t2 dt (2.2)

(
min

{�(p),�(q)
}

> 0;
∣∣k2∣∣ < 1 with 0 � ψ � π

2
when p = q = 0;

)

and

Ep,q(ψ , k) :=
∫ ψ

0

√
1 – k2 sin2 θe– p

sin2 θ
– q

cos2 θ dθ

=
∫ sinψ

0

√
1 – k2t2

1 – t2 e– p
t2 – q

1–t2 dt (2.3)
(

min
{�(p),�(q)

}
> 0;

∣∣k2∣∣ < 1 with 0 � ψ � π

2
when p = q = 0

)
.

Furthermore, when ψ = π
2 , equations (2.1), (2.2), and (2.3) reduce to the corresponding

(p, q)-extended(complete) elliptic-type integrals given respectively by

Hp,q(k,γ ) :=
∫ π

2

0

(
1 – k2 sin2 θ

)γ – 1
2 e– p

sin2 θ
– q

cos2 θ dθ

=
∫ 1

0

(1 – k2t2)γ – 1
2√

1 – t2
e– p

t2 – q
1–t2 dt, (2.4)

Kp,q(k) :=
∫ π

2

0

1√
1 – k2 sin2 θ

e– p
sin2 θ

– q
cos2 θ dθ

=
∫ 1

0

1√
(1 – t2)(1 – k2t2)

e– p
t2 – q

1–t2 dt (2.5)

(
min

{�(p),�(q)
}

> 0;
∣∣k2∣∣ < 1 when p = q = 0

)
,
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and

Ep,q(k) :=
∫ π

2

0

√
1 – k2 sin2 θe– p

sin2 θ
– q

cos2 θ dθ

=
∫ 1

0

√
1 – k2t2

1 – t2 e– p
t2 – q

1–t2 dt (2.6)

(
min

{�(p),�(q)
}

> 0;
∣∣k2∣∣ < 1 when p = q = 0

)
.

In terms of the complementary modulus k′, the (p, q)-extended(complete)elliptic-type
integrals are defined by

K ′
p,q(k) = Kp,q

(
k′) = Kp,q

(√
1 – k2

) (
k′ :=

√
1 – k2

)
(2.7)

and

E′
p,q(k) = Ep,q

(
k′) = Ep,q

(√
1 – k2

) (
k′ :=

√
1 – k2

)
. (2.8)

The particular cases of (2.2) to (2.8) when p = q and p = q = 0 reduce to the general-
ized elliptic-type integrals studied by Srivastava et al. [33] and classical elliptic integrals
(incomplete and complete) (1.1) to (1.6), respectively (see, e.g., [5, 6], and [12]).

2.1 (p, q)-Hypergeometric(extended) function representations
In this section, we express the above defined (p, q)-extensions of complete elliptic-type
integrals in terms of (p, q)-extended hypergeometric functions.

Theorem 2.1 Consider (p, q)-Gauss’s hypergeometric function Fp,q(λ,μ;ν;Z) given by
(1.8). Let �(p),�(q) > 0, and |k2| < 1. Then

Hp,q(k,γ ) =
π

2
Fp,q

(
1
2

– γ ,
1
2

; 1; k2
)

, (2.9)

Kp,q(k) =
π

2
Fp,q

(
1
2

,
1
2

; 1; k2
)

, (2.10)

and

Ep,q(k) =
π

2
Fp,q

(
–

1
2

,
1
2

; 1; k2
)

. (2.11)

Proof Letting t2 = u in (2.4), (2.5), and (2.6) and using definition (1.8), we get the required
representation (2.9), (2.10), and (2.11), respectively. �

Theorem 2.2 Consider (p, q)-Appell’s hypergeometric function F1(λ,μ,μ′;ν;X,Y; p, q) de-
fined as in (1.9). For �(p),�(q) > 0 and |k2| < 1, we have

Hp,q(k,γ ) =
π

2
F1

(
1
2

,
1
2

,
1
2

– γ ;
3
2

; 1, k2; p, q
)

, (2.12)

Kp,q(k) =
π

2
F1

(
1
2

,
1
2

,
1
2

;
3
2

; 1, k2; p, q
)

