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Abstract
In this research paper, we intend to study the stability of solutions of some nonlinear
initial value fractional differential problems. These equations are studied within the
generalized fractional derivative of various orders. In order to study the solutions’
decay to zero as a power function, we establish sufficient conditions on the nonlinear
terms. To this end, some versions of inequalities are combined and generalized via the
so-called Bihari inequality. Moreover, we employ some properties of the generalized
fractional derivative and appropriate regularization techniques. Finally, the paper
involves examples to affirm the validity of the results.
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1 Introduction
Fractional calculus has gotten much consideration from analysts and engineers, as well
as a tool in various areas of engineering, applied mathematics, and physics. Fractional-
order differential equations are used to study plentiful phenomena such as fluid mechan-
ics, plasma physics, optical fibers, nonlinear oscillations of an earthquake, flow in nonlin-
ear electric circuits, biology, aerodynamics, mechanics, and regular variations in thermo-
dynamics. Actually, the transform from theoretical to the application aspect of fractional
calculus was appeared due to the work by Bagley and Torvik [1–3]. A generalized frac-
tional derivative with respect to function tρ is a novel sort of fractional derivatives, which
has been presented by Kilbas et al. [4], and then modified by Katugampola [5] and Almeida
et al. [6]. In a series of papers [7–18] the authors studied the qualitative analysis for some
classes of fractional differential equations involving this generalized fractional derivative.

Fractional-order derivatives can describe the asymptotic behavior of some nonlin-
ear systems more comprehensively as compared to integer order. Further, integer-order
derivatives are the special case of fractional-order derivative. The most significant pecu-
liarity of the considered derivative here is that it provides a general platform that covers
most classical fractional derivatives (e.g. Riemann–Liouville and Hadamard). That is why
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this fractional derivative is often referred to as a generalized fractional derivative. The
said operator has been used in many articles. The said operator has been found useful in
dealing with many real problems.

Fractional differential problems can describe the dynamics of several complex and non-
local systems with memory. They emerge in numerous scientific and engineering areas.
Especially, nonlinear systems describing various phenomena can be modeled with frac-
tional derivatives. These fractional operators possess memory and this memory is efficient
in describing and modeling complex systems nonlocally.

In this regard, the researchers studied many models and used a fractional-order deriva-
tive to describe the solution of them. Among them studying the asymptotic behavior of
such models has meaningful interpretations like permanence, instability, and chaotic de-
velopments. The main aim of this article is to investigate the long-time behavior of solu-
tions of the following problem:

⎧
⎨

⎩

ρDσ
a � (κ) = F(κ,� (κ), ρD

γ
a � (κ)), 0 < γ < σ < 1,ρ > 0,κ > a > 0,

ρI1–σ
a � (κ)|κ=a = b ∈R,

(1.1)

here ρIr
a and ρDr

a are the generalized fractional integral and derivative of order r > 0 (r ∈
{σ ,γ , 1 – σ }), respectively. These types of operators are defined in the next sections. In
[19], Furati and Tatar studied the problem

⎧
⎨

⎩

D
ϑ1
a � (κ) = F(κ,� ), 0 < ϑ1 < 1,κ > 0,

κ
(1–ϑ1)� (κ)|κ=0 = b ∈R,

(1.2)

and they proved that the solutions decay to zero. In this respect, Furati et al. [20] consid-
ered the problem

⎧
⎨

⎩

D
ϑ1,ϑ2
0 � (κ) = F(κ,� ), 0 < ϑ1 < 1,κ > 0,

κ
(1–ϑ1)(1–ϑ2)� (κ)|κ=0 = b ∈R,

(1.3)

here Dϑ1,ϑ2
0 = I

ϑ2(1–ϑ1)
0 DI

(1–ϑ2)(1–ϑ2)
0 . They demonstrated that solutions of this problem de-

cay as a power function. Plociniczak [21] studied the equation

c
D

ϑ1� (κ) = λq(κ)� (κ), 0 < ϑ1 < 1,κ > 0, (1.4)

where cDϑ1 is the Caputo derivative and q(κ) ∼ Cqκ
ν > 0, ν > 0. The author showed that

the solutions of (1.4) obey the asymptotic properties according to values of λ. Medved et
al. [22] considered the problem

c
D

ϑ1
0 � (κ) = F

(
κ,� (κ), c

D
ϑ2
0 � (κ)

)
, 0 < ϑ2 < ϑ1 < 1,κ > 0. (1.5)

They demonstrated that any solution of (1.5) has the asymptotic property � (κ) = cκϑ2 +
o(κϑ2 ) when κ → ∞ for some c ∈R. Kassim et al. [23] studied the equation

D
ϑ1
0 � (κ) = F

(
κ,� (κ),Dϑ2

0 � (κ)
)
, 0 ≤ ϑ2 < ϑ1 < 1,κ > 0. (1.6)
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They proved that solutions of (1.6) decay to zero. Recently, Kassim et al. [24] investigated
the equation

Dϑ1
a � (κ) = F

(
κ,� (κ),Dϑ2

a � (κ)
)
, 0 ≤ ϑ2 < ϑ1 < 1,κ > a, (1.7)

where Dκ
a is the Hadamard fractional derivative of order κ ∈ {ϑ1,ϑ2} and they showed that

solutions of (1.7) decay to zero.
Moreover, in 2020, the same authors [25] discussed the equation

c
D

ϑ1
0 � (κ) = F

(
t,� (κ), c

D
ϑ2
0 � (κ)

)
, ϑ2 < ϑ1. (1.8)

They proved that the solutions of (1.8) approach power type functions for 1 < ϑ1 < 2 and
bounded for 0 < ϑ2 < 1. For more results related to asymptotic behavior, we refer to [19,
20, 23, 26–32], and the references therein. In this letter, generalization of the results in
[19, 20, 22–24] to problem (1.1) was established. In particular, the problems (1.6) and (1.7)
studied in [23, 24] become special cases of (1.1) when ρ = 1 and ρ → 0, respectively.