, (2.13)
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Ep,q(k) =
π

2
F1

(
1
2

,
1
2

, –
1
2

;
3
2

; 1, k2; p, q
)

. (2.14)

Proof Setting t2 = u in equations (2.4), (2.5), and (2.6) and using the integral representation
defined by Parmar and Pogány [21, Lemma 8, Eqs. (2.1)]

F1
(
λ,μ,μ′;ν; x, y; p, q

)
=

∫ 1

0

tλ–1(1 – t)ν–λ–1

B(λ,ν – λ)
(1 – xt)–μ(1 – yt)–μ′

e– p
t – q

1–t dt, (2.15)

where max{| arg(1 – X)|, | arg(1 – Y)|} < π ;�(ν) > �(λ) > 0 and min{�(p),�(q)} > 0, we get
the required relations (2.12), (2.13), and (2.14), respectively. �

3 Log-convexity properties and Turán-type inequalities
In this section, we establish the Turán-type inequalities based upon log-convexity prop-
erties for the Hp,q(k,γ ), Kp,q(k), and Ep,q(k) in (2.4), (2.5), and (2.6).

Theorem 3.1 The following assertions are true for �(p) > 0, �(q) > 0:
(1) The function γ �→Hp,q(k,γ ) is log-convex on (0,∞) for all k ∈ (0, 1).
(2) The function p �→Hp,q(k,γ ) is log-convex on (0,∞) for all k ∈ (0, 1).
(3) The function q �→Hp,q(k,γ ) is log-convex on (0,∞) for all k ∈ (0, 1).

Moreover, for the same parametric range, the following Turán inequalities hold true:

H2
p,q(k,γ ) – Hp,q(k,γ – 1).Hp,q(k,γ + 1) ≤ 0 γ ∈ (1,∞), (3.1)

H2
p,q(k,γ ) – Hp–1,q(k,γ ).Hp+1,q(k,γ ) ≤ 0 p ∈ (1,∞), (3.2)

H2
p,q(k,γ ) – Hp,q–1(k,γ ).Hp,q+1(k,γ ) ≤ 0 q ∈ (1,∞). (3.3)

Proof By using the definition of the classical Hölder–Rogers inequality for integrals in the
integral representation (2.4), we have

Hp,q
(
k,λγ1 + (1 – λ)γ2

)

=
∫ 1

0

(1 – k2t2)λγ1+(1–λ)γ2– 1
2√

1 – t2
e– p

t2 – q
1–t2 dt

=
∫ 1

0

[
(1 – k2t2)γ1– 1

2√
1 – t2

e– p
t2 – q

1–t2

]λ[ (1 – k2t2)γ2– 1
2√

1 – t2
e– p

t2 – q
1–t2

]1–λ

dt

≤
[∫ 1

0

(1 – k2t2)γ1– 1
2√

1 – t2
e– p

t2 – q
1–t2 dt

]λ[∫ 1

0

(1 – k2t2)γ2– 1
2√

1 – t2
e– p

t2 – q
1–t2 dt

]1–λ

.

This is equivalent to

Hp,q
(
k,λγ1 + (1 – λ)γ2

) ≤ [
Hp,q(k,γ1)

]λ[Hp,q(k,γ2)
]1–λ

∀ γ1,γ2, k ∈ (0, 1) and λ ∈ [0, 1],

(3.4)

which proves the first assertion.
In a similar manner, by using (2.4) and using the Hölder–Rogers inequality, we get

Hλp1+(1–λ)p2,q(k,γ ) ≤ [
Hp1,q(k,γ )

]λ[Hp2,q(k,γ )
]1–λ

∀ p1, p2 > 0, k ∈ (0, 1) and λ ∈ [0, 1],

(3.5)
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Hp,λq1+(1–λ)q2 (k,γ ) ≤ [
Hp,q1 (k,γ )

]λ[Hp,q2 (k,γ )
]1–λ

∀ q1, q2 > 0, k ∈ (0, 1) and λ ∈ [0, 1],

(3.6)

which proves the second assertion and the third assertion.
Next, choosing λ = 1

2 in (3.4), (3.5), and (3.6), we conclude the Turán inequalities (3.1),
(3.2), and (3.3), respectively. �

Corollary 3.1 The following assertions are true for �(p) > 0, �(q) > 0:
(1) The function p �→ Kp,q(k) is log-convex on (0,∞) for all k ∈ (0, 1).
(2) The function q �→ Kp,q(k) is log-convex on (0,∞) for all k ∈ (0, 1).
(3) The function p �→ Ep,q(k) is log-convex on (0,∞) for all k ∈ (0, 1).
(4) The function q �→ Ep,q(k) is log-convex on (0,∞) for all k ∈ (0, 1).

Moreover, for the same parametric range, the following Turán inequalities hold true:

K2
p,q(k) – Kp–1,q(k).Kp+1,q(k) ≤ 0 p ∈ (1,∞), (3.7)

K2
p,q(k) – Kp,q–1(k).Kp,q+1(k) ≤ 0 q ∈ (1,∞), (3.8)

E2
p,q(k) – Ep–1,q(k).Ep+1,q(k) ≤ 0 p ∈ (1,∞), (3.9)

E2
p,q(k) – Ep,q–1(k).Ep,q+1(k) ≤ 0 q ∈ (1,∞). (3.10)

Proof Furthermore, by specifying γ = 0 and γ = 1 in assertions (3.5) and (3.6) (or alterna-
tively employing definitions (2.5) and (2.6) and using the Hölder–Rogers inequality), we
can easily obtain

Kλp1+(1–λ)p2,q(k) ≤ [
Kp1,q(r)

]λ[Kp2,q(r)
]1–λ ∀ p1, p2 > 0, k ∈ (0, 1) and λ ∈ [0, 1], (3.11)

Kp,λq1+(1–λ)q2 (k) ≤ [
Kp,q1 (r)

]λ[Kp,q2 (r)
]1–λ ∀ q1, q2 > 0, k ∈ (0, 1) and λ ∈ [0, 1], (3.12)

Eλp1+(1–λ)p2,q(k) ≤ [
Ep1,q(r)

]λ[Ep2,q(r)
]1–λ ∀ p1, p2 > 0, k ∈ (0, 1) and λ ∈ [0, 1], (3.13)

and

Ep,λq1+(1–λ)q2 (k) ≤ [
Ep,q1 (r)

]λ[Ep,q2 (r)
]1–λ ∀ q1, q2 > 0, k ∈ (0, 1) and λ ∈ [0, 1]. (3.14)

Again, specifying λ = 1
2 and p1 = p–1, p2 = p+1 in (3.11) and (3.13) and q1 = q–1, q2 = q+1

in (3.12) and (3.14), we obtain the Turán-type inequalities (3.7) to (3.10), respectively. �

4 Mellin transform formulas and Laguerre polynomial representations
The Mellin transforms of the function f (x, y) of two variables with respect to the indices r
and s are given by [19]

M
{

f (x, y)
}

(r, s) =
∫ ∞

0

∫ ∞

0
xr–1ys–1f (x, y) dx dy, (4.1)

where it is assumed that the integral (improper) in (4.1) exists.
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Theorem 4.1 Consider Appell’s hypergeometric function F1(λ,μ,μ′;ν;X,Y). The follow-
ing Mellin transformation formula for Hp,q(ψ , k,γ ) in (2.1) holds true:

M
{
Hp,q(ψ , k,γ )

}
(r, s) =


(r)
(s) sin2r+1 ψ

2(r + 1
2 )

· F1

(
r +

1
2

,
1
2

– γ ,
1
2

– s; r +
3
2

; k2 sin2 ψ , sin2 ψ

)
(4.2)

(
�(r) > 0,�(s) > 0;

∣∣k2∣∣ < 1; 0 � ψ � π

2

)
.

Proof By making use of definition (4.1), we get from (2.1) that

M
{
Hp,q(ψ , k,γ )

}
(r, s)

=
∫ ∞

0

∫ ∞

0
pr–1qs–1Hp,q(ψ , k,γ ) dp dq

=
∫ ∞

0

∫ ∞

0
pr–1qs–1

(∫ ψ

0

(
1 – k2 sin2 θ

)γ – 1
2 e– p

sin2 θ
– q

cos2 θ dθ

)
dp dq

=
1
2

∫ ∞

0

∫ ∞

0
pr–1qs–1

(∫ sin2 ψ

0

(1 – k2t)γ – 1
2√

t(1 – t)
e– p

t – q
1–t dt

)
dp dq,

where the value in the inner θ -integral has also been evaluated by sin2 θ = t and dθ =
dt

2
√

t(1–t) . Now, by the absolute convergence of the integrations involved under the condi-
tions mentioned in Theorem 4.1, we change the order of integrals on the right-hand side
(RHS) to find

M
{
Hp,q(ψ , k,γ )

}
(r, s)

=
1
2

∫ sin2 ψ

0

(1 – k2t)γ – 1
2√

t(1 – t)

(∫ ∞

0
pr–1e– p

t dp
)(∫ ∞

0
qs–1e– q

1–t dq
)

dt

=

(r)
(s)

2

∫ sin2 ψ

0
tr– 1

2 (1 – t)s– 1
2
(
1 – k2t

)γ – 1
2 dt, (4.3)

where we obviously have used the classical Euler’s gamma integral


(η)ξ–η =
∫ ∞

0
e–ξ ttη–1 dt, �(ξ ) > 0,�(η) > 0, (4.4)

in the inner p-integral and q-integral. Now, setting t = (sin2 ψ)τ and dt = (sin2 ψ) dτ yields

M
{
Hp,q(ψ , k,γ )

}
(r, s)

=

(r)
(s) sin2r+1 ψ

2

∫ 1

0
τ r– 1

2
(
1 – k2 sin2 ψτ

)γ – 1
2
(
1 – sin2 ψτ

)s– 1
2 dτ . (4.5)
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Finally, by using (see, e.g., [32, p. 276, Eq. 9.4(7)])

F1
(
λ,μ,μ′;ν;X,Y

)
=


(ν)

(λ)
(ν – λ)

∫ 1

0
tλ–1(1 – t)ν–λ–1(1 – Xt)–μ(1 – Yt)–μ′

dt (4.6)

(
max

{∣∣arg(1 – X)
∣∣, ∣∣arg(1 – Y)

∣∣} < π ;�(ν) > �(λ) > 0
)
,

we obtain the required Mellin transformation formula (4.2) given by Theorem 4.1. �

Appell’s functions F1 are represented in terms of Kampé de Fériet’s hypergeometric
function [32, p. 22, Eq. 1.3(2)] and the Srivastava–Daoust hypergeometric function of the
two variables [32, p. 37, Eq. 1.4(21)]:

F1[α,β1,β2;γ ;X,Y] = F1:1;1
1:0;0

[
α : β1;β2;
γ : ; ;

X,Y

]
(4.7)

and

F1[α,β1,β2;γ ;X,Y] = F1:1;1
1:0;0

[
(α : 1, 1) : (β1, 1); (β2, 1);

(γ : 1, 1) : ; ;
X,Y

]
. (4.8)

We first apply representation (4.7) in (4.2) and representation (4.8) in (4.2), and afterward
employing the Legendre duplication formula [32, p. 17, Eq. 1.2(14)]) for the gamma func-
tion


(2η) =
22η–1
√

π

(η)


(
η +

1
2

)
,

we can evaluate the Mellin transform formulas for Hp,q(ψ , k,γ ) in (2.1) as given by Corol-
lary 4.1. In particular, if we put γ = 0 and γ = 1, we can obtain certain Mellin transforma-
tion formulas for the Fp,q(ψ , k) and Ep,q(ψ , k) in (2.2) and (2.3) as given by Corollary 4.2.
The proofs are omitted for Corollaries 4.1 and 4.2.