In the present work, we prove under certain conditions the solutions of (1.1) decay to-
wards zero as (κρ–aρ

ρ
)ϑ1–1. The investigated fractional derivatives belong to a general class

of fractional operators including Riemann–Liouville, Caputo, and in the limiting case to
zero the Hadamard and Caputo–Hadamard fractional derivatives. The used techniques
are novel and new and applied in a clever way. The studied fractional equation is studied
in this category for the first time and this will help researchers to proceed more in this
direction.

In Sect. 2, we prepare some materials. In Sect. 3, we state and prove the main result.
Illustrative examples are given in Sect. 4. Concluding remarks are discussed in the last
section.

2 Preliminaries
In this section, we briefly recall some definitions, lemmas, properties and notations and
well-known estimations we will use later.

Definition 2.1 ([12]) Let ρ > 0 and 0 ≤ γ < 1, we introduce the spaces Cρ,γ [a, b] and
Cn

ρ,γ [a, b] as follows:

Cρ,γ [a, b] =
{

g(κ) ∈ C(a, b],
(
κ

ρ – aρ

ρ

)γ

g(κ) ∈ C[a, b]
}

,

Cn
ρ,γ [a, b]

=
{(

κ
1–ρ d

dκ

)n

g(κ) ∈ Cρ,γ [a, b],
(

κ
1–ρ d

dκ

)k

g(κ) ∈ C[a, b], k = 0, . . . , n – 1
}

,

with the norms

‖g‖Cρ,γ =
∥
∥
∥
∥

(
κ

ρ – aρ

ρ

)γ

g(κ)
∥
∥
∥
∥

C
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and

‖g‖Cn
ρ,γ =

∥
∥
∥
∥

(

κ
1–ρ d

dκ

)n

g
∥
∥
∥
∥

Cρ,γ

+
n–1∑

j=0

∥
∥
∥
∥

(

κ
1–ρ d

dκ

)j

g
∥
∥
∥
∥

C
,

respectively.

Here we present some requisite definitions, notation and properties of the generalized
fractional integral and derivative.

Definition 2.2 ([5]) The generalized fractional integral and derivative are defined, respec-
tively, by

ρ
I

ϑ1
a g(κ) =

ρ1–ϑ1


(ϑ1)

∫
κ

a

(
κ

ρ – tρ
)ϑ1–1tρ–1g(t) dt, ϑ1 > 0,ρ > 0,

and

ρ
D

ϑ1
a g(κ) = δn

ρ

(
ρ
I

n–ϑ1
a g

)
(κ)

=
ρ1+ϑ1–n


(n – ϑ1)

(

κ
1–ρ d

dκ

)n ∫
κ

a

(
κ

ρ – tρ
)n–ϑ1–1tρ–1g(t) dt, ϑ1 > 0,ρ > 0,

where

n = –[–ϑ1], δn
ρ =

(

κ
1–ρ d

dκ

)n

.

The generalized fractional integral and derivative (Definition 2.2) satisfy the following
properties.

Property 2.3 ([33]) If ϑ1 ≥ 0, ρ > 0 and ϑ2 > 0, then

ρ
I

ϑ1
a

(
κ

ρ – aρ

ρ

)ϑ2

=

(ϑ2 + 1)


(ϑ2 + ϑ1 + 1)

(
κ

ρ – aρ

ρ

)ϑ2+ϑ1

, κ > a,

ρ
D

ϑ1
a

(
κ

ρ – aρ

ρ

)ϑ2

=

(ϑ2 + 1)


(ϑ2 – ϑ1 + 1)

(
κ

ρ – aρ

ρ

)ϑ2–ϑ1

, κ > a.

Property 2.4 ([33]) Let ϑ1, ρ , ϑ2 > 0 and 0 ≤ μ < 1. If g ∈ Cμ,ρ[a, b], then

ρ
I

ϑ1
a

ρ
I

ϑ2
a g(κ) = ρ

I
ϑ1+ϑ2
a g(κ), κ > a.

Property 2.5 ([5]) Let ϑ1 > ϑ2 > 0. If g ∈ Cμ,ρ[a, b], then

ρ
D

ϑ2
a

ρ
I

ϑ1
a g(κ) = ρ

I
ϑ1–ϑ2
a g(κ), κ > a.

Property 2.6 ([5]) If g ∈ Cμ,ρ[a, b] and ϑ1 > 0, then

ρ
D

ϑ1
a

ρ
I

ϑ1
a g = g, κ ∈ (a, b].



Kassim et al. Advances in Difference Equations        (2021) 2021:376 Page 5 of 20

Theorem 2.7 ([12]) Let 0 < ϑ1 < 1, ρ > 0 and 0 ≤ γ < 1. If g ∈ Cρ,γ [a, b] and ρI
1–ϑ1
a g ∈

C1
ρ,γ [a, b], then

ρ
I

ϑ1
a

ρ
D

ϑ1
a g(κ) = g(κ) –

(ρI1–ϑ1
a g)(a)

(ϑ1)

(
κ

ρ – aρ

ρ

)ϑ1–1

.

Next, we prove the following useful lemma.

Lemma 2.8 If g ∈ C1–ϑ1,ρ[a, b], ρI
1–ϑ1
a g ∈ C1

1–ϑ1,ρ[a, b], 0 < ϑ1 < 1, then, for 0 ≤ ϑ2 < ϑ1 < 1,
we have

ρ
D

ϑ2
a g(κ) = ρ

I
ϑ1–ϑ2
a

ρ
D

ϑ1
a g(κ) +

ρI
1–ϑ1
a g(a)


(ϑ1 – ϑ2)

(
κ

ρ – aρ

ρ

)ϑ1–ϑ2–1

, κ ∈ (a, b].

Proof By Theorem 2.7, we have

ρ
I

ϑ1
a

ρ
D

ϑ1
a g(κ) = g(κ) –

(ρI1–ϑ1
a g)(a)

(ϑ1)

(
κ

ρ – aρ

ρ

)ϑ1–1

, κ > a. (2.1)

Applying ρD
ϑ2
a to (2.1), using Properties 2.3 and 2.5, we obtain

ρ
D

ϑ2
a g(κ) = ρ

I
ϑ1–ϑ2
a

ρ
D

ϑ1
a g(κ) +

ρI
1–ϑ1
a g(a)


(ϑ1 – ϑ2)

(
κ

ρ – aρ

ρ

)ϑ1–ϑ2–1

, κ ∈ (a, b]. �

We recall some basic well-known results.