Corollary 4.1 The following Mellin transformation formulas hold true:

M
{
Hp,q(ψ , k,γ )

}
(r, s) =


(r)
(s) sin2r+1 ψ

2(r + 1
2 )

· F1:1;1
1:0;0

[
r + 1

2 : 1
2 – γ ; 1

2 – s;
r + 3

2 : ; ;
k2 sin2 ψ , sin2 ψ

]
(4.9)

and

M
{
Hp,q(ψ , k,γ )

}
(r, s)

= 
(r)
(s) sin2r+1 ψ

· F1:1;1
1:0;0

[
(2r + 1 : 2, 2) : ( 1

2 – γ , 1); ( 1
2 – s, 1);

(2r + 2 : 2, 2) : ; ;
k2 sin2 ψ , sin2 ψ

]
. (4.10)
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Corollary 4.2 The following Mellin transformation formulas for Fp,q(ψ , k) and Ep,q(ψ , k)
in (2.2) and (2.3) hold true:

M
{

Fp,q(ψ , k)
}

(r, s) =

(r)
(s) sin2r+1 ψ

2(r + 1
2 )

· F1

(
r +

1
2

,
1
2

,
1
2

– s; r +
3
2

; k2 sin2 ψ , sin2 ψ

)
, (4.11)

M
{

Fp,q(ψ , k)
}

(r, s) =

(r)
(s) sin2r+1 ψ

2(r + 1
2 )

× F1:1;1
1:0;0

[
r + 1

2 : 1
2 ; 1

2 – s;
r + 3

2 : ; ;
k2 sin2 ψ , sin2 ψ

]
, (4.12)

M
{

Fp,q(ψ , k)
}

(r, s)

= 
(r)
(s) sin2r+1 ψ

· F1:1;1
1:0;0

[
(2r + 1 : 2, 2) : ( 1

2 , 1); ( 1
2 – s, 1);

(2r + 2 : 2, 2) : ; ;
k2 sin2 ψ , sin2 ψ

]
, (4.13)

M
{

Ep,q(ψ , k)
}

(r, s)

=

(r)
(s) sin2r+1 ψ

2(r + 1
2 )

· F1

(
r +

1
2

, –
1
2

,
1
2

– s; r +
3
2

; k2 sin2 ψ , sin2 ψ

)
, (4.14)

M
{

Ep,q(ψ , k)
}

(r, s)

=

(r)
(s) sin2r+1 ψ

2(r + 1
2 )

F1:1;1
1:0;0

[
r + 1

2 : – 1
2 ; 1

2 – s;
r + 3

2 : ; ;
k2 sin2 ψ , sin2 ψ

]
, (4.15)

and

M
{

Ep,q(ψ , k)
}

(r, s)

= 
(r)
(s) sin2r+1 ψ

× F1:1;1
1:0;0

[
(2r + 1 : 2, 2) : (– 1

2 , 1); ( 1
2 – s, 1);

(2r + 2 : 2, 2) : ; ;
k2 sin2 ψ , sin2 ψ

]
. (4.16)

Theorem 4.2 The mentioned Mellin transformation formulas for Hp,q(k,γ ), Kp,q(k), and
Ep,q(k) in (2.4), (2.5), and (2.6) hold true:

M
{
Hp,q(k,γ )

}
(r, s) =


(r)
(s)B(r + 1
2 , s + 1

2 )
2 2F1

(
r +

1
2

,
1
2

– γ ; r + s + 1; k2
)

(4.17)

(
�(r) > 0,�(s) > 0;

∣∣k2∣∣ < 1; 0 � ψ � π

2

)
,

M
{

Kp,q(k)
}

(r, s) =

(r)
(s)B(r + 1

2 , s + 1
2 )

2 2F1

(
r +

1
2

,
1
2

; r + s + 1; k2
)

(4.18)

(
�(r) > 0,�(s) > 0;

∣∣k2∣∣ < 1; 0 � ψ � π

2

)
,
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and

M
{

Ep,q(k)
}

(r, s) =

(r)
(s)B(r + 1

2 , s + 1
2 )

2 2F1

(
r +

1
2

, –
1
2

; r + s + 1; k2
)

(4.19)

(
�(s) > 0;

∣∣k2∣∣ < 1; 0 � ψ � π

2

)
.