Theorem 2.9 (Bihari inequality, [34]) Let v and g be continuous nonnegative functions
defined on [0,∞). Let z(v) be a continuous nondecreasing function defined on [0,∞) and
z(v) > 0 on (0,∞). If

v(κ) ≤ c +
∫

κ

0
g(s)z

(
v(s)

)
ds,

for κ ∈ [0,∞), where c ≥ 0, then

v(κ) ≤ F
–1

(

F(c) +
∫

κ

0
g(s) ds

)

,

where F–1 is the inverse function of

F(κ) =
∫

κ

κ0

ds
z(s)

, κ > 0,κ0 > 0.

Lemma 2.10 ([35, 36]) For a nonnegativea and b, we have

ar + br ≤ (a + b)r ≤ 2r–1(ar + br), r ≥ 1,

and

2r–1(ar + br) ≤ (a + b)r ≤ ar + br , 1 ≥ r ≥ 0.
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3 Stability
We discuss the problem (1.1) with the following suppositions.

(A1) F(κ, v, w) : (a,∞) ×R
2 → R is a function such that F(., v(·), w(·)) ∈ C1–ϑ1,ρ[a,∞)

for every v, w ∈ C1–ϑ1,ρ[a,∞).
(A2) There is continuous functions ϕk , k = 1, 2, h : [a,∞) → [0,∞), such that

∣
∣F(κ, v, w)

∣
∣ ≤

(
κ

ρ – aρ

ρ

)γ

e–δ(κρ–aρ )h(κ)

× ϕ1

((
κ

ρ – aρ

ρ

)1–ϑ1

|v|
)

ϕ2

((
κ

ρ – aρ

ρ

)1–(ϑ1–ϑ2)

|w|
)

, (3.1)

where ϕk , k = 1, 2, are nondecreasing functions and γ ∈R.
(A3) There are two continuous functions ϕk , hk : [a,∞) → [0,∞), k = 1, 2, such that

∣
∣F(κ, v, w)

∣
∣ ≤

(
κ

ρ – aρ

ρ

)γ1

e–δ1(κρ–aρ )h1(κ)ϕ1

((
κ

ρ – aρ

ρ

)1–ϑ1

|v|
)

+
(
κ

ρ – aρ

ρ

)γ2

e–δ2(κρ–aρ )h2(κ)

× ϕ2

((
κ

ρ – aρ

ρ

)1–(ϑ1–ϑ2)

|w|
)

, (3.2)

where ϕk , k = 1, 2, are nondecreasing functions and γk ∈R, k = 1, 2.
The following general interesting inequality is proved.

Lemma 3.1 For λ,ν,ρ > 0, ω > 0, we have

(
κ

ρ – aρ
)1–ν

∫
κ

a

(
κ

ρ – sρ
)ν–1(sρ – aρ

)λ–1e–ω(sρ–aρ )sρ–1 ds ≤ C, κ > a,

where

C = ρ–1 max
(
1, 21–ν

)
ω–λ
(λ)

(

1 +
λ(λ + 1)

ν

)

.

Proof Put

L(κ) :=
(
κ

ρ – aρ
)1–ν

∫
κ

a

(
κ

ρ – sρ
)ν–1(sρ – aρ

)λ–1e–ω(sρ–aρ )sρ–1 ds, κ > a.

Let r = sρ–aρ

κ
ρ–aρ . Then sρ = r(κρ – aρ) + aρ and sρ–1 ds = 1

ρ
(κρ – aρ) dr. Therefore

L(κ) =
(
κ

ρ – aρ
)1–ν

∫ 1

0

(
κ

ρ – aρ –
(
κ

ρ – aρ
)
r
)ν–1((

κ
ρ – aρ

)
r
)λ–1

× e–ωr(κρ–aρ ) 1
ρ

(
κ

ρ – aρ
)

dr

=
1
ρ

(
κ

ρ – aρ
)λ

∫ 1

0
(1 – r)ν–1rλ–1e–ωr(κρ–aρ ) dr

=
1
ρ

(
κ

ρ – aρ
)λ

∫ 1/2

0
(1 – r)ν–1rλ–1e–ωr(κρ–aρ ) dr
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+
1
ρ

(
κ

ρ – aρ
)λ

∫ 1

1/2
(1 – r)ν–1rλ–1e–ωr(κρ–aρ ) dr

≤ ρ–1 max
(
1, 21–ν

)(
κ

ρ – aρ
)λ

∫ 1/2

0
rλ–1e–ωr(κρ–aρ ) dr

+ ρ–1(
κ

ρ – aρ
)λ

∫ 1

1/2
(1 – r)ν–1rλ–1e–ωr(κρ–aρ ) dr. (3.3)

Let u = ωr(κρ – aρ), then du = ω(κρ – aρ) dr and

(
κ

ρ – aρ
)λ

∫ 1/2

0
rλ–1e–ωr(κρ–aρ ) dr ≤ ω–λ

∫ ∞

0
uλ–1e–u du = ω–λ
(λ). (3.4)

If ωr(κρ – aρ) ≥ 1, then

eωr(κρ–aρ ) ≥ (ωr(κρ – aρ))[λ]+1

([λ] + 1)!
=

(ωr(κρ – aρ))[λ]+1


([λ] + 2)
≥ (ωr(κρ – aρ))λ


(λ + 2)
.

Therefore, when 1/2 < r ≤ 1

rλ–1e–ωr(κρ–aρ ) ≤ rλ–1
(λ + 2)
(ωr(κρ – aρ))λ

≤ 2ω–λ
(λ + 2)
(κρ – aρ)λ

and consequently

ρ–1(
κ

ρ – aρ
)λ

∫ 1

1/2
(1 – r)ν–1rλ–1e–ωr(κρ–aρ ) dr

≤ 2ω–λρ–1
(λ + 2)
∫ 1

1/2
(1 – r)ν–1 dr =

21–νω–λ
(λ + 2)
ρν

. (3.5)

When ωr(κρ – aρ) < 1, we have eωr(κρ–aρ ) ≥ 1 > (ωr(κρ – aρ))λ and thus

ρ–1(
κ

ρ – aρ
)λ

∫ 1

1/2
(1 – r)ν–1rλ–1e–ωr(κρ–aρ ) dr

< ρ–1(
κ

ρ – aρ
)λ

∫ 1

1/2
(1 – r)ν–1rλ–1(ωr

(
κ

ρ – aρ
))–λ dr

< 2ρ–1ω–λ

∫ 1

1/2
(1 – r)ν–1 dr = 21–ν ω–λ

ρν
. (3.6)

Take into consideration (3.3)–(3.6) we conclude that

L(κ) ≤ ρ–1 max
(
1, 21–ν

)
ω–λ
(λ) +

21–νω–λ
(λ + 2)
ρν

≤ ρ–1 max
(
1, 21–ν

)
ω–λ
(λ)

(

1 +
λ(λ + 1)

ν

)

. �

We prove a useful inequality enjoyed by solutions of Problem (1.1).

Lemma 3.2 Suppose that F satisfies (A1), (A2) and � (κ) is solution of (1.1). Then

max

{(
κ

ρ – aρ

ρ

)1–ϑ1 ∣
∣� (κ)

∣
∣,

(
κ

ρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ2
a � (κ)|

}



Kassim et al. Advances in Difference Equations        (2021) 2021:376 Page 8 of 20

≤ z(κ), κ > a, (3.7)

where

z(κ) = K1 + K2

{∫
κ

a
hq(s)ϕq

1

((
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

)

ϕ
q
2

× ϕ
q
2

((
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

)
ds

s1–ρ

}1/q

(3.8)

when h ∈ Lq(a,∞) for some q > 1
ϑ1–ϑ2

, γ > 1
q – 1,

K1 = |b|max

{
1


(ϑ1)
,

1

(ϑ1 – ϑ2)

}

and K2 = ρ–γ max

{
C′

1

(ϑ1)

,
C′

2

(ϑ1 – ϑ2)

}

,

where p + q = pq,

C′
1 =

[
1
ρ

max
{

1, 2p(1–ϑ1)}(pδ)–(pγ +1)
(pγ + 1)
(

1 +
(pγ + 1)(pγ + 2)

p(1 – ϑ1) + 1

)]1/p

and

C′
2 =

[
1
ρ

max
{

1, 2p(1–ϑ1+ϑ2)}
(

1 +
(pγ + 1)(pγ + 2)

p(ϑ1 – ϑ2 – 1) + 1

)

(pδ)–(pγ +1)
(pγ + 1)
]1/p

.

Proof Applying ρI
ϑ1
a to (1.1) and using Theorem 2.7, we find that

� (κ) =
b


(ϑ1)

(
κ

ρ – aρ

ρ

)ϑ1–1

+
1


(ϑ1)

∫
κ

a

(
κ

ρ – sρ

ρ

)ϑ1–1

F
(
s,� (s), ρ

D
ϑ2
a � (s)

) ds
s1–ρ

(3.9)

and using (3.1), we obtain

(
κ

ρ – aρ

ρ

)1–ϑ1 ∣
∣� (κ)

∣
∣

≤ K1 +
1


(ϑ1)

(
κ

ρ – aρ

ρ

)1–ϑ1

×
∫

κ

a

{(
κ

ρ – sρ

ρ

)ϑ1–1( sρ – aρ

ρ

)γ

e–δ(sρ–aρ )h(s)

× ϕ1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

× ϕ2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

]
ds

s1–ρ

}

, κ > a. (3.10)

Now, the Hölder inequality yields

J1 :=
∫

κ

a

{(
κ

ρ – sρ

ρ

)ϑ1–1( sρ – aρ

ρ

)γ

e–δ(sρ–aρ )



Kassim et al. Advances in Difference Equations        (2021) 2021:376 Page 9 of 20

× h(s)ϕ1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

ϕ2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

]
ds

s1–ρ

}

≤
[∫

κ

a

(
κ

ρ – sρ

ρ

)p(ϑ1–1)( sρ – aρ

ρ

)pγ

e–pδ(sρ–aρ ) ds
s1–ρ

] 1
p

×
{∫

κ

a
hq(s)ϕq

1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

× ϕ
q
2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

]
ds

s1–ρ

} 1
q

≤ ρ1–ϑ1–γ

[∫
κ

a

(
κ

ρ – sρ
)p(ϑ1–1)(sρ – aρ

)pγ e–pδ(sρ–aρ ) ds
s1–ρ

] 1
p

×
{∫

κ

a
hq(s)ϕq

1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

× ϕ
q
2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣Dϑ2

a � (s)
∣
∣

]
ds

s1–ρ

} 1
q

, κ > a.

Now, as q > 1
ϑ1–ϑ2

implies p(ϑ1 – 1) > –1 and pγ > –1, we apply Lemma 3.1 to get

J1 ≤ ρ1–ϑ1–γ C′
1
(
κ

ρ – aρ
)ϑ1–1

×
{∫

κ

a
hq(s)ϕq

1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

× ϕ
q
2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣Dϑ2

a � (s)
∣
∣

]
ds

s1–ρ

} 1
q

, κ > a. (3.11)

Combining (3.10) and (3.11) we conclude that

(
κ

ρ – aρ

ρ

)1–ϑ1 ∣
∣� (κ)

∣
∣ ≤ K1 + K2

{∫
κ

a
hq(s)ϕq

1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

× ϕ
q
2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣Dϑ2

a � (s)
∣
∣

]
ds

s1–ρ

} 1
q

, (3.12)

for κ > a. By using Lemma 2.8, we have

ρ
D

ϑ2
a � (κ)

= ρ
I

ϑ1–ϑ2
a

ρ
D

ϑ1
a � (κ) +

b

(ϑ1 – ϑ2)