Proof By first substituting ψ = π
2 in (4.2), (4.11), and (4.14) and afterward employing the

following identity (see [13, p. 239, Eq. (10)])

F1[λ,μ1,μ2;ν;X, 1] =

(ν)
(ν – λ – μ2)

(ν – λ)
(ν – μ2) 2F1(λ,μ1;ν – μ2;X),

we obtain the required Mellin transformation formulas given by Theorem 4.2. �

If we set r = 1 and s = 1 in (4.18) and (4.19), we obtain the following connection between
the classical elliptic integrals and the (p, q)-extended (complete) elliptic integrals:

∫ ∞

0

∫ ∞

0
Kp,q(k) dp dq =

π

16 2F1

(
1
2

,
3
2

; 3; k2
)

, (4.20)

which, in view of the well-known representation [26, p. 473, Entry (93)], yields

∫ ∞

0

∫ ∞

0
Kp,q(k) dp dq =

1
3k2

[
K(k) –

(
2 – k2)D(k)

]
(4.21)

and

∫ ∞

0

∫ ∞

0
Ep,q(k) dp dq =

π

16 2F1

(
–

1
2

,
3
2

; 3; k2
)

, (4.22)

which, by means of the well-known representation [26, p. 469, Entry (20)], can be written
in the following form:

∫ ∞

0

∫ ∞

0
Ep,q(k) dp dq =

1
15k2

[(
1 + k2)K(k) – 2

(
1 – k2 + k4)D(k)

]
. (4.23)

The Laguerre(simple)polynomials Ln(x) are defined by (see, e.g., [25, p. 645])

Ln(x) := L(0)
n (x) and L(λ)

n (x) :=
n∑

j=0

(
n + λ

n – j

)
(–x)j

j!
.

Now we derive the Laguerre polynomial relation asserted by (4.24).

Theorem 4.3 The following Laguerre polynomial relation holds true for Hp,q(k):

Hp,q(k) =
∞∑

m,n=0

e–p–qB(n + 3
2 , m + 3

2 )
2

Lm(p)Ln(q)2F1

(
γ –

1
2

, n +
3
2

; m + n + 3; k2
)

. (4.24)
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Proof Putting sin2 θ = t and 2 dθ = dt/
√

t(1 – t) in (2.4), we get

Hp,q(k) =
1
2

∫ 1

0
t– 1

2 (1 – t)– 1
2
(
1 – k2t

)γ – 1
2 e– p

t – q
1–t dt. (4.25)

By making use of the known identity in a slightly corrected form for the simple Laguerre
polynomials due to Choi et al. [11, p. 350, Eq. (5.5)]

exp

(
–

p
t

–
q

1 – t

)
= e–p–q

{ ∞∑
m,n=0

Lm(p)Ln(q)tn+1(1 – t)m+1

}

in (4.25), we have

Hp,q(k)

=
e–p–q

2

∫ 1

0
t– 1

2 (1 – t)– 1
2
(
1 – k2t

)γ – 1
2

{ ∞∑
m,n=0

Lm(p)Ln(q)tn+1(1 – t)m+1

}
dt. (4.26)

Now, changing integration and summation order and using the integral representation of
2F1 [27]

2F1(λ,μ;ν;Z) =

(ν)


(μ)
(ν – μ)

∫ 1

0
tμ–1(1 – t)ν–μ–1(1 – Zt)–λ dt,

when there holds �(ν) > �(μ) > 0; | arg(1 – Z)| ≤ π – ε (0 < ε < π ) in (4.26), we are led to
the required result. �

Corollary 4.3 The following Laguerre polynomial relations hold true for Kp,q(k) and
Ep,q(k):

Kp,q(k) =
∞∑

m,n=0

e–p–qB(n + 3
2 , m + 3

2 )
2

Lm(p)Ln(q)2F1

(
1
2

, n +
3
2

; m + n + 3; k2
)

(4.27)

and

Ep,q(k) =
∞∑

m,n=0

e–p–qB(n + 3
2 , m + 3

2 )
2

Lm(p)Ln(q)2F1

(
–

1
2

, n +
3
2

; m + n + 3; k2
)

. (4.28)

5 Certain properties of (p, q)-extended elliptic integrals
In this section we obtain certain special values in terms of (p, q)-extended beta function
Bp,q(δ,σ ) and present the connections with G-function of two variables. We also present
various derivative and integrals formulas for the (p, q)-extended elliptic-type integrals.