(
κ

ρ – aρ

ρ

)ϑ1–ϑ2–1

=
b


(ϑ1 – ϑ2)

(
κ

ρ – aρ

ρ

)ϑ1–ϑ2–1

+
1


(ϑ1 – ϑ2)

∫
κ

a

(
κ

ρ – sρ

ρ

)ϑ1–ϑ2–1
ρ
D

ϑ1
a � (s)

ds
s1–ρ

=
b


(ϑ1 – ϑ2)

(
κ

ρ – aρ

ρ

)ϑ1–ϑ2–1

+
1


(ϑ1 – ϑ2)

∫
κ

a

(
κ

ρ – sρ

ρ

)ϑ1–ϑ2–1

F
(
s,� (s), ρ

D
ϑ2
a � (s)

) ds
s1–ρ

, κ > a (3.13)
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and in view of (3.1)

(
κ

ρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ2
a � (κ)|

≤ K1 +
1


(ϑ1 – ϑ2)

(
κ

ρ – aρ

ρ

)1–(ϑ1–ϑ2) ∫ κ

a

{(
κ

ρ – sρ

ρ

)ϑ1–ϑ2–1( sρ – aρ

ρ

)γ

× e–δ(sρ–aρ )h(s)ϕ1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

× ϕ2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

]
ds

s1–ρ

}

, (3.14)

for κ > a. By using the Hölder inequality, we see that

J2 :=
∫

κ

a

{(
κ

ρ – sρ

ρ

)ϑ1–ϑ2–1( sρ – aρ

ρ

)γ

× e–δ(sρ–aρ )h(s)ϕ1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

× ϕ2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

]
ds

s1–ρ

}

≤
[∫

κ

a

(
κ

ρ – sρ

ρ

)p(ϑ1–ϑ2–1)( sρ – aρ

ρ

)pγ

e–pδ(sρ–aρ ) ds
s1–ρ

] 1
p

×
{∫

κ

a
hq(s)ϕq

1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

× ϕ
q
2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

]
ds

s1–ρ

} 1
q

≤ ρ1–(ϑ1–ϑ2)–γ

[∫
κ

a

(
κ

ρ – sρ
)p(ϑ1–ϑ2–1)(sρ – aρ

)pγ e–pδ(sρ–aρ ) ds
s1–ρ

] 1
p

×
{∫

κ

a
hq(s)ϕq

1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

× ϕ
q
2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

]
ds

s1–ρ

} 1
q

,

for κ > a. Again by Lemma 3.1 (with p(ϑ1 – ϑ2 – 1) > –1 and pγ > –1), we obtain

J2 ≤ ρ–γ C′
2

(
sρ – aρ

ρ

)ϑ1–ϑ2–1{∫
κ

a
hq(s)ϕq

1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

× ϕ
q
2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

]
ds

s1–ρ

} 1
q

, (3.15)

Combining (3.14) and (3.15), we arrive at

(
κ

ρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ2
a � (κ)|
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≤ K1 + K2

{∫
κ

a
hq(s)ϕq

1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]

× ϕ
q
2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

]
ds

s1–ρ

} 1
q

, (3.16)

for κ > a. The relation (3.7) is an instant consequence of (3.12) and (3.16). �

Lemma 3.3 Suppose that F satisfies (A1), (A3) and � (κ) is solution of (1.1). Then

max

{(
κ

ρ – aρ

ρ

)1–ϑ1 ∣
∣� (κ)

∣
∣,

(
κ

ρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ2
a � (κ)|

}

≤ z(κ), κ > a, (3.17)

where

z(κ) = K1 + K2

{[∫
κ

a
hq

1(s)ϕq
1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]
ds

s1–ρ

]1/q

+
[∫

κ

a
hq

2(s)ϕq
2

((
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

)
ds

s1–ρ

]1/q}

, κ > a, (3.18)

where hk ∈ Lq(a,∞) for some q > 1
ϑ1–ϑ2

, γk > 1
q – 1, and δk > 0, k = 1, 2,

K1 = |b|max

{
1


(ϑ1)
,

1

(ϑ1 – ϑ2)

}

and K2 = max
{

C3, C′
3
}

,

C3 =
ρ–γk


(ϑ1)
max{C1, C2},

Ck =
(

1
ρ

max
{

1, 2p(1–ϑ1)}
(1 + pγk)
(

(pγk + 1)(pγk + 2)
p(ϑ1 – 1) + 1

+ 1
)

(pδk)–(1+pγk )
) 1

p
,

C′
3 =

ρ–γk


(ϑ1 – ϑ2)
max

{
C′

1, C′
2
}

,

C′
k =

(
1
ρ

max
{

1, 2p(1–(ϑ1–ϑ2))}
(pγk + 1)
(

1 +
(pγk + 1)(pγk + 2)
p(ϑ1 – ϑ2 – 1) + 1

)

(pδk)–(pγk +1)
) 1

p
.

Proof Applying ρI
ϑ1
a to (1.1) and using Theorem 2.7, we find that

� (κ) =
b


(ϑ1)

(
κ

ρ – aρ

ρ

)ϑ1–1

+
1


(ϑ1)

∫
κ

a

(
κ

ρ – sρ

ρ

)ϑ1–1

× F
(
s,� (s),ρ Dϑ2

a � (s)
) ds

s1–ρ
, (3.19)

for κ > a. Multiplying (3.19) by (κρ–aρ

ρ
)1–ϑ1 and using (3.2), we get

(
κ

ρ – aρ

ρ

)1–ϑ1 ∣
∣� (κ)

∣
∣

≤ K1 +
1


(ϑ1)

(
κ

ρ – aρ

ρ

)1–ϑ1
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×
∫

κ

a

(
κ

ρ – sρ

ρ

)ϑ1–1( sρ – aρ

ρ

)γ1

e–δ1(sρ–aρ )

× h1(s)ϕ1

[(
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

]
ds

s1–ρ

+
1


(ϑ1)

(
κ

ρ – aρ

ρ

)1–ϑ1 ∫
κ

a

(
κ

ρ – sρ

ρ

)ϑ1–1( sρ – aρ

ρ

)γ2

e–δ2(sρ–aρ )

× h2(s)ϕ2

[(
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ1

a � (s)
∣
∣

]
ds

s1–ρ
.