5.1 Special parametric values and connections with G-function
In this subsection, we first find the special values of Kp,q(k), K ′

p,q(k), Ep,q(k), and E′
p,q(k) in

terms of the (p, q)-extended beta function Bp,q(δ,σ ). It suffices to consider the correspond-
ing defining expressions in Sect. 2 in view of the definition of Bp,q(δ,σ ) (1.7).
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Theorem 5.1 Let Bp,q(δ,σ ) be the (p, q)-extended beta function defined in (1.7). Then:

Kp,q(0) = K ′
p,q(1) = Ep,q(0) = E′

p,q(1) =
1
2

Bp,q

(
1
2

,
1
2

)
, (5.1)

Ep,q(1) = E′
p,q(0) =

1
2

Bp,q

(
1
2

, 1
)

, (5.2)

and

Kp,q(1) = K ′
p,q(0) =

1
2

Bp,q

(
1
2

, 0
)

. (5.3)

Next, observe that Meijer’s G-function of two variables [31, p.7, Eq. (1.2.3) and p.88,
Eq. (6.4.1)] is expressible in terms of the (p, q)-extended beta function Bp,q(δ,σ ) for
�(p),�(q) > 0 as follows [11, p.350, Eq. (5.6)]:

Bp,q(δ,σ ) = G0,0:2,0;2,0
1,0:0,2;0,2

[
(δ + σ ; 1, 1) : ;

: (0, 1), (δ, 1); (0, 1), (σ , 1)
; p, q

]
. (5.4)

Now, by making use of relationship (5.4) to (5.1) through (5.3) in Theorem 5.1, we can
establish various representations of (p, q)-extended (complete) elliptic integrals that are
given in Corollary 5.1.

Corollary 5.1 The following relations hold true:

Kp,q(0) = K ′
p,q(1) = Ep,q(0) = E′

p,q(1)

= G0,0:2,0;2,0
1,0:0,2;0,2

[
(1; 1, 1) : ;

: (0, 1), (1/2, 1); (0, 1), (1/2, 1)
; p, q

]
, (5.5)

Ep,q(1) = E′
p,q(0) = G0,0:2,0;2,0

1,0:0,2;0,2

[
(3/2; 1, 1) : ;

: (0, 1), (1/2, 1); (0, 1), (1, 1)
; p, q

]
, (5.6)

and

Kp,q(1) = K ′
p,q(0) = G0,0:2,0;2,0

1,0:0,2;0,2

[
(1/2; 1, 1) : ;

: (0, 1), (1/2, 1); (0, 1), (0, 1)
; p, q

]
. (5.7)

5.2 Differential and integral formulas
In this subsection, we present various differential and integral formulas for (p, q)-extended
elliptic-type integrals. The proofs are omitted.

Theorem 5.2 The following derivative formulas hold true for Kp,q(k) and Ep,q(k):

d
dk

{
Ep,q(ψ , k)

}
=

1
k
[
Ep,q(ψ , k) – Fp,q(ψ , k)

]
, (5.8)

d
dk

{
Ep,q(k)

}
=

1
k
[
Ep,q(k) – Kp,q(k)

]
, (5.9)

d
dk

{
E′

p,q(k)
}

= –
k

k′2
[
E′

p,q(k) – K ′
p,q(k)

]
, (5.10)
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d
dk′

{
Ep,q(k)

}
= –

k′

k2

[
Ep,q(k) – Kp,q(k)

]
, (5.11)

dm

d(k2)m

{
Kp,q(k)

}
=

π [(2m)!]2

2(m!)316m Fp,q

(
1
2

+ m,
1
2

+ m, 1 + m; k2
)

, (5.12)

dm

d(k2)m

{
Ep,q(k)

}
=

π

2
( 1

2 )m(– 1
2 )m

m!
Fp,q

(
–

1
2

+ m,
1
2

+ m, 1 + m; k2
)

. (5.13)