From the Hölder inequality we have

(
κ

ρ – aρ

ρ

)1–ϑ1 ∣
∣� (κ)

∣
∣ ≤ K1 +

1

(ϑ1)

(
κ

ρ – aρ

ρ

)1–ϑ1

×
(∫

κ

a

(
κ

ρ – sρ

ρ

)p(ϑ1–1)( sρ – aρ

ρ

)pγ1

e–pδ1(sρ–aρ ) ds
s1–ρ

) 1
p

×
(∫

κ

a
hq

1(s)ϕq
1

((
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

)
ds

s1–ρ

) 1
q

+
1


(ϑ1)

(
κ

ρ – aρ

ρ

)1–ϑ1

×
(∫

κ

a

(
κ

ρ – sρ

ρ

)p(ϑ1–1)( sρ – aρ

ρ

)pγ2

e–pδ2(sρ–aρ ) ds
s1–ρ

) 1
p

×
(∫

κ

a
hq

2(s)ϕq
2

((
sρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ1
a � (s)|

)
ds

s1–ρ

) 1
q

.

Since q > 1
ϑ1–ϑ2

, γk > 1
q – 1, δk > 0, we have p(ϑ1 – 1) + 1 > 0 and 1 + pγk > 0, k = 1, 2, so we

can apply Lemma 3.1 to get

(
κ

ρ – aρ

ρ

)1–ϑ1 ∣
∣� (κ)

∣
∣

≤ K1 + C3

[(∫
κ

a
hq

1(s)ϕq
1

((
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

)
ds

s1–ρ

) 1
q

+
(∫

κ

a
hq

2(s)ϕq
2

((
sρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ1
a � (s)|

)
ds

s1–ρ

) 1
q
]

. (3.20)

Also we have

ρ
D

ϑ2
a � (κ) =

b

(ϑ1 – ϑ2)

(
κ

ρ – aρ

ρ

)ϑ1–ϑ2–1

+
1


(ϑ1 – ϑ2)

∫
κ

a

(
κ

ρ – sρ

ρ

)ϑ1–ϑ2–1
ρ
D

ϑ1
a � (s)

ds
s1–ρ

=
b


(ϑ1 – ϑ2)

(
κ

ρ – aρ

ρ

)ϑ1–ϑ2–1

+
1


(ϑ1 – ϑ2)

×
∫

κ

a

(
κ

ρ – sρ

ρ

)ϑ1–ϑ2–1

F
(
s,� (s), ρ

D
ϑ2
a � (s)

) ds
s1–ρ

. (3.21)
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Multiplying (3.21) by (κρ–aρ

ρ
)1–(ϑ1–ϑ2) and using (3.2), we find that

(
κ

ρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ2
a � (κ)|

≤ K1 +
(κρ–aρ

ρ
)1–(ϑ1–ϑ2)


(ϑ1 – ϑ2)

∫
κ

a

(
κ

ρ – sρ

ρ

)ϑ1–ϑ2–1( sρ – aρ

ρ

)γ1

e–δ1(sρ–aρ )

× h1(s)ϕ1

((
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

)
ds

s1–ρ

+
(κρ–aρ

ρ
)1–(ϑ1–ϑ2)


(ϑ1 – ϑ2)

∫
κ

a

(
κ

ρ – sρ

ρ

)ϑ1–ϑ2–1( sρ – aρ

ρ

)γ2

e–δ2(sρ–aρ )

× h2(s)ϕ2

((
sρ – aρ

ρ

)1–(ϑ1–ϑ2)∣
∣ρDϑ2

a � (s)
∣
∣

)
ds

s1–ρ
.

From the Hölder inequality, we have

(
κ

ρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ2
a � (κ)|

≤ K1 +
(κρ–aρ

ρ
)1–(ϑ1–ϑ2)


(ϑ1 – ϑ2)

×
(∫

κ

a

(
κ

ρ – sρ

ρ

)p(ϑ1–ϑ2–1)( sρ – aρ

ρ

)pγ1

e–pδ1(sρ–aρ ) ds
s1–ρ

) 1
p

×
(∫

κ

a
hq

1(s)ϕq
1

((
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

)
ds

s1–ρ

) 1
q

+
(κρ–aρ

ρ
)1–(ϑ1–ϑ2)


(ϑ1 – ϑ2)

(∫
κ

a

(
κ

ρ – sρ

ρ

)p(ϑ1–ϑ2–1)( sρ – aρ

ρ

)pγ2

e–pδ2(sρ–aρ ) ds
s1–ρ

) 1
p

×
(∫

κ

a
hq

2(s)ϕq
2

((
sρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ2
a � (s)|

)
ds

s1–ρ

) 1
q

.

Applying Lemma 3.1, we obtain

(
κ

ρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ2
a � (κ)|

≤ K1 + C′
3

[(∫
κ

a
hq

1(s)ϕq
1

((
sρ – aρ

ρ

)1–ϑ1 ∣
∣� (s)

∣
∣

)
ds

s1–ρ

) 1
q

+
(∫

κ

a
hq

2(s)ϕq
2

((
sρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ2
a � (s)|

)
ds

s1–ρ

) 1
q
]

. (3.22)

Equation (3.17) is an immediate consequence of (3.18), (3.20) and (3.22). �

Theorem 3.4 Assume that the assumptions of Lemma 3.2 hold, then the solutions of (1.1)
satisfy

∣
∣� (κ)

∣
∣ ≤ C

(
κ

ρ – aρ

ρ

)ϑ1–1

and



Kassim et al. Advances in Difference Equations        (2021) 2021:376 Page 14 of 20

∣
∣ρDϑ2

a � (κ)
∣
∣ < C

(
κ

ρ – aρ

ρ

)ϑ1–ϑ2–1

, C > 0,κ > a

provided that

∫ ∞

κ0

ds

ϕ
q
1 (s

1
q )ϕq

2 (s
1
q )

= ∞, κ0 > 0.

Proof Thanks to Lemma 3.2 and the fact that ϕk , k = 1, 2, are nondecreasing, we have

⎧
⎨

⎩

ϕ1[(κρ–aρ

ρ
)1–ϑ1 |� (κ)|] ≤ ϕ1[z(κ)], κ > a

ϕ2[(κρ–aρ

ρ
)1–(ϑ1–ϑ2)|ρDϑ2

a � (κ)|] ≤ ϕ2[z(κ)], κ > a.
(3.23)

Therefore (3.8) and (3.23), lead to

z(κ) ≤ K1 + K2

(∫
κ

a
hq(s)ϕq

1
(
z(s)

)
ϕ

q
2
(
z(s)

)
ds

) 1
q

, κ > a. (3.24)

Applying Lemma 2.10 to (3.24), we get

zq(κ) ≤ B1 + B2

∫
κ

a
hq(s)ϕq

1
(
z(s)

)
ϕ

q
2
(
z(s)

)
ds, κ > a, (3.25)

where

B1 = 2q–1K1 and B2 = 2q–1K2.

Now, put u(κ) = zq(κ), then (3.25) becomes

u(κ) ≤ B1 + B2

∫
κ

a
hq(s)ϕq

1
(
u

1
q (s)

)
ϕ

q
2
(
u

1
q (s)

)
ds, κ > a. (3.26)

Let

w(r) = ϕ
q
1
(
r

1
q
)
ϕ

q
2
(
r

1
q
)
. (3.27)

Then w is a nondecreasing continuous function and

u(κ) ≤ B1 + B2

∫
κ

a
hq(s)w(u) ds, κ > a. (3.28)

Applying Theorem 2.9 to (3.28), we obtain

u(κ) ≤ G–1
(

G(B1) + B2

∫
κ

a
hq(s) ds

)

, κ > a, (3.29)

where

G(κ) =
∫

κ

κ0

ds
w(s)

=
∫

κ

κ0

ds

ϕ
q
1 (s

1
q )ϕq

2 (s
1
q )

, κ0 > 0,κ > 0.
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Clearly

G(B1) + B2

∫
κ

a
hq(s) ds ∈ Dom

(
G–1),κ > a.

As h ∈ Lq ∈ (a,∞), we have

H1 = G(B1) + B2

∫ ∞

a
hq(s) ds < ∞ (3.30)

and

u(κ) ≤ H2 := G–1(H1) < ∞.

Therefore z(κ) ≤ C := H
1
q

2 and the result follows. �

Theorem 3.5 Assume that the assumptions of Lemma 3.3 hold, then the solutions of (1.1)
satisfy

∣
∣� (κ)

∣
∣ ≤ C

(
κ

ρ – aρ

ρ

)ϑ1–1

and

∣
∣ρDϑ2

a � (κ)
∣
∣ < C

(
κ

ρ – aρ

ρ

)ϑ1–ϑ2–1

, C > 0,κ > a,

provided that

∫ ∞

κ0

ds

ϕ
q
1 (s

1
q ) + ϕ

q
2 (s

1
q )

= ∞, κ0 > 0.

Proof By using Lemma 3.3, we deduce

ϕ1

((
κ

ρ – aρ

ρ

)1–ϑ1 ∣
∣� (κ)

∣
∣

)

≤ ϕ1
(
z(κ)

)
, κ > a,

ϕ2

((
κ

ρ – aρ

ρ

)1–(ϑ1–ϑ2)

|ρDϑ2
a � (κ)|

)

≤ ϕ2
(
z(κ)

)
, κ > a,

(3.31)

where z(κ) is as in (3.18). Take into consideration (3.18) and (3.31) we find that

z(κ) ≤ K1 + K2

[(∫
κ

a
hq

1(s)ϕq
1
(
z(s)

)
ds

) 1
q

+
(∫

κ

a
hq

2(s)ϕq
2
(
z(s)

)
ds

) 1
q
]

. (3.32)

By using Lemma (2.10), we have

zq(κ) ≤ B1 + B2

[∫
κ

a
hq

1(s)ϕq
1
(
z(s)

)
ds +

∫
κ

a
hq

2(s)ϕq
2
(
z(s)

)
ds

]

, (3.33)

where

B1 = 2q–1Kq
1 and B2 = 22(q–1)Kq

2 .
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Furthermore, due to the inequality

hq
1(s)ϕq

1
(
z(s)

)
+ hq

2(s)ϕq
2
(
z(s)

) ≤ [
hq

1(s) + hq
2(s)

][
ϕ

q
1
(
z(s)

)
+ ϕ

q
2
(
z(s)

)]
, (3.34)

we have by (3.33) and (3.34)

zq(κ) ≤ B1 + B2

∫
κ

a

[
hq

1(s) + hq
2(s)

][
ϕ

q
1
(
z(s)

)
+ ϕ

q
2
(
z(s)

)]
ds. (3.35)

Now, let u(κ) = zq(κ). Then (3.35) becomes

u(κ) ≤ B1 + B2

∫
κ

a

[
hq

1(s) + hq
2(s)

][
ϕ

q
1
(
u

1
q (s)

)
+ ϕ

q
2
(
u

1
q (s)

)]
ds, κ > a. (3.36)

Let

g(r) = ϕ
q
1
(
r

1
q
)

+ ϕ
q
2
(
r

1
q
)
. (3.37)

Then g is nondecreasing continuous function, since ϕ1 and ϕ2 are nondecreasing contin-
uous functions.

Hence, from (3.36) and (3.37), we get

u(κ) ≤ B1 + B2

∫
κ

a

[
hq

1(s) + hq
2(s)

]
g
(
u(s)

)
ds, κ > a. (3.38)

Applying Theorem 2.9 to (3.38), we have

u(κ) ≤ G–1
(

G(B1) + B2

∫
κ

a

[
hq

1(s) + hq
2(s)

]
ds

)

, κ > a, (3.39)

where

G(κ) =
∫

κ

κ0

ds
g(s)

=
∫

κ

κ0

ds

ϕ
q
1 (s

1
q ) + ϕ

q
2 (s

1
q )

, κ0 > 0,κ > 0.