Theorem 5.3 The following integral formulas hold true for Kp,q(k) and Ep,q(k):

∫ [
Kp,q(k) – Ep,q(k)

]dk
k

= –Ep,q(k), (5.14)
∫

Kp,q(k)
dk
k2 = –

1
k

Ep,q(k), (5.15)
∫ k

k′2
[
K ′

p,q(k) – E′
p,q(k)

]
dk = E′

p,q(k), (5.16)

and

∫ k′

k2

[
Kp,q(k) – E′

p,q(k)
]

dk′ = Ep,q(k). (5.17)

6 Concluding remark and observations
In our present studies, we have introduced and extensively investigated the family of (in-
complete and complete) (p, q)-extended elliptic-type integrals and presented connections
with (p, q)-extended beta function, (p, q)-extended Gauss’ hypergeometric function, and
(p, q)-extended Appell’s double hypergeometric function F1. Moreover, we obtained the
connection with Meijer G-function of two variables. Turán-type inequalities were proved
by using log-convexity property for these (p, q)-extended complete elliptic-type integrals.
Further, we established various Mellin transform formulas and obtained certain infinite
series representations containing Laguerre polynomials. We also obtained some relation-
ship between these (p, q)-extended elliptic-type integrals and as special values and de-
duced numerous differentiation and integral formulas. In conclusion, we introduced (p, q)-
extension of the Epstein–Hubbell elliptic-type integral.

It is worth mentioning, as a main conclusion to observe, that Epstein and Hubbell [12]
studied and investigated the following extensions of K(k) and E(k), which was encountered
in a Legendre polynomial expansion method when applied to certain problems involving
computation of the radiation field off-axis from a uniform circular disk radiating according
to an arbitrary angular distribution law [14] (see also Weiss [37]):

�j(κ) :=
∫ π

0

dθ

(1 – κ2 cos θ )j+ 1
2

(6.1)

(
0 � κ < 1; j ∈N0 := N∪ {0};N := {1, 2, 3, . . .}).

Note that, by comparing definitions (1.5), (1.6), and (6.1), we can deduce the following
connections:

�0(κ) =
k
√

2
κ

K(k) and �1(κ) =
k
√

2
κ(1 – κ2)

E(k)
(

k2 :=
2κ2

1 + κ2

)
.
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These Epstein–Hubbell elliptic-type integrals can be extended by using definitions, which
we have considered in this paper, can be generalized by introducing (p, q)-extended
Epstein–Hubbell elliptic-type integral in (6.1):

�γ ,p,q(κ) :=
∫ π

0

1
(1 – κ2 cos θ )γ + 1

2
e– p

sin2(θ/2)
– q

cos2(θ/2) dθ (6.2)

(
min

{�(p),�(q)
}

> 0; 0 � κ � 1;γ ∈ C0 when p = q = 0
)
.

It is worth noting that if we substitute t = cos( θ
2 ) =

√
(1+cos θ )

2 in (2.4), we obtain the follow-
ing connection with the (p, q)-extended elliptic-type integrals Hp,q(k,γ ) defined by (2.4)
and �γ ,p,q(k) defined by (6.2)

Hp,q(k,γ ) =
(2 – k2)γ – 1

2

2γ + 1
2

�–γ ,p,q

(
k√

2 – k2

)
.

Again by letting cos(θ/2) = t and then t2 = u in (6.2), we can easily obtain relationship
(6.3) in terms of (p, q)-extended Gauss’ hypergeometric function (1.8)

�γ ,p,q(κ) :=
π

(1 + κ2)γ + 1
2

Fp,q

(
γ +

1
2

,
1
2

; 1;
2κ2

1 + κ2

)
. (6.3)

Note that expression (6.3) for p = q = 0 reduces to the known result [37]. Further many of
properties such as Mellin transform formulas, infinite series representations containing
Laguerre polynomials, log-convexity property, and Turán-type inequalities and differen-
tiation and integral formulas can be easily derived. As a result, the information involved
can be left as an exercise for the curious reader. More various concavity, convexity, and
monotonicity properties of our findings can be studied and investigated parallel to the
recent papers [1, 28, 36, 38, 39].
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