As hk ∈ Lq ∈ (a,∞), we let

H1 = G(B1) + B2

∫ ∞

a

[
hq

1(s) + hq
2(s)

]
ds. (3.40)

Therefore

u(κ) ≤ H2 := G–1(H1) < ∞.

Next, u(κ) = zq(κ) implies that z(κ) ≤ C := H
1
q

2 . Then we get from (3.17)

∣
∣� (κ)

∣
∣ ≤ C

(
κ

ρ – aρ

ρ

)ϑ1–1

and
∣
∣ρDϑ2

a � (κ)
∣
∣ < C

(
κ

ρ – aρ

ρ

)ϑ1–ϑ2–1

, κ > a. �
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4 Examples
Example 4.1 Consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

ρD1/2
a � (κ) = (κρ–aρ

ρ
)3(cos� 2)(sinκρ–1)

× e–2(κρ–aρ )[� (κ)]1/4[ρD1/3
a � (κ)]1/5, κ > a,

ρI1/2
a � (κ)|κ=a = b.

(4.1)

Here we have

∣
∣F

(
κ,� (κ), ρ

D
1/4
a � (κ)

)∣
∣

=
∣
∣
∣
∣

(
κ

ρ – aρ

ρ

)3(
cos� 2)(sinκρ–1)e–2(κρ–aρ )[� (κ)

]1/4[ρ
D

1/3
a � (κ)

]1/5
∣
∣
∣
∣

≤
∣
∣
∣
∣κ

ρ–1
(
κ

ρ – aρ

ρ

)3–1/8–1/6

e–2(κρ–aρ )

×
[(

κ
ρ – aρ

ρ

)1/2

� (κ)
]1/4[(

κ
ρ – aρ

ρ

)5/6
ρ
D

1/3
a � (κ)

]1/5∣∣
∣
∣

≤
(
κ

ρ – aρ

ρ

)γ

e–(κρ–aρ )h(κ)ϕ1

[(
κ

ρ – aρ

ρ

)1–1/2

� (κ)
]

× ϕ2

[(
κ

ρ – aρ

ρ

)1–(1/2–1/3)

D
1/3
a � (κ)

]

,

where γ = 17
24 , h(κ) = κ

ρ–1(κρ–aρ

ρ
)2e–(κρ–aρ ), ϕ1(κ) = κ

1/4 and ϕ2(κ) = κ
1/5. All the condi-

tions of Theorem 3.4 are satisfied. Then

∣
∣� (κ)

∣
∣ ≤ C

(
κ

ρ – aρ

ρ

)–1/2

and
∣
∣ρD1/3

a � (κ)
∣
∣ ≤ C

(
κ

ρ – aρ

ρ

)–5/6

, κ > a.

Example 4.2 Consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

ρD1/3
a � (κ) = (κρ–aρ

ρ
)2(cos� 2)e–2(κρ–aρ )–3κ[� (κ)]1/2

+ (κρ–aρ

ρ
)2
κ

–2e–3(κρ–aρ )(cosκ2)[ρD1/4
a � (κ)]1/2, κ > a,

ρI2/3
a � (κ)|κ=a = b.

(4.2)

We can rewrite the right hand side of (4.2) as follows:

∣
∣
∣
∣

(
κ

ρ – aρ

ρ

)2(
cos� 2)e–2(κρ–aρ )e–3κ[

� (κ)
]1/2

+
(
κ

ρ – aρ

ρ

)2

e–3(κρ–aρ )(cosκ2)
κ

–2[ρ
D

1/4
a � (κ)

]1/2
∣
∣
∣
∣

≤
(
κ

ρ – aρ

ρ

)γ1

e–2(κρ–aρ )h1(κ)ϕ1

[(
κ

ρ – aρ

ρ

)1–1/3

� (κ)
]

+
(
κ

ρ – aρ

ρ

)γ2

e–3(κρ–aρ )h2(κ)ϕ2

[(
κ

ρ – aρ

ρ

)1–(1/3–1/4)
ρ
D

1/4
a � (κ)

]

,
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where γ1 = 8/3, γ2 = 37/24, h1(κ) = e–3κ , h2(κ) = κ
–2 and ϕ1(κ) = ϕ2(κ) = κ

1/2. Obviously,
all conditions of Theorem 3.5 are satisfied. Then

∣
∣� (κ)

∣
∣ ≤ C

(
κ

ρ – aρ

ρ

)–1/2

and

∣
∣ρD1/4

a � (κ)
∣
∣ ≤ C

(
κ

ρ – aρ

ρ

)–3/4

, κ > a.

Remark 4.3
(i) The reported fractional operator here generalizes both the Riemann–Liouville and

Hadamard fractional operators in one form, and it is also most regarding the
Erdélyi–Kober fractional operator, especially, when ρ → 1, we get a
Riemann–Liouville fractional derivative and doing ρ ↓ 0, we get a
Caputo–Hadamard fractional derivative. Also, we get (Liouville and Weyl) for
ρ → 1, (a = 0 and a = –∞), respectively.

(ii) The results obtained in this work will remain valid if we take into account the
aforementioned special cases.

(iii) Our current problem (1.1) provides a general platform that covers most of the
classic problems from (1.2) into (1.8) mentioned in the introduction Sect.

5 Concluding remarks
In the present work, we have investigated the stability of solutions for some fractional dif-
ferential problems. These types of equations involved the generalized fractional deriva-
tive of different orders. In fact, we have established sufficient conditions on the nonlinear
terms, via making use of some modified generalized versions of inequalities, to study the
decay of solutions to zero in terms of a power function. Besides, some characteristics of
the generalized fractional derivative and appropriate regularization techniques have been
employed. Ultimately, this paper concludes with relevant examples to confirm the legiti-
macy of the acquired results.

In future work, many cases can be established when one takes a more generalised opera-
tor that contains another function instead of κρ in the structure of its kernel. For instance,
the generalized Caputo [37] (or Hilfer [38]) fractional operators. Further, it will be of in-
terest to study the existing problem in this article for the Mittag-Leffler power law [39]
and for fractal fractional operators [40].
